Header logo is


2007


no image
Transductive Support Vector Machines for Structured Variables

Zien, A., Brefeld, U., Scheffer, T.

In ICML 2007, pages: 1183-1190, (Editors: Ghahramani, Z. ), ACM Press, New York, NY, USA, 24th International Conference on Machine Learning, June 2007 (inproceedings)

Abstract
We study the problem of learning kernel machines transductively for structured output variables. Transductive learning can be reduced to combinatorial optimization problems over all possible labelings of the unlabeled data. In order to scale transductive learning to structured variables, we transform the corresponding non-convex, combinatorial, constrained optimization problems into continuous, unconstrained optimization problems. The discrete optimization parameters are eliminated and the resulting differentiable problems can be optimized efficiently. We study the effectiveness of the generalized TSVM on multiclass classification and label-sequence learning problems empirically.

ei

PDF Web DOI [BibTex]

2007


PDF Web DOI [BibTex]


no image
Bayesian Reconstruction of the Density of States

Habeck, M.

Physical Review Letters, 98(20, 200601):1-4, May 2007 (article)

Abstract
A Bayesian framework is developed to reconstruct the density of states from multiple canonical simulations. The framework encompasses the histogram reweighting method of Ferrenberg and Swendsen. The new approach applies to nonparametric as well as parametric models and does not require simulation data to be discretized. It offers a means to assess the precision of the reconstructed density of states and of derived thermodynamic quantities.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
PALMA: mRNA to Genome Alignments using Large Margin Algorithms

Schulze, U., Hepp, B., Ong, C., Rätsch, G.

Bioinformatics, 23(15):1892-1900, May 2007 (article)

Abstract
Motivation: Despite many years of research on how to properly align sequences in the presence of sequencing errors, alternative splicing and micro-exons, the correct alignment of mRNA sequences to genomic DNA is still a challenging task. Results: We present a novel approach based on large margin learning that combines accurate plice site predictions with common sequence alignment techniques. By solving a convex optimization problem, our algorithm – called PALMA – tunes the parameters of the model such that true alignments score higher than other alignments. We study the accuracy of alignments of mRNAs containing artificially generated micro-exons to genomic DNA. In a carefully designed experiment, we show that our algorithm accurately identifies the intron boundaries as well as boundaries of the optimal local alignment. It outperforms all other methods: for 5702 artificially shortened EST sequences from C. elegans and human it correctly identifies the intron boundaries in all except two cases. The best other method is a recently proposed method called exalin which misaligns 37 of the sequences. Our method also demonstrates robustness to mutations, insertions and deletions, retaining accuracy even at high noise levels. Availability: Datasets for training, evaluation and testing, additional results and a stand-alone alignment tool implemented in C++ and python are available at http://www.fml.mpg.de/raetsch/projects/palma.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Change-Point Detection using Krylov Subspace Learning

Ide, T., Tsuda, K.

In SDM 2007, pages: 515-520, (Editors: Apte, C. ), Society for Industrial and Applied Mathematics, Pittsburgh, PA, USA, SIAM International Conference on Data Mining, April 2007 (inproceedings)

Abstract
We propose an efficient algorithm for principal component analysis (PCA) that is applicable when only the inner product with a given vector is needed. We show that Krylov subspace learning works well both in matrix compression and implicit calculation of the inner product by taking full advantage of the arbitrariness of the seed vector. We apply our algorithm to a PCA-based change-point detection algorithm, and show that it results in about 50 times improvement in computational time.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning causality by identifying common effects with kernel-based dependence measures

Sun, X., Janzing, D.

In ESANN 2007, pages: 453-458, D-Side, Evere, Belgium, 15th European Symposium on Artificial Neural Networks, April 2007 (inproceedings)

Abstract
We describe a method for causal inference that measures the strength of statistical dependence by the Hilbert-Schmidt norm of kernel-based conditional cross-covariance operators. We consider the increase of the dependence of two variables X and Y by conditioning on a third variable Z as a hint for Z being a common effect of X and Y. Based on this assumption, we collect "votes" for hypothetical causal directions and orient the edges according to the majority vote. For most of our experiments with artificial and real-world data our method has outperformed the conventional constraint-based inductive causation (IC) algorithm.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Exploring the causal order of binary variables via exponential hierarchies of Markov kernels

Sun, X., Janzing, D.

In ESANN 2007, pages: 465-470, D-Side, Evere, Belgium, 15th European Symposium on Artificial Neural Networks, April 2007 (inproceedings)

Abstract
We propose a new algorithm for estimating the causal structure that underlies the observed dependence among n (n>=4) binary variables X_1,...,X_n. Our inference principle states that the factorization of the joint probability into conditional probabilities for X_j given X_1,...,X_{j-1} often leads to simpler terms if the order of variables is compatible with the directed acyclic graph representing the causal structure. We study joint measures of OR/AND gates and show that the complexity of the conditional probabilities (the so-called Markov kernels), defined by a hierarchy of exponential models, depends on the order of the variables. Some toy and real-data experiments support our inference rule.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Fast Newton-type Methods for the Least Squares Nonnegative Matrix Approximation Problem

Kim, D., Sra, S., Dhillon, I.

In SDM 2007, pages: 343-354, (Editors: Apte, C. ), Society for Industrial and Applied Mathematics, Pittsburgh, PA, USA, SIAM International Conference on Data Mining, April 2007 (inproceedings)

Abstract
Nonnegative Matrix Approximation is an effective matrix decomposition technique that has proven to be useful for a wide variety of applications ranging from document analysis and image processing to bioinformatics. There exist a few algorithms for nonnegative matrix approximation (NNMA), for example, Lee & Seung’s multiplicative updates, alternating least squares, and certain gradient descent based procedures. All of these procedures suffer from either slow convergence, numerical instabilities, or at worst, theoretical unsoundness. In this paper we present new and improved algorithms for the least-squares NNMA problem, which are not only theoretically well-founded, but also overcome many of the deficiencies of other methods. In particular, we use non-diagonal gradient scaling to obtain rapid convergence. Our methods provide numerical results superior to both Lee & Seung’s method as well to the alternating least squares (ALS) heuristic, which is known to work well in some situations but has no theoretical guarantees (Berry et al. 2006). Our approach extends naturally to include regularization and box-constraints, without sacrificing convergence guarantees. We present experimental results on both synthetic and realworld datasets to demonstrate the superiority of our methods, in terms of better approximations as well as efficiency.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Distinguishing Between Cause and Effect via Kernel-Based Complexity Measures for Conditional Distributions

Sun, X., Janzing, D., Schölkopf, B.

In Proceedings of the 15th European Symposium on Artificial Neural Networks , pages: 441-446, (Editors: M Verleysen), D-Side Publications, Evere, Belgium, ESANN, April 2007 (inproceedings)

Abstract
We propose a method to evaluate the complexity of probability measures from data that is based on a reproducing kernel Hilbert space seminorm of the logarithm of conditional probability densities. The motivation is to provide a tool for a causal inference method which assumes that conditional probabilities for effects given their causes are typically simpler and smoother than vice-versa. We present experiments with toy data where the quantitative results are consistent with our intuitive understanding of complexity and smoothness. Also in some examples with real-world data the probability measure corresponding to the true causal direction turned out to be less complex than those of the reversed order.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Deterministic Annealing for Multiple-Instance Learning

Gehler, P., Chapelle, O.

In JMLR Workshop and Conference Proceedings Volume 2: AISTATS 2007, pages: 123-130, (Editors: Meila, M. , X. Shen), MIT Press, Cambridge, MA, USA, 11th International Conference on Artificial Intelligence and Statistics, March 2007 (inproceedings)

Abstract
In this paper we demonstrate how deterministic annealing can be applied to different SVM formulations of the multiple-instance learning (MIL) problem. Our results show that we find better local minima compared to the heuristic methods those problems are usually solved with. However this does not always translate into a better test error suggesting an inadequacy of the objective function. Based on this finding we propose a new objective function which together with the deterministic annealing algorithm finds better local minima and achieves better performance on a set of benchmark datasets. Furthermore the results also show how the structure of MIL datasets influence the performance of MIL algorithms and we discuss how future benchmark datasets for the MIL problem should be designed.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Bayesian Inference and Optimal Design in the Sparse Linear Model

Seeger, M., Steinke, F., Tsuda, K.

In JMLR Workshop and Conference Proceedings Volume 2: AISTATS 2007, pages: 444-451, (Editors: Meila, M. , X. Shen), JMLR, Cambridge, MA, USA, 11th International Conference on Artificial Intelligence and Statistics, March 2007 (inproceedings)

Abstract
The sparse linear model has seen many successful applications in Statistics, Machine Learning, and Computational Biology, such as identification of gene regulatory networks from micro-array expression data. Prior work has either approximated Bayesian inference by expensive Markov chain Monte Carlo, or replaced it by point estimation. We show how to obtain a good approximation to Bayesian analysis efficiently, using the Expectation Propagation method. We also address the problems of optimal design and hyperparameter estimation. We demonstrate our framework on a gene network identification task.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Stick-breaking Construction for the Indian Buffet Process

Teh, Y., Görür, D., Ghahramani, Z.

In JMLR Workshop and Conference Proceedings Volume 2: AISTATS 2007, pages: 556-563, (Editors: Meila, M. , X. Shen), MIT Press, Cambridge, MA, USA, 11th International Conference on Artificial Intelligence and Statistics, March 2007 (inproceedings)

Abstract
The Indian buffet process (IBP) is a Bayesian nonparametric distribution whereby objects are modelled using an unbounded number of latent features. In this paper we derive a stick-breaking representation for the IBP. Based on this new representation, we develop slice samplers for the IBP that are efficient, easy to implement and are more generally applicable than the currently available Gibbs sampler. This representation, along with the work of Thibaux and Jordan [17], also illuminates interesting theoretical connections between the IBP, Chinese restaurant processes, Beta processes and Dirichlet processes.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Fast Kernel ICA using an Approximate Newton Method

Shen, H., Jegelka, S., Gretton, A.

In JMLR Workshop and Conference Proceedings Volume 2: AISTATS 2007, pages: 476-483, (Editors: Meila, M. , X. Shen), MIT Press, Cambridge, MA, USA, 11th International Conference on Artificial Intelligence and Statistics, March 2007 (inproceedings)

Abstract
Recent approaches to independent component analysis (ICA) have used kernel independence measures to obtain very good performance, particularly where classical methods experience difficulty (for instance, sources with near-zero kurtosis). We present Fast Kernel ICA (FastKICA), a novel optimisation technique for one such kernel independence measure, the Hilbert-Schmidt independence criterion (HSIC). Our search procedure uses an approximate Newton method on the special orthogonal group, where we estimate the Hessian locally about independence. We employ incomplete Cholesky decomposition to efficiently compute the gradient and approximate Hessian. FastKICA results in more accurate solutions at a given cost compared with gradient descent, and is relatively insensitive to local minima when initialised far from independence. These properties allow kernel approaches to be extended to problems with larger numbers of sources and observations. Our method is competitive with other modern and classical ICA approaches in both speed and accuracy.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Training a Support Vector Machine in the Primal

Chapelle, O.

Neural Computation, 19(5):1155-1178, March 2007 (article)

Abstract
Most literature on Support Vector Machines (SVMs) concentrate on the dual optimization problem. In this paper, we would like to point out that the primal problem can also be solved efficiently, both for linear and non-linear SVMs, and that there is no reason for ignoring this possibilty. On the contrary, from the primal point of view new families of algorithms for large scale SVM training can be investigated.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Transductive Classification via Local Learning Regularization

Wu, M., Schölkopf, B.

In JMLR Workshop and Conference Proceedings Volume 2: AISTATS 2007, pages: 628-635, (Editors: M Meila and X Shen), 11th International Conference on Artificial Intelligence and Statistics, March 2007 (inproceedings)

Abstract
The idea of local learning, classifying a particular point based on its neighbors, has been successfully applied to supervised learning problems. In this paper, we adapt it for Transductive Classification (TC) problems. Specifically, we formulate a Local Learning Regularizer (LL-Reg) which leads to a solution with the property that the label of each data point can be well predicted based on its neighbors and their labels. For model selection, an efficient way to compute the leave-one-out classification error is provided for the proposed and related algorithms. Experimental results using several benchmark datasets illustrate the effectiveness of the proposed approach.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Improving the Caenorhabditis elegans Genome Annotation Using Machine Learning

Rätsch, G., Sonnenburg, S., Srinivasan, J., Witte, H., Müller, K., Sommer, R., Schölkopf, B.

PLoS Computational Biology, 3(2, e20):0313-0322, February 2007 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
The Independent Components of Natural Images are Perceptually Dependent

Bethge, M., Wiecki, T., Wichmann, F.

In Human Vision and Electronic Imaging XII, pages: 1-12, (Editors: Rogowitz, B. E.), SPIE, Bellingham, WA, USA, SPIE Human Vision and Electronic Imaging Conference, February 2007 (inproceedings)

Abstract
The independent components of natural images are a set of linear filters which are optimized for statistical independence. With such a set of filters images can be represented without loss of information. Intriguingly, the filter shapes are localized, oriented, and bandpass, resembling important properties of V1 simple cell receptive fields. Here we address the question of whether the independent components of natural images are also perceptually less dependent than other image components. We compared the pixel basis, the ICA basis and the discrete cosine basis by asking subjects to interactively predict missing pixels (for the pixel basis) or to predict the coefficients of ICA and DCT basis functions in patches of natural images. Like Kersten (1987) we find the pixel basis to be perceptually highly redundant but perhaps surprisingly, the ICA basis showed significantly higher perceptual dependencies than the DCT basis. This shows a dissociation between statistical and perceptual dependence measures.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Statistical Consistency of Kernel Canonical Correlation Analysis

Fukumizu, K., Bach, F., Gretton, A.

Journal of Machine Learning Research, 8, pages: 361-383, February 2007 (article)

Abstract
While kernel canonical correlation analysis (CCA) has been applied in many contexts, the convergence of finite sample estimates of the associated functions to their population counterparts has not yet been established. This paper gives a mathematical proof of the statistical convergence of kernel CCA, providing a theoretical justification for the method. The proof uses covariance operators defined on reproducing kernel Hilbert spaces, and analyzes the convergence of their empirical estimates of finite rank to their population counterparts, which can have infinite rank. The result also gives a sufficient condition for convergence on the regularization coefficient involved in kernel CCA: this should decrease as n^{-1/3}, where n is the number of data.

ei

PDF [BibTex]

PDF [BibTex]


no image
Unsupervised learning of a steerable basis for invariant image representations

Bethge, M., Gerwinn, S., Macke, J.

In Human Vision and Electronic Imaging XII, pages: 1-12, (Editors: Rogowitz, B. E.), SPIE, Bellingham, WA, USA, SPIE Human Vision and Electronic Imaging Conference, February 2007 (inproceedings)

Abstract
There are two aspects to unsupervised learning of invariant representations of images: First, we can reduce the dimensionality of the representation by finding an optimal trade-off between temporal stability and informativeness. We show that the answer to this optimization problem is generally not unique so that there is still considerable freedom in choosing a suitable basis. Which of the many optimal representations should be selected? Here, we focus on this second aspect, and seek to find representations that are invariant under geometrical transformations occuring in sequences of natural images. We utilize ideas of steerability and Lie groups, which have been developed in the context of filter design. In particular, we show how an anti-symmetric version of canonical correlation analysis can be used to learn a full-rank image basis which is steerable with respect to rotations. We provide a geometric interpretation of this algorithm by showing that it finds the two-dimensional eigensubspaces of the avera ge bivector. For data which exhibits a variety of transformations, we develop a bivector clustering algorithm, which we use to learn a basis of generalized quadrature pairs (i.e. complex cells) from sequences of natural images.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A Subspace Kernel for Nonlinear Feature Extraction

Wu, M., Farquhar, J.

In IJCAI-07, pages: 1125-1130, (Editors: Veloso, M. M.), AAAI Press, Menlo Park, CA, USA, International Joint Conference on Artificial Intelligence, January 2007 (inproceedings)

Abstract
Kernel based nonlinear Feature Extraction (KFE) or dimensionality reduction is a widely used pre-processing step in pattern classification and data mining tasks. Given a positive definite kernel function, it is well known that the input data are implicitly mapped to a feature space with usually very high dimensionality. The goal of KFE is to find a low dimensional subspace of this feature space, which retains most of the information needed for classification or data analysis. In this paper, we propose a subspace kernel based on which the feature extraction problem is transformed to a kernel parameter learning problem. The key observation is that when projecting data into a low dimensional subspace of the feature space, the parameters that are used for describing this subspace can be regarded as the parameters of the kernel function between the projected data. Therefore current kernel parameter learning methods can be adapted to optimize this parameterized kernel function. Experimental results are provided to validate the effectiveness of the proposed approach.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Some observations on the pedestal effect

Henning, G., Wichmann, F.

Journal of Vision, 7(1:3):1-15, January 2007 (article)

Abstract
The pedestal or dipper effect is the large improvement in the detectability of a sinusoidal grating observed when it is added to a masking or pedestal grating of the same spatial frequency, orientation, and phase. We measured the pedestal effect in both broadband and notched noiseVnoise from which a 1.5-octave band centered on the signal frequency had been removed. Although the pedestal effect persists in broadband noise, it almost disappears in the notched noise. Furthermore, the pedestal effect is substantial when either high- or low-pass masking noise is used. We conclude that the pedestal effect in the absence of notched noise results principally from the use of information derived from channels with peak sensitivities at spatial frequencies different from that of the signal and the pedestal. We speculate that the spatial-frequency components of the notched noise above and below the spatial frequency of the signal and the pedestal prevent ‘‘off-frequency looking,’’ that is, prevent the use of information about changes in contrast carried in channels tuned to spatial frequencies that are very much different from that of the signal and the pedestal. Thus, the pedestal or dipper effect measured without notched noise appears not to be a characteristic of individual spatial-frequency-tuned channels.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Cue Combination and the Effect of Horizontal Disparity and Perspective on Stereoacuity

Zalevski, AM., Henning, GB., Hill, NJ.

Spatial Vision, 20(1):107-138, January 2007 (article)

Abstract
Relative depth judgments of vertical lines based on horizontal disparity deteriorate enormously when the lines form part of closed configurations (Westheimer, 1979). In studies showing this effect, perspective was not manipulated and thus produced inconsistency between horizontal disparity and perspective. We show that stereoacuity improves dramatically when perspective and horizontal disparity are made consistent. Observers appear to use unhelpful perspective cues in judging the relative depth of the vertical sides of rectangles in a way not incompatible with a form of cue weighting. However, 95% confidence intervals for the weights derived for cues usually exceed the a-priori [0-1] range.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Towards Machine Learning of Motor Skills

Peters, J., Schaal, S., Schölkopf, B.

In Proceedings of Autonome Mobile Systeme (AMS), pages: 138-144, (Editors: K Berns and T Luksch), 2007, clmc (inproceedings)

Abstract
Autonomous robots that can adapt to novel situations has been a long standing vision of robotics, artificial intelligence, and cognitive sciences. Early approaches to this goal during the heydays of artificial intelligence research in the late 1980s, however, made it clear that an approach purely based on reasoning or human insights would not be able to model all the perceptuomotor tasks that a robot should fulfill. Instead, new hope was put in the growing wake of machine learning that promised fully adaptive control algorithms which learn both by observation and trial-and-error. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics, and usually scaling was only achieved in precisely pre-structured domains. In this paper, we investigate the ingredients for a general approach to motor skill learning in order to get one step closer towards human-like performance. For doing so, we study two ma jor components for such an approach, i.e., firstly, a theoretically well-founded general approach to representing the required control structures for task representation and execution and, secondly, appropriate learning algorithms which can be applied in this setting.

am ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Reinforcement Learning for Optimal Control of Arm Movements

Theodorou, E., Peters, J., Schaal, S.

In Abstracts of the 37st Meeting of the Society of Neuroscience., Neuroscience, 2007, clmc (inproceedings)

Abstract
Every day motor behavior consists of a plethora of challenging motor skills from discrete movements such as reaching and throwing to rhythmic movements such as walking, drumming and running. How this plethora of motor skills can be learned remains an open question. In particular, is there any unifying computa-tional framework that could model the learning process of this variety of motor behaviors and at the same time be biologically plausible? In this work we aim to give an answer to these questions by providing a computational framework that unifies the learning mechanism of both rhythmic and discrete movements under optimization criteria, i.e., in a non-supervised trial-and-error fashion. Our suggested framework is based on Reinforcement Learning, which is mostly considered as too costly to be a plausible mechanism for learning com-plex limb movement. However, recent work on reinforcement learning with pol-icy gradients combined with parameterized movement primitives allows novel and more efficient algorithms. By using the representational power of such mo-tor primitives we show how rhythmic motor behaviors such as walking, squash-ing and drumming as well as discrete behaviors like reaching and grasping can be learned with biologically plausible algorithms. Using extensive simulations and by using different reward functions we provide results that support the hy-pothesis that Reinforcement Learning could be a viable candidate for motor learning of human motor behavior when other learning methods like supervised learning are not feasible.

am ei

[BibTex]

[BibTex]


no image
Reinforcement learning by reward-weighted regression for operational space control

Peters, J., Schaal, S.

In Proceedings of the 24th Annual International Conference on Machine Learning, pages: 745-750, ICML, 2007, clmc (inproceedings)

Abstract
Many robot control problems of practical importance, including operational space control, can be reformulated as immediate reward reinforcement learning problems. However, few of the known optimization or reinforcement learning algorithms can be used in online learning control for robots, as they are either prohibitively slow, do not scale to interesting domains of complex robots, or require trying out policies generated by random search, which are infeasible for a physical system. Using a generalization of the EM-base reinforcement learning framework suggested by Dayan & Hinton, we reduce the problem of learning with immediate rewards to a reward-weighted regression problem with an adaptive, integrated reward transformation for faster convergence. The resulting algorithm is efficient, learns smoothly without dangerous jumps in solution space, and works well in applications of complex high degree-of-freedom robots.

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Policy gradient methods for machine learning

Peters, J., Theodorou, E., Schaal, S.

In Proceedings of the 14th INFORMS Conference of the Applied Probability Society, pages: 97-98, Eindhoven, Netherlands, July 9-11, 2007, 2007, clmc (inproceedings)

Abstract
We present an in-depth survey of policy gradient methods as they are used in the machine learning community for optimizing parameterized, stochastic control policies in Markovian systems with respect to the expected reward. Despite having been developed separately in the reinforcement learning literature, policy gradient methods employ likelihood ratio gradient estimators as also suggested in the stochastic simulation optimization community. It is well-known that this approach to policy gradient estimation traditionally suffers from three drawbacks, i.e., large variance, a strong dependence on baseline functions and a inefficient gradient descent. In this talk, we will present a series of recent results which tackles each of these problems. The variance of the gradient estimation can be reduced significantly through recently introduced techniques such as optimal baselines, compatible function approximations and all-action gradients. However, as even the analytically obtainable policy gradients perform unnaturally slow, it required the step from ÔvanillaÕ policy gradient methods towards natural policy gradients in order to overcome the inefficiency of the gradient descent. This development resulted into the Natural Actor-Critic architecture which can be shown to be very efficient in application to motor primitive learning for robotics.

am ei

[BibTex]

[BibTex]


no image
Policy Learning for Motor Skills

Peters, J., Schaal, S.

In Proceedings of 14th International Conference on Neural Information Processing (ICONIP), pages: 233-242, (Editors: Ishikawa, M. , K. Doya, H. Miyamoto, T. Yamakawa), 2007, clmc (inproceedings)

Abstract
Policy learning which allows autonomous robots to adapt to novel situations has been a long standing vision of robotics, artificial intelligence, and cognitive sciences. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics, and usually scaling was only achieved in precisely pre-structured domains. In this paper, we investigate the ingredients for a general approach policy learning with the goal of an application to motor skill refinement in order to get one step closer towards human-like performance. For doing so, we study two major components for such an approach, i.e., firstly, we study policy learning algorithms which can be applied in the general setting of motor skill learning, and, secondly, we study a theoretically well-founded general approach to representing the required control structures for task representation and execution.

am ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Reinforcement learning for operational space control

Peters, J., Schaal, S.

In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, pages: 2111-2116, IEEE Computer Society, ICRA, 2007, clmc (inproceedings)

Abstract
While operational space control is of essential importance for robotics and well-understood from an analytical point of view, it can be prohibitively hard to achieve accurate control in face of modeling errors, which are inevitable in complex robots, e.g., humanoid robots. In such cases, learning control methods can offer an interesting alternative to analytical control algorithms. However, the resulting supervised learning problem is ill-defined as it requires to learn an inverse mapping of a usually redundant system, which is well known to suffer from the property of non-convexity of the solution space, i.e., the learning system could generate motor commands that try to steer the robot into physically impossible configurations. The important insight that many operational space control algorithms can be reformulated as optimal control problems, however, allows addressing this inverse learning problem in the framework of reinforcement learning. However, few of the known optimization or reinforcement learning algorithms can be used in online learning control for robots, as they are either prohibitively slow, do not scale to interesting domains of complex robots, or require trying out policies generated by random search, which are infeasible for a physical system. Using a generalization of the EM-based reinforcement learning framework suggested by Dayan & Hinton, we reduce the problem of learning with immediate rewards to a reward-weighted regression problem with an adaptive, integrated reward transformation for faster convergence. The resulting algorithm is efficient, learns smoothly without dangerous jumps in solution space, and works well in applications of complex high degree-of-freedom robots.

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Using reward-weighted regression for reinforcement learning of task space control

Peters, J., Schaal, S.

In Proceedings of the 2007 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning, pages: 262-267, Honolulu, Hawaii, April 1-5, 2007, 2007, clmc (inproceedings)

Abstract
In this paper, we evaluate different versions from the three main kinds of model-free policy gradient methods, i.e., finite difference gradients, `vanilla' policy gradients and natural policy gradients. Each of these methods is first presented in its simple form and subsequently refined and optimized. By carrying out numerous experiments on the cart pole regulator benchmark we aim to provide a useful baseline for future research on parameterized policy search algorithms. Portable C++ code is provided for both plant and algorithms; thus, the results in this paper can be reevaluated, reused and new algorithms can be inserted with ease.

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Evaluation of Policy Gradient Methods and Variants on the Cart-Pole Benchmark

Riedmiller, M., Peters, J., Schaal, S.

In Proceedings of the 2007 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning, pages: 254-261, ADPRL, 2007, clmc (inproceedings)

Abstract
In this paper, we evaluate different versions from the three main kinds of model-free policy gradient methods, i.e., finite difference gradients, `vanilla' policy gradients and natural policy gradients. Each of these methods is first presented in its simple form and subsequently refined and optimized. By carrying out numerous experiments on the cart pole regulator benchmark we aim to provide a useful baseline for future research on parameterized policy search algorithms. Portable C++ code is provided for both plant and algorithms; thus, the results in this paper can be reevaluated, reused and new algorithms can be inserted with ease.

am ei

PDF [BibTex]

PDF [BibTex]


no image
Uncertain 3D Force Fields in Reaching Movements: Do Humans Favor Robust or Average Performance?

Mistry, M., Theodorou, E., Hoffmann, H., Schaal, S.

In Abstracts of the 37th Meeting of the Society of Neuroscience, 2007, clmc (inproceedings)

am

PDF [BibTex]

PDF [BibTex]


no image
Applying the episodic natural actor-critic architecture to motor primitive learning

Peters, J., Schaal, S.

In Proceedings of the 2007 European Symposium on Artificial Neural Networks (ESANN), Bruges, Belgium, April 25-27, 2007, clmc (inproceedings)

Abstract
In this paper, we investigate motor primitive learning with the Natural Actor-Critic approach. The Natural Actor-Critic consists out of actor updates which are achieved using natural stochastic policy gradients while the critic obtains the natural policy gradient by linear regression. We show that this architecture can be used to learn the Òbuilding blocks of movement generationÓ, called motor primitives. Motor primitives are parameterized control policies such as splines or nonlinear differential equations with desired attractor properties. We show that our most modern algorithm, the Episodic Natural Actor-Critic outperforms previous algorithms by at least an order of magnitude. We demonstrate the efficiency of this reinforcement learning method in the application of learning to hit a baseball with an anthropomorphic robot arm.

am

link (url) [BibTex]

link (url) [BibTex]


no image
The new robotics - towards human-centered machines

Schaal, S.

HFSP Journal Frontiers of Interdisciplinary Research in the Life Sciences, 1(2):115-126, 2007, clmc (article)

Abstract
Research in robotics has moved away from its primary focus on industrial applications. The New Robotics is a vision that has been developed in past years by our own university and many other national and international research instiutions and addresses how increasingly more human-like robots can live among us and take over tasks where our current society has shortcomings. Elder care, physical therapy, child education, search and rescue, and general assistance in daily life situations are some of the examples that will benefit from the New Robotics in the near future. With these goals in mind, research for the New Robotics has to embrace a broad interdisciplinary approach, ranging from traditional mathematical issues of robotics to novel issues in psychology, neuroscience, and ethics. This paper outlines some of the important research problems that will need to be resolved to make the New Robotics a reality.

am

link (url) [BibTex]

link (url) [BibTex]


no image
A computational model of human trajectory planning based on convergent flow fields

Hoffman, H., Schaal, S.

In Abstracts of the 37st Meeting of the Society of Neuroscience, San Diego, CA, Nov. 3-7, 2007, clmc (inproceedings)

Abstract
A popular computational model suggests that smooth reaching movements are generated in humans by minimizing a difference vector between hand and target in visual coordinates (Shadmehr and Wise, 2005). To achieve such a task, the optimal joint accelerations may be pre-computed. However, this pre-planning is inflexible towards perturbations of the limb, and there is strong evidence that reaching movements can be modified on-line at any moment during the movement. Thus, next-state planning models (Bullock and Grossberg, 1988) have been suggested that compute the current control command from a function of the goal state such that the overall movement smoothly converges to the goal (see Shadmehr and Wise (2005) for an overview). So far, these models have been restricted to simple point-to-point reaching movements with (approximately) straight trajectories. Here, we present a computational model for learning and executing arbitrary trajectories that combines ideas from pattern generation with dynamic systems and the observation of convergent force fields, which control a frog leg after spinal stimulation (Giszter et al., 1993). In our model, we incorporate the following two observations: first, the orientation of vectors in a force field is invariant over time, but their amplitude is modulated by a time-varying function, and second, two force fields add up when stimulated simultaneously (Giszter et al., 1993). This addition of convergent force fields varying over time results in a virtual trajectory (a moving equilibrium point) that correlates with the actual leg movement (Giszter et al., 1993). Our next-state planner is a set of differential equations that provide the desired end-effector or joint accelerations using feedback of the current state of the limb. These accelerations can be interpreted as resulting from a damped spring that links the current limb position with a virtual trajectory. This virtual trajectory can be learned to realize any desired limb trajectory and velocity profile, and learning is efficient since the time-modulated sum of convergent force fields equals a sum of weighted basis functions (Gaussian time pulses). Thus, linear algebra is sufficient to compute these weights, which correspond to points on the virtual trajectory. During movement execution, the differential equation corrects automatically for perturbations and brings back smoothly the limb towards the goal. Virtual trajectories can be rescaled and added allowing to build a set of movement primitives to describe movements more complex than previously learned. We demonstrate the potential of the suggested model by learning and generating a wide variety of movements.

am

[BibTex]

[BibTex]


no image
A Computational Model of Arm Trajectory Modification Using Dynamic Movement Primitives

Mohajerian, P., Hoffmann, H., Mistry, M., Schaal, S.

In Abstracts of the 37st Meeting of the Society of Neuroscience, San Diego, CA, Nov 3-7, 2007, clmc (inproceedings)

Abstract
Several scientists used a double-step target-displacement protocol to investigate how an unexpected upcoming new target modifies ongoing discrete movements. Interesting observations are the initial direction of the movement, the spatial path of the movement to the second target, and the amplification of the speed in the second movement. Experimental data show that the above properties are influenced by the movement reaction time and the interstimulus interval between the onset of the first and second target. Hypotheses in the literature concerning the interpretation of the observed data include a) the second movement is superimposed on the first movement (Henis and Flash, 1995), b) the first movement is aborted and the second movement is planned to smoothly connect the current state of the arm with the new target (Hoff and Arbib, 1992), c) the second movement is initiated by a new control signal that replaces the first movement's control signal, but does not take the state of the system into account (Flanagan et al., 1993), and (d) the second movement is initiated by a new goal command, but the control structure stays unchanged, and feed-back from the current state is taken into account (Hoff and Arbib, 1993). We investigate target switching from the viewpoint of Dynamic Movement Primitives (DMPs). DMPs are trajectory planning units that are formalized as stable nonlinear attractor systems (Ijspeert et al., 2002). They are a useful framework for biological motor control as they are highly flexible in creating complex rhythmic and discrete behaviors that can quickly adapt to the inevitable perturbations of dynamically changing, stochastic environments. In this model, target switching is accomplished simply by updating the target input to the discrete movement primitive for reaching. The reaching trajectory in this model can be straight or take any other route; in contrast, the Hoff and Arbib (1993) model is restricted to straight reaching movement plans. In the present study, we use DMPs to reproduce in simulation a large number of target-switching experimental data from the literature and to show that online correction and the observed target switching phenomena can be accomplished by changing the goal state of an on-going DMP, without the need to switch to different movement primitives or to re-plan the movement. :

am

PDF [BibTex]

PDF [BibTex]


no image
Inverse dynamics control with floating base and constraints

Nakanishi, J., Mistry, M., Schaal, S.

In International Conference on Robotics and Automation (ICRA2007), pages: 1942-1947, Rome, Italy, April 10-14, 2007, clmc (inproceedings)

Abstract
In this paper, we address the issues of compliant control of a robot under contact constraints with a goal of using joint space based pattern generators as movement primitives, as often considered in the studies of legged locomotion and biological motor control. For this purpose, we explore inverse dynamics control of constrained dynamical systems. When the system is overconstrained, it is not straightforward to formulate an inverse dynamics control law since the problem becomes an ill-posed one, where infinitely many combinations of joint torques are possible to achieve the desired joint accelerations. The goal of this paper is to develop a general and computationally efficient inverse dynamics algorithm for a robot with a free floating base and constraints. We suggest an approximate way of computing inverse dynamics algorithm by treating constraint forces computed with a Lagrange multiplier method as simply external forces based on FeatherstoneÕs floating base formulation of inverse dynamics. We present how all the necessary quantities to compute our controller can be efficiently extracted from FeatherstoneÕs spatial notation of robot dynamics. We evaluate the effectiveness of the suggested approach on a simulated biped robot model.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Kernel carpentry for onlne regression using randomly varying coefficient model

Edakunni, N. U., Schaal, S., Vijayakumar, S.

In Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India: Jan. 6-12, 2007, clmc (inproceedings)

Abstract
We present a Bayesian formulation of locally weighted learning (LWL) using the novel concept of a randomly varying coefficient model. Based on this, we propose a mechanism for multivariate non-linear regression using spatially localised linear models that learns completely independent of each other, uses only local information and adapts the local model complexity in a data driven fashion. We derive online updates for the model parameters based on variational Bayesian EM. The evaluation of the proposed algorithm against other state-of-the-art methods reveal the excellent, robust generalization performance beside surprisingly efficient time and space complexity properties. This paper, for the first time, brings together the computational efficiency and the adaptability of Õnon-competitiveÕ locally weighted learning schemes and the modeling guarantees of the Bayesian formulation.

am

link (url) [BibTex]

link (url) [BibTex]


no image
A robust quadruped walking gait for traversing rough terrain

Pongas, D., Mistry, M., Schaal, S.

In International Conference on Robotics and Automation (ICRA2007), pages: 1474-1479, Rome, April 10-14, 2007, 2007, clmc (inproceedings)

Abstract
Legged locomotion excels when terrains become too rough for wheeled systems or open-loop walking pattern generators to succeed, i.e., when accurate foot placement is of primary importance in successfully reaching the task goal. In this paper we address the scenario where the rough terrain is traversed with a static walking gait, and where for every foot placement of a leg, the location of the foot placement was selected irregularly by a planning algorithm. Our goal is to adjust a smooth walking pattern generator with the selection of every foot placement such that the COG of the robot follows a stable trajectory characterized by a stability margin relative to the current support triangle. We propose a novel parameterization of the COG trajectory based on the current position, velocity, and acceleration of the four legs of the robot. This COG trajectory has guaranteed continuous velocity and acceleration profiles, which leads to continuous velocity and acceleration profiles of the leg movement, which is ideally suited for advanced model-based controllers. Pitch, yaw, and ground clearance of the robot are easily adjusted automatically under any terrain situation. We evaluate our gait generation technique on the Little-Dog quadruped robot when traversing complex rocky and sloped terrains.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Bayesian Nonparametric Regression with Local Models

Ting, J., Schaal, S.

In Workshop on Robotic Challenges for Machine Learning, NIPS 2007, 2007, clmc (inproceedings)

am

[BibTex]

[BibTex]


no image
Task space control with prioritization for balance and locomotion

Mistry, M., Nakanishi, J., Schaal, S.

In IEEE International Conference on Intelligent Robotics Systems (IROS 2007), San Diego, CA: Oct. 29 Ð Nov. 2, 2007, clmc (inproceedings)

Abstract
This paper addresses locomotion with active balancing, via task space control with prioritization. The center of gravity (COG) and foot of the swing leg are treated as task space control points. Floating base inverse kinematics with constraints is employed, thereby allowing for a mobile platform suitable for locomotion. Different techniques of task prioritization are discussed and we clarify differences and similarities of previous suggested work. Varying levels of prioritization for control are examined with emphasis on singularity robustness and the negative effects of constraint switching. A novel controller for task space control of balance and locomotion is developed which attempts to address singularity robustness, while minimizing discontinuities created by constraint switching. Controllers are evaluated using a quadruped robot simulator engaging in a locomotion task.

am

link (url) [BibTex]

link (url) [BibTex]

2005


no image
Kernel Methods for Measuring Independence

Gretton, A., Herbrich, R., Smola, A., Bousquet, O., Schölkopf, B.

Journal of Machine Learning Research, 6, pages: 2075-2129, December 2005 (article)

Abstract
We introduce two new functionals, the constrained covariance and the kernel mutual information, to measure the degree of independence of random variables. These quantities are both based on the covariance between functions of the random variables in reproducing kernel Hilbert spaces (RKHSs). We prove that when the RKHSs are universal, both functionals are zero if and only if the random variables are pairwise independent. We also show that the kernel mutual information is an upper bound near independence on the Parzen window estimate of the mutual information. Analogous results apply for two correlation-based dependence functionals introduced earlier: we show the kernel canonical correlation and the kernel generalised variance to be independence measures for universal kernels, and prove the latter to be an upper bound on the mutual information near independence. The performance of the kernel dependence functionals in measuring independence is verified in the context of independent component analysis.

ei

PDF PostScript PDF [BibTex]

2005


PDF PostScript PDF [BibTex]


no image
Kernel ICA for Large Scale Problems

Jegelka, S., Gretton, A., Achlioptas, D.

In pages: -, NIPS Workshop on Large Scale Kernel Machines, December 2005 (inproceedings)

ei

Web [BibTex]

Web [BibTex]


no image
A Unifying View of Sparse Approximate Gaussian Process Regression

Quinonero Candela, J., Rasmussen, C.

Journal of Machine Learning Research, 6, pages: 1935-1959, December 2005 (article)

Abstract
We provide a new unifying view, including all existing proper probabilistic sparse approximations for Gaussian process regression. Our approach relies on expressing the effective prior which the methods are using. This allows new insights to be gained, and highlights the relationship between existing methods. It also allows for a clear theoretically justified ranking of the closeness of the known approximations to the corresponding full GPs. Finally we point directly to designs of new better sparse approximations, combining the best of the existing strategies, within attractive computational constraints.

ei

PDF [BibTex]

PDF [BibTex]


no image
Training Support Vector Machines with Multiple Equality Constraints

Kienzle, W., Schölkopf, B.

In Proceedings of the 16th European Conference on Machine Learning, Lecture Notes in Computer Science, Vol. 3720, pages: 182-193, (Editors: JG Carbonell and J Siekmann), Springer, Berlin, Germany, ECML, November 2005 (inproceedings)

Abstract
In this paper we present a primal-dual decomposition algorithm for support vector machine training. As with existing methods that use very small working sets (such as Sequential Minimal Optimization (SMO), Successive Over-Relaxation (SOR) or the Kernel Adatron (KA)), our method scales well, is straightforward to implement, and does not require an external QP solver. Unlike SMO, SOR and KA, the method is applicable to a large number of SVM formulations regardless of the number of equality constraints involved. The effectiveness of our algorithm is demonstrated on a more difficult SVM variant in this respect, namely semi-parametric support vector regression.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Measuring Statistical Dependence with Hilbert-Schmidt Norms

Gretton, A., Bousquet, O., Smola, A., Schoelkopf, B.

In Algorithmic Learning Theory, Lecture Notes in Computer Science, Vol. 3734, pages: 63-78, (Editors: S Jain and H-U Simon and E Tomita), Springer, Berlin, Germany, 16th International Conference ALT, October 2005 (inproceedings)

Abstract
We propose an independence criterion based on the eigenspectrum of covariance operators in reproducing kernel Hilbert spaces (RKHSs), consisting of an empirical estimate of the Hilbert-Schmidt norm of the cross-covariance operator (we term this a Hilbert-Schmidt Independence Criterion, or HSIC). This approach has several advantages, compared with previous kernel-based independence criteria. First, the empirical estimate is simpler than any other kernel dependence test, and requires no user-defined regularisation. Second, there is a clearly defined population quantity which the empirical estimate approaches in the large sample limit, with exponential convergence guaranteed between the two: this ensures that independence tests based on {methodname} do not suffer from slow learning rates. Finally, we show in the context of independent component analysis (ICA) that the performance of HSIC is competitive with that of previously published kernel-based criteria, and of other recently published ICA methods.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Maximal Margin Classification for Metric Spaces

Hein, M., Bousquet, O., Schölkopf, B.

Journal of Computer and System Sciences, 71(3):333-359, October 2005 (article)

Abstract
In order to apply the maximum margin method in arbitrary metric spaces, we suggest to embed the metric space into a Banach or Hilbert space and to perform linear classification in this space. We propose several embeddings and recall that an isometric embedding in a Banach space is always possible while an isometric embedding in a Hilbert space is only possible for certain metric spaces. As a result, we obtain a general maximum margin classification algorithm for arbitrary metric spaces (whose solution is approximated by an algorithm of Graepel. Interestingly enough, the embedding approach, when applied to a metric which can be embedded into a Hilbert space, yields the SVM algorithm, which emphasizes the fact that its solution depends on the metric and not on the kernel. Furthermore we give upper bounds of the capacity of the function classes corresponding to both embeddings in terms of Rademacher averages. Finally we compare the capacities of these function classes directly.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
An Analysis of the Anti-Learning Phenomenon for the Class Symmetric Polyhedron

Kowalczyk, A., Chapelle, O.

In Algorithmic Learning Theory: 16th International Conference, pages: 78-92, Algorithmic Learning Theory, October 2005 (inproceedings)

Abstract
This paper deals with an unusual phenomenon where most machine learning algorithms yield good performance on the training set but systematically worse than random performance on the test set. This has been observed so far for some natural data sets and demonstrated for some synthetic data sets when the classification rule is learned from a small set of training samples drawn from some high dimensional space. The initial analysis presented in this paper shows that anti-learning is a property of data sets and is quite distinct from overfitting of a training data. Moreover, the analysis leads to a specification of some machine learning procedures which can overcome anti-learning and generate ma- chines able to classify training and test data consistently.

ei

PDF [BibTex]

PDF [BibTex]


no image
Selective integration of multiple biological data for supervised network inference

Kato, T., Tsuda, K., Asai, K.

Bioinformatics, 21(10):2488 , October 2005 (article)

ei

PDF [BibTex]

PDF [BibTex]


no image
Assessing Approximate Inference for Binary Gaussian Process Classification

Kuss, M., Rasmussen, C.

Journal of Machine Learning Research, 6, pages: 1679 , October 2005 (article)

Abstract
Gaussian process priors can be used to define flexible, probabilistic classification models. Unfortunately exact Bayesian inference is analytically intractable and various approximation techniques have been proposed. In this work we review and compare Laplace‘s method and Expectation Propagation for approximate Bayesian inference in the binary Gaussian process classification model. We present a comprehensive comparison of the approximations, their predictive performance and marginal likelihood estimates to results obtained by MCMC sampling. We explain theoretically and corroborate empirically the advantages of Expectation Propagation compared to Laplace‘s method.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]