Header logo is


2009


no image
Qualia: The Geometry of Integrated Information

Balduzzi, D., Tononi, G.

PLoS Computational Biology, 5(8):1-24, August 2009 (article)

Abstract
According to the integrated information theory, the quantity of consciousness is the amount of integrated information generated by a complex of elements, and the quality of experience is specified by the informational relationships it generates. This paper outlines a framework for characterizing the informational relationships generated by such systems. Qualia space (Q) is a space having an axis for each possible state (activity pattern) of a complex. Within Q, each submechanism specifies a point corresponding to a repertoire of system states. Arrows between repertoires in Q define informational relationships. Together, these arrows specify a quale—a shape that completely and univocally characterizes the quality of a conscious experience. Φ— the height of this shape—is the quantity of consciousness associated with the experience. Entanglement measures how irreducible informational relationships are to their component relationships, specifying concepts and modes. Several corollaries follow from these premises. The quale is determined by both the mechanism and state of the system. Thus, two different systems having identical activity patterns may generate different qualia. Conversely, the same quale may be generated by two systems that differ in both activity and connectivity. Both active and inactive elements specify a quale, but elements that are inactivated do not. Also, the activation of an element affects experience by changing the shape of the quale. The subdivision of experience into modalities and submodalities corresponds to subshapes in Q. In principle, different aspects of experience may be classified as different shapes in Q, and the similarity between experiences reduces to similarities between shapes. Finally, specific qualities, such as the “redness” of red, while generated by a local mechanism, cannot be reduced to it, but require considering the entire quale. Ultimately, the present framework may offer a principled way for translating qualitative properties of experience into mathematics.

ei

Web DOI [BibTex]

2009


Web DOI [BibTex]


no image
Guest editorial: Special issue on robot learning, Part B

Peters, J., Ng, A.

Autonomous Robots, 27(2):91-92, August 2009 (article)

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Policy Search for Motor Primitives

Peters, J., Kober, J.

KI - Zeitschrift K{\"u}nstliche Intelligenz, 23(3):38-40, August 2009 (article)

Abstract
Many motor skills in humanoid robotics can be learned using parametrized motor primitives from demonstrations. However, most interesting motor learning problems require self-improvement often beyond the reach of current reinforcement learning methods due to the high dimensionality of the state-space. We develop an EM-inspired algorithm applicable to complex motor learning tasks. We compare this algorithm to several well-known parametrized policy search methods and show that it outperforms them. We apply it to motor learning problems and show that it can learn the complex Ball-in-a-Cup task using a real Barrett WAM robot arm.

ei

Web [BibTex]

Web [BibTex]


no image
A neurophysiologically plausible population code model for human contrast discrimination

Goris, R., Wichmann, F., Henning, G.

Journal of Vision, 9(7):1-22, July 2009 (article)

Abstract
The pedestal effect is the improvement in the detectability of a sinusoidal grating in the presence of another grating of the same orientation, spatial frequency, and phase—usually called the pedestal. Recent evidence has demonstrated that the pedestal effect is differently modified by spectrally flat and notch-filtered noise: The pedestal effect is reduced in flat noise but virtually disappears in the presence of notched noise (G. B. Henning & F. A. Wichmann, 2007). Here we consider a network consisting of units whose contrast response functions resemble those of the cortical cells believed to underlie human pattern vision and demonstrate that, when the outputs of multiple units are combined by simple weighted summation—a heuristic decision rule that resembles optimal information combination and produces a contrast-dependent weighting profile—the network produces contrast-discrimination data consistent with psychophysical observations: The pedestal effect is present without noise, reduced in broadband noise, but almost disappears in notched noise. These findings follow naturally from the normalization model of simple cells in primary visual cortex, followed by response-based pooling, and suggest that in processing even low-contrast sinusoidal gratings, the visual system may combine information across neurons tuned to different spatial frequencies and orientations.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
A Novel Context-Sensitive Semisupervised SVM Classifier Robust to Mislabeled Training Samples

Bruzzone, L., Persello, C.

IEEE Transactions on Geoscience and Remote Sensing, 47(7):2142-2154, July 2009 (article)

Abstract
This paper presents a novel context-sensitive semisupervised support vector machine (CS4VM) classifier, which is aimed at addressing classification problems where the available training set is not fully reliable, i.e., some labeled samples may be associated to the wrong information class (mislabeled patterns). Unlike standard context-sensitive methods, the proposed CS4VM classifier exploits the contextual information of the pixels belonging to the neighborhood system of each training sample in the learning phase to improve the robustness to possible mislabeled training patterns. This is achieved according to both the design of a semisupervised procedure and the definition of a novel contextual term in the cost function associated with the learning of the classifier. In order to assess the effectiveness of the proposed CS4VM and to understand the impact of the addressed problem in real applications, we also present an extensive experimental analysis carried out on training sets that include different percentages of mislabeled patterns having different distributions on the classes. In the analysis, we also study the robustness to mislabeled training patterns of some widely used supervised and semisupervised classification algorithms (i.e., conventional support vector machine (SVM), progressive semisupervised SVM, maximum likelihood, and k-nearest neighbor). Results obtained on a very high resolution image and on a medium resolution image confirm both the robustness and the effectiveness of the proposed CS4VM with respect to standard classification algorithms and allow us to derive interesting conclusions on the effects of mislabeled patterns on different classifiers.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Falsificationism and Statistical Learning Theory: Comparing the Popper and Vapnik-Chervonenkis Dimensions

Corfield, D., Schölkopf, B., Vapnik, V.

Journal for General Philosophy of Science, 40(1):51-58, July 2009 (article)

Abstract
We compare Karl Popper’s ideas concerning the falsifiability of a theory with similar notions from the part of statistical learning theory known as VC-theory. Popper’s notion of the dimension of a theory is contrasted with the apparently very similar VC-dimension. Having located some divergences, we discuss how best to view Popper’s work from the perspective of statistical learning theory, either as a precursor or as aiming to capture a different learning activity.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Guest editorial: Special issue on robot learning, Part A

Peters, J., Ng, A.

Autonomous Robots, 27(1):1-2, July 2009 (article)

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
A Geometric Approach to Confidence Sets for Ratios: Fieller’s Theorem, Generalizations, and Bootstrap

von Luxburg, U., Franz, V.

Statistica Sinica, 19(3):1095-1117, July 2009 (article)

Abstract
We present a geometric method to determine confidence sets for the ratio E(Y)/E(X) of the means of random variables X and Y. This method reduces the problem of constructing confidence sets for the ratio of two random variables to the problem of constructing confidence sets for the means of one-dimensional random variables. It is valid in a large variety of circumstances. In the case of normally distributed random variables, the so constructed confidence sets coincide with the standard Fieller confidence sets. Generalizations of our construction lead to definitions of exact and conservative confidence sets for very general classes of distributions, provided the joint expectation of (X,Y) exists and the linear combinations of the form aX + bY are well-behaved. Finally, our geometric method allows to derive a very simple bootstrap approach for constructing conservative confidence sets for ratios which perform favorably in certain situations, in particular in the asymmetric heavy-tailed regime.

ei

PDF PDF Web [BibTex]


no image
Center-surround patterns emerge as optimal predictors for human saccade targets

Kienzle, W., Franz, M., Schölkopf, B., Wichmann, F.

Journal of Vision, 9(5:7):1-15, May 2009 (article)

Abstract
The human visual system is foveated, that is, outside the central visual field resolution and acuity drop rapidly. Nonetheless much of a visual scene is perceived after only a few saccadic eye movements, suggesting an effective strategy for selecting saccade targets. It has been known for some time that local image structure at saccade targets influences the selection process. However, the question of what the most relevant visual features are is still under debate. Here we show that center-surround patterns emerge as the optimal solution for predicting saccade targets from their local image structure. The resulting model, a one-layer feed-forward network, is surprisingly simple compared to previously suggested models which assume much more complex computations such as multi-scale processing and multiple feature channels. Nevertheless, our model is equally predictive. Furthermore, our findings are consistent with neurophysiological hardware in the superior colliculus. Bottom-up visual saliency may thus not be computed cortically as has been thought previously.

ei

PDF DOI [BibTex]


no image
Influence of Different Assignment Conditions on the Determination of Symmetric Homo-dimeric Structures with ARIA

Bardiaux, B., Bernard, A., Rieping, W., Habeck, M., Malliavin, TE., Nilges, M.

Proteins, 75(3):569-585, May 2009 (article)

Abstract
The ambiguous restraint for iterative assignment (ARIA) approach for NMR structure calculation is evaluated for symmetric homodimeric proteins by assessing the effect of several data analysis and assignment methods on the structure quality. In particular, we study the effects of network anchoring and spin-diffusion correction. The spin-diffusion correction improves the protein structure quality systematically, whereas network anchoring enhances the assignment efficiency by speeding up the convergence and coping with highly ambiguous data. For some homodimeric folds, network anchoring has been proved essential for unraveling both chain and proton assignment ambiguities.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Beamforming in Noninvasive Brain-Computer Interfaces

Grosse-Wentrup, M., Liefhold, C., Gramann, K., Buss, M.

IEEE Transactions on Biomedical Engineering, 56(4):1209-1219, April 2009 (article)

Abstract
Spatial filtering (SF) constitutes an integral part of building EEG-based brain–computer interfaces (BCIs). Algorithms frequently used for SF, such as common spatial patterns (CSPs) and independent component analysis, require labeled training data for identifying filters that provide information on a subject‘s intention, which renders these algorithms susceptible to overfitting on artifactual EEG components. In this study, beamforming is employed to construct spatial filters that extract EEG sources originating within predefined regions of interest within the brain. In this way, neurophysiological knowledge on which brain regions are relevant for a certain experimental paradigm can be utilized to construct unsupervised spatial filters that are robust against artifactual EEG components. Beamforming is experimentally compared with CSP and Laplacian spatial filtering (LP) in a two-class motor-imagery paradigm. It is demonstrated that beamforming outperforms CSP and LP on noisy datasets, while CSP and beamforming perform almost equally well on datasets with few artifactual trials. It is concluded that beamforming constitutes an alternative method for SF that might be particularly useful for BCIs used in clinical settings, i.e., in an environment where artifact-free datasets are difficult to obtain.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Constructing Sparse Kernel Machines Using Attractors

Lee, D., Jung, K., Lee, J.

IEEE Transactions on Neural Networks, 20(4):721-729, April 2009 (article)

Abstract
In this brief, a novel method that constructs a sparse kernel machine is proposed. The proposed method generates attractors as sparse solutions from a built-in kernel machine via a dynamical system framework. By readjusting the corresponding coefficients and bias terms, a sparse kernel machine that approximates a conventional kernel machine is constructed. The simulation results show that the constructed sparse kernel machine improves the efficiency of testing phase while maintaining comparable test error.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Optimal construction of k-nearest-neighbor graphs for identifying noisy clusters

Maier, M., Hein, M., von Luxburg, U.

Theoretical Computer Science, 410(19):1749-1764, April 2009 (article)

Abstract
We study clustering algorithms based on neighborhood graphs on a random sample of data points. The question we ask is how such a graph should be constructed in order to obtain optimal clustering results. Which type of neighborhood graph should one choose, mutual k-nearest-neighbor or symmetric k-nearest-neighbor? What is the optimal parameter k? In our setting, clusters are defined as connected components of the t-level set of the underlying probability distribution. Clusters are said to be identified in the neighborhood graph if connected components in the graph correspond to the true underlying clusters. Using techniques from random geometric graph theory, we prove bounds on the probability that clusters are identified successfully, both in a noise-free and in a noisy setting. Those bounds lead to several conclusions. First, k has to be chosen surprisingly high (rather of the order n than of the order logn) to maximize the probability of cluster identification. Secondly, the major difference between the mutual and the symmetric k-nearest-neighbor graph occurs when one attempts to detect the most significant cluster only.

ei

PDF PDF DOI [BibTex]


no image
Overlap and refractory effects in a Brain-Computer Interface speller based on the visual P300 Event-Related Potential

Martens, S., Hill, N., Farquhar, J., Schölkopf, B.

Journal of Neural Engineering, 6(2):1-9, April 2009 (article)

Abstract
We reveal the presence of refractory and overlap effects in the event-related potentials in visual P300 speller datasets, and we show their negative impact on the performance of the system. This finding has important implications for how to encode the letters that can be selected for communication. However, we show that such effects are dependent on stimulus parameters: an alternative stimulus type based on apparent motion suffers less from the refractory effects and leads to an improved letter prediction performance.

ei

PDF DOI [BibTex]


no image
Nearest Neighbor Clustering: A Baseline Method for Consistent Clustering with Arbitrary Objective Functions

Bubeck, S., von Luxburg, U.

Journal of Machine Learning Research, 10, pages: 657-698, March 2009 (article)

Abstract
Clustering is often formulated as a discrete optimization problem. The objective is to find, among all partitions of the data set, the best one according to some quality measure. However, in the statistical setting where we assume that the finite data set has been sampled from some underlying space, the goal is not to find the best partition of the given sample, but to approximate the true partition of the underlying space. We argue that the discrete optimization approach usually does not achieve this goal, and instead can lead to inconsistency. We construct examples which provably have this behavior. As in the case of supervised learning, the cure is to restrict the size of the function classes under consideration. For appropriate “small” function classes we can prove very general consistency theorems for clustering optimization schemes. As one particular algorithm for clustering with a restricted function space we introduce “nearest neighbor clustering”. Similar to the k-nearest neighbor classifier in supervised learning, this algorithm can be seen as a general baseline algorithm to minimize arbitrary clustering objective functions. We prove that it is statistically consistent for all commonly used clustering objective functions.

ei

PDF Web [BibTex]


no image
Protein Functional Class Prediction With a Combined Graph

Shin, H., Tsuda, K., Schölkopf, B.

Expert Systems with Applications, 36(2):3284-3292, March 2009 (article)

Abstract
In bioinformatics, there exist multiple descriptions of graphs for the same set of genes or proteins. For instance, in yeast systems, graph edges can represent different relationships such as protein–protein interactions, genetic interactions, or co-participation in a protein complex, etc. Relying on similarities between nodes, each graph can be used independently for prediction of protein function. However, since different graphs contain partly independent and partly complementary information about the problem at hand, one can enhance the total information extracted by combining all graphs. In this paper, we propose a method for integrating multiple graphs within a framework of semi-supervised learning. The method alternates between minimizing the objective function with respect to network output and with respect to combining weights. We apply the method to the task of protein functional class prediction in yeast. The proposed method performs significantly better than the same algorithm trained on any singl e graph.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Gaussian Process Dynamic Programming

Deisenroth, M., Rasmussen, C., Peters, J.

Neurocomputing, 72(7-9):1508-1524, March 2009 (article)

Abstract
Reinforcement learning (RL) and optimal control of systems with contin- uous states and actions require approximation techniques in most interesting cases. In this article, we introduce Gaussian process dynamic programming (GPDP), an approximate value-function based RL algorithm. We consider both a classic optimal control problem, where problem-specific prior knowl- edge is available, and a classic RL problem, where only very general priors can be used. For the classic optimal control problem, GPDP models the unknown value functions with Gaussian processes and generalizes dynamic programming to continuous-valued states and actions. For the RL problem, GPDP starts from a given initial state and explores the state space using Bayesian active learning. To design a fast learner, available data has to be used efficiently. Hence, we propose to learn probabilistic models of the a priori unknown transition dynamics and the value functions on the fly. In both cases, we successfully apply the resulting continuous-valued controllers to the under-actuated pendulum swing up and analyze the performances of the suggested algorithms. It turns out that GPDP uses data very efficiently and can be applied to problems, where classic dynamic programming would be cumbersome.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
An algebraic characterization of the optimum of regularized kernel methods

Dinuzzo, F., De Nicolao, G.

Machine Learning, 74(3):315-345, March 2009 (article)

Abstract
The representer theorem for kernel methods states that the solution of the associated variational problem can be expressed as the linear combination of a finite number of kernel functions. However, for non-smooth loss functions, the analytic characterization of the coefficients poses nontrivial problems. Standard approaches resort to constrained optimization reformulations which, in general, lack a closed-form solution. Herein, by a proper change of variable, it is shown that, for any convex loss function, the coefficients satisfy a system of algebraic equations in a fixed-point form, which may be directly obtained from the primal formulation. The algebraic characterization is specialized to regression and classification methods and the fixed-point equations are explicitly characterized for many loss functions of practical interest. The consequences of the main result are then investigated along two directions. First, the existence of an unconstrained smooth reformulation of the original non-smooth problem is proven. Second, in the context of SURE (Stein’s Unbiased Risk Estimation), a general formula for the degrees of freedom of kernel regression methods is derived.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques

Hofmann, M., Pichler, B., Schölkopf, B., Beyer, T.

European Journal of Nuclear Medicine and Molecular Imaging, 36(Supplement 1):93-104, March 2009 (article)

Abstract
Introduction Positron emission tomography (PET) is a fully quantitative technology for imaging metabolic pathways and dynamic processes in vivo. Attenuation correction of raw PET data is a prerequisite for quantification and is typically based on separate transmission measurements. In PET/CT attenuation correction, however, is performed routinely based on the available CT transmission data. Objective Recently, combined PET/magnetic resonance (MR) has been proposed as a viable alternative to PET/CT. Current concepts of PET/MRI do not include CT-like transmission sources and, therefore, alternative methods of PET attenuation correction must be found. This article reviews existing approaches to MR-based attenuation correction (MR-AC). Most groups have proposed MR-AC algorithms for brain PET studies and more recently also for torso PET/MR imaging. Most MR-AC strategies require the use of complementary MR and transmission images, or morphology templates generated from transmission images. We review and discuss these algorithms and point out challenges for using MR-AC in clinical routine. Discussion MR-AC is work-in-progress with potentially promising results from a template-based approach applicable to both brain and torso imaging. While efforts are ongoing in making clinically viable MR-AC fully automatic, further studies are required to realize the potential benefits of MR-based motion compensation and partial volume correction of the PET data.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Generating Spike Trains with Specified Correlation Coefficients

Macke, J., Berens, P., Ecker, A., Tolias, A., Bethge, M.

Neural Computation, 21(2):397-423, February 2009 (article)

Abstract
Spike trains recorded from populations of neurons can exhibit substantial pairwise correlations between neurons and rich temporal structure. Thus, for the realistic simulation and analysis of neural systems, it is essential to have efficient methods for generating artificial spike trains with specified correlation structure. Here we show how correlated binary spike trains can be simulated by means of a latent multivariate gaussian model. Sampling from the model is computationally very efficient and, in particular, feasible even for large populations of neurons. The entropy of the model is close to the theoretical maximum for a wide range of parameters. In addition, this framework naturally extends to correlations over time and offers an elegant way to model correlated neural spike counts with arbitrary marginal distributions.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Automatic detection of preclinical neurodegeneration: Presymptomatic Huntington disease

Klöppel, S., Chu, C., Tan, G., Draganski, B., Johnson, H., Paulsen, J., Kienzle, W., Tabrizi, S., Ashburner, J., Frackowiak, R.

Neurology, 72(5):426-431, February 2009 (article)

Abstract
Background: Treatment of neurodegenerative diseases is likely to be most beneficial in the very early, possibly preclinical stages of degeneration. We explored the usefulness of fully automatic structural MRI classification methods for detecting subtle degenerative change. The availability of a definitive genetic test for Huntington disease (HD) provides an excellent metric for judging the performance of such methods in gene mutation carriers who are free of symptoms. Methods: Using the gray matter segment of MRI scans, this study explored the usefulness of a multivariate support vector machine to automatically identify presymptomatic HD gene mutation carriers (PSCs) in the absence of any a priori information. A multicenter data set of 96 PSCs and 95 age- and sex-matched controls was studied. The PSC group was subclassified into three groups based on time from predicted clinical onset, an estimate that is a function of DNA mutation size and age. Results: Subjects with at least a 33% chance of developing unequivocal signs of HD in 5 years were correctly assigned to the PSC group 69% of the time. Accuracy improved to 83% when regions affected by the disease were selected a priori for analysis. Performance was at chance when the probability of developing symptoms in 5 years was less than 10%. Conclusions: Presymptomatic Huntington disease gene mutation carriers close to estimated diagnostic onset were successfully separated from controls on the basis of single anatomic scans, without additional a priori information. Prior information is required to allow separation when degenerative changes are either subtle or variable.

ei

Web [BibTex]

Web [BibTex]


no image
Enumeration of condition-dependent dense modules in protein interaction networks

Georgii, E., Dietmann, S., Uno, T., Pagel, P., Tsuda, K.

Bioinformatics, 25(7):933-940, February 2009 (article)

Abstract
Motivation: Modern systems biology aims at understanding how the different molecular components of a biological cell interact. Often, cellular functions are performed by complexes consisting of many different proteins. The composition of these complexes may change according to the cellular environment, and one protein may be involved in several different processes. The automatic discovery of functional complexes from protein interaction data is challenging. While previous approaches use approximations to extract dense modules, our approach exactly solves the problem of dense module enumeration. Furthermore, constraints from additional information sources such as gene expression and phenotype data can be integrated, so we can systematically mine for dense modules with interesting profiles. Results: Given a weighted protein interaction network, our method discovers all protein sets that satisfy a user-defined minimum density threshold. We employ a reverse search strategy, which allows us to exploit the density criterion in an efficient way. Our experiments show that the novel approach is feasible and produces biologically meaningful results. In comparative validation studies using yeast data, the method achieved the best overall prediction performance with respect to confirmed complexes. Moreover, by enhancing the yeast network with phenotypic and phylogenetic profiles and the human network with tissue-specific expression data, we identified condition-dependent complex variants.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Prototype Classification: Insights from Machine Learning

Graf, A., Bousquet, O., Rätsch, G., Schölkopf, B.

Neural Computation, 21(1):272-300, January 2009 (article)

Abstract
We shed light on the discrimination between patterns belonging to two different classes by casting this decoding problem into a generalized prototype framework. The discrimination process is then separated into two stages: a projection stage that reduces the dimensionality of the data by projecting it on a line and a threshold stage where the distributions of the projected patterns of both classes are separated. For this, we extend the popular mean-of-class prototype classification using algorithms from machine learning that satisfy a set of invariance properties. We report a simple yet general approach to express different types of linear classification algorithms in an identical and easy-to-visualize formal framework using generalized prototypes where these prototypes are used to express the normal vector and offset of the hyperplane. We investigate nonmargin classifiers such as the classical prototype classifier, the Fisher classifier, and the relevance vector machine. We then study hard and soft margin cl assifiers such as the support vector machine and a boosted version of the prototype classifier. Subsequently, we relate mean-of-class prototype classification to other classification algorithms by showing that the prototype classifier is a limit of any soft margin classifier and that boosting a prototype classifier yields the support vector machine. While giving novel insights into classification per se by presenting a common and unified formalism, our generalized prototype framework also provides an efficient visualization and a principled comparison of machine learning classification.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Automatic classification of brain resting states using fMRI temporal signals

Soldati, N., Robinson, S., Persello, C., Jovicich, J., Bruzzone, L.

Electronics Letters, 45(1):19-21, January 2009 (article)

Abstract
A novel technique is presented for the automatic discrimination between networks of dasiaresting statesdasia of the human brain and physiological fluctuations in functional magnetic resonance imaging (fMRI). The method is based on features identified via a statistical approach to group independent component analysis time courses, which may be extracted from fMRI data. This technique is entirely automatic and, unlike other approaches, uses temporal rather than spatial information. The method achieves 83% accuracy in the identification of resting state networks.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
The DICS repository: module-assisted analysis of disease-related gene lists

Dietmann, S., Georgii, E., Antonov, A., Tsuda, K., Mewes, H.

Bioinformatics, 25(6):830-831, January 2009 (article)

Abstract
The DICS database is a dynamic web repository of computationally predicted functional modules from the human protein–protein interaction network. It provides references to the CORUM, DrugBank, KEGG and Reactome pathway databases. DICS can be accessed for retrieving sets of overlapping modules and protein complexes that are significantly enriched in a gene list, thereby providing valuable information about the functional context.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
mGene: accurate SVM-based gene finding with an application to nematode genomes

Schweikert, G., Zien, A., Zeller, G., Behr, J., Dieterich, C., Ong, C., Philips, P., De Bona, F., Hartmann, L., Bohlen, A., Krüger, N., Sonnenburg, S., Rätsch, G.

Genome Research, 19(11):2133-43, 2009 (article)

Abstract
We present a highly accurate gene-prediction system for eukaryotic genomes, called mGene. It combines in an unprecedented manner the flexibility of generalized hidden Markov models (gHMMs) with the predictive power of modern machine learning methods, such as Support Vector Machines (SVMs). Its excellent performance was proved in an objective competition based on the genome of the nematode Caenorhabditis elegans. Considering the average of sensitivity and specificity, the developmental version of mGene exhibited the best prediction performance on nucleotide, exon, and transcript level for ab initio and multiple-genome gene-prediction tasks. The fully developed version shows superior performance in 10 out of 12 evaluation criteria compared with the other participating gene finders, including Fgenesh++ and Augustus. An in-depth analysis of mGene's genome-wide predictions revealed that approximately 2200 predicted genes were not contained in the current genome annotation. Testing a subset of 57 of these genes by RT-PCR and sequencing, we confirmed expression for 24 (42%) of them. mGene missed 300 annotated genes, out of which 205 were unconfirmed. RT-PCR testing of 24 of these genes resulted in a success rate of merely 8%. These findings suggest that even the gene catalog of a well-studied organism such as C. elegans can be substantially improved by mGene's predictions. We also provide gene predictions for the four nematodes C. briggsae, C. brenneri, C. japonica, and C. remanei. Comparing the resulting proteomes among these organisms and to the known protein universe, we identified many species-specific gene inventions. In a quality assessment of several available annotations for these genomes, we find that mGene's predictions are most accurate.

ei

DOI [BibTex]

DOI [BibTex]


no image
Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases

Djuranovic, S., Hartmann, MD., Habeck, M., Ursinus, A., Zwickl, P., Martin, J., Lupas, AN., Zeth, K.

Molecular Cell, 34(5):580-590, 2009 (article)

Abstract
The proteasome forms the core of the protein quality control system in archaea and eukaryotes and also occurs in one bacterial lineage, the Actinobacteria. Access to its proteolytic compartment is controlled by AAA ATPases, whose N-terminal domains (N domains) are thought to mediate substrate recognition. The N domains of an archaeal proteasomal ATPase, Archaeoglobus fulgidus PAN, and of its actinobacterial homolog, Rhodococcus erythropolis ARC, form hexameric rings, whose subunits consist of an N-terminal coiled coil and a C-terminal OB domain. In ARC-N, the OB domains are duplicated and form separate rings. PAN-N and ARC-N can act as chaperones, preventing the aggregation of heterologous proteins in vitro, and this activity is preserved in various chimeras, even when these include coiled coils and OB domains from unrelated proteins. The structures suggest a molecular mechanism for substrate processing based on concerted radial motions of the coiled coils relative to the OB rings.

ei

DOI [BibTex]

DOI [BibTex]


no image
Discussion of: Brownian Distance Covariance

Gretton, A., Fukumizu, K., Sriperumbudur, B.

The Annals of Applied Statistics, 3(4):1285-1294, 2009 (article)

ei

[BibTex]

[BibTex]


no image
Efficient factor GARCH models and factor-DCC models

Zhang, K., Chan, L.

Quantitative Finance, 9(1):71-91, 2009 (article)

Abstract
We report that, in the estimation of univariate GARCH or multivariate generalized orthogonal GARCH (GO-GARCH) models, maximizing the likelihood is equivalent to making the standardized residuals as independent as possible. Based on this, we propose three factor GARCH models in the framework of GO-GARCH: independent-factor GARCH exploits factors that are statistically as independent as possible; factors in best-factor GARCH have the largest autocorrelation in their squared values such that their volatilities could be forecast well by univariate GARCH; and factors in conditional-decorrelation GARCH are conditionally as uncorrelated as possible. A convenient two-step method for estimating these models is introduced. Since the extracted factors may still have weak conditional correlations, we further propose factor-DCC models as an extension to the above factor GARCH models with dynamic conditional correlation (DCC) modelling the remaining conditional correlations between factors. Experimental results for the Hong Kong stock market show that conditional-decorrelation GARCH and independent-factor GARCH have better generalization performance than the original GO-GARCH, and that conditional-decorrelation GARCH (among factor GARCH models) and its extension with DCC embedded (among factor-DCC models) behave best.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Non-linear System Identification: Visual Saliency Inferred from Eye-Movement Data

Wichmann, F., Kienzle, W., Schölkopf, B., Franz, M.

Journal of Vision, 9(8):article 32, 2009 (article)

Abstract
For simple visual patterns under the experimenter's control we impose which information, or features, an observer can use to solve a given perceptual task. For natural vision tasks, however, there are typically a multitude of potential features in a given visual scene which the visual system may be exploiting when analyzing it: edges, corners, contours, etc. Here we describe a novel non-linear system identification technique based on modern machine learning methods that allows the critical features an observer uses to be inferred directly from the observer's data. The method neither requires stimuli to be embedded in noise nor is it limited to linear perceptive fields (classification images). We demonstrate our technique by deriving the critical image features observers fixate in natural scenes (bottom-up visual saliency). Unlike previous studies where the relevant structure is determined manually—e.g. by selecting Gabors as visual filters—we do not make any assumptions in this regard, but numerically infer number and properties them from the eye-movement data. We show that center-surround patterns emerge as the optimal solution for predicting saccade targets from local image structure. The resulting model, a one-layer feed-forward network with contrast gain-control, is surprisingly simple compared to previously suggested saliency models. Nevertheless, our model is equally predictive. Furthermore, our findings are consistent with neurophysiological hardware in the superior colliculus. Bottom-up visual saliency may thus not be computed cortically as has been thought previously.

ei

Web DOI [BibTex]


no image
mGene.web: a web service for accurate computational gene finding

Schweikert, G., Behr, J., Zien, A., Zeller, G., Ong, C., Sonnenburg, S., Rätsch, G.

Nucleic Acids Research, 37, pages: W312-6, 2009 (article)

Abstract
We describe mGene.web, a web service for the genome-wide prediction of protein coding genes from eukaryotic DNA sequences. It offers pre-trained models for the recognition of gene structures including untranslated regions in an increasing number of organisms. With mGene.web, users have the additional possibility to train the system with their own data for other organisms on the push of a button, a functionality that will greatly accelerate the annotation of newly sequenced genomes. The system is built in a highly modular way, such that individual components of the framework, like the promoter prediction tool or the splice site predictor, can be used autonomously. The underlying gene finding system mGene is based on discriminative machine learning techniques and its high accuracy has been demonstrated in an international competition on nematode genomes. mGene.web is available at http://www.mgene.org/web, it is free of charge and can be used for eukaryotic genomes of small to moderate size (several hundred Mbp).

ei

DOI [BibTex]

DOI [BibTex]

2007


no image
HPLC analysis and pharmacokinetic study of quercitrin and isoquercitrin in rat plasma after administration of Hypericum japonicum thunb. extract.

Li, J., Wang, W., Zhang, L., Chen, H., Bi, S.

Biomedical Chromatography, 22(4):374-378, December 2007 (article)

Abstract
A simple HPLC method was developed for determination of quercitrin and isoquercitrin in rat plasma. Reversed-phase HPLC was employed for the quantitative analysis using kaempferol-3-O--d-glucopyranoside-7-O--l-rhamnoside as an internal standard. Following extraction from the plasma samples with ethyl acetate-isopropanol (95:5, v/v), these two compounds were successfully separated on a Luna C18 column (250 × 4.6 mm, 5 µm) with isocratic elution of acetonitrile-0.5% aqueous acetic acid (17:83, v/v) as the mobile phase. The flow-rate was set at 1 mL/min and the eluent was detected at 350 nm for both quercitrin and isoquercitrin. The method was linear over the studied ranges of 50-6000 and 50-5000 ng/mL for quercitrin and isoquercitrin, respectively. The intra- and inter-day precisions of the analysis were better than 13.1 and 13.2%, respectively. The lower limits of quantitation for quercitrin and isoquercitrin in plasma were both of 50 ng/mL. The mean extraction recoveries were 73 and 61% for quercitrin and i soquercitrin, respectively. The validated method was successfully applied to pharmacokinetic studies of the two analytes in rat plasma after the oral administration of Hypericum japonicum thunb. ethanol extract.

ei

Web DOI [BibTex]

2007



no image
Graph sharpening plus graph integration: a synergy that improves protein functional classification

Shin, HH., Lisewski, AM., Lichtarge, O.

Bioinformatics, 23(23):3217-3224, December 2007 (article)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
A Tutorial on Spectral Clustering

von Luxburg, U.

Statistics and Computing, 17(4):395-416, December 2007 (article)

Abstract
In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. On the first glance spectral clustering appears slightly mysterious, and it is not obvious to see why it works at all and what it really does. The goal of this tutorial is to give some intuition on those questions. We describe different graph Laplacians and their basic properties, present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
A Tutorial on Kernel Methods for Categorization

Jäkel, F., Schölkopf, B., Wichmann, F.

Journal of Mathematical Psychology, 51(6):343-358, December 2007 (article)

Abstract
The abilities to learn and to categorize are fundamental for cognitive systems, be it animals or machines, and therefore have attracted attention from engineers and psychologists alike. Modern machine learning methods and psychological models of categorization are remarkably similar, partly because these two fields share a common history in artificial neural networks and reinforcement learning. However, machine learning is now an independent and mature field that has moved beyond psychologically or neurally inspired algorithms towards providing foundations for a theory of learning that is rooted in statistics and functional analysis. Much of this research is potentially interesting for psychological theories of learning and categorization but also hardly accessible for psychologists. Here, we provide a tutorial introduction to a popular class of machine learning tools, called kernel methods. These methods are closely related to perceptrons, radial-basis-function neural networks and exemplar theories of catego rization. Recent theoretical advances in machine learning are closely tied to the idea that the similarity of patterns can be encapsulated in a positive definite kernel. Such a positive definite kernel can define a reproducing kernel Hilbert space which allows one to use powerful tools from functional analysis for the analysis of learning algorithms. We give basic explanations of some key concepts—the so-called kernel trick, the representer theorem and regularization—which may open up the possibility that insights from machine learning can feed back into psychology.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A semigroup approach to queueing systems

Haji, A., Radl, A.

Semigroup Forum, 75(3):610-624, December 2007 (article)

Abstract
We prove asymptotic stability of the solutions of equations describing a simple queueing system consisting of two machines separated by a finite storage buffer. Following an approach by G. Gupur, we apply the theory of C0-semigroups and spectral theory of positive operators.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Point-spread functions for backscattered imaging in the scanning electron microscope

Hennig, P., Denk, W.

Journal of Applied Physics , 102(12):1-8, December 2007 (article)

Abstract
One knows the imaging system's properties are central to the correct interpretation of any image. In a scanning electron microscope regions of different composition generally interact in a highly nonlinear way during signal generation. Using Monte Carlo simulations we found that in resin-embedded, heavy metal-stained biological specimens staining is sufficiently dilute to allow an approximately linear treatment. We then mapped point-spread functions for backscattered-electron contrast, for primary energies of 3 and 7 keV and for different detector specifications. The point-spread functions are surprisingly well confined (both laterally and in depth) compared even to the distribution of only those scattered electrons that leave the sample again.

ei pn

Web DOI [BibTex]

Web DOI [BibTex]


no image
Accurate Splice site Prediction Using Support Vector Machines

Sonnenburg, S., Schweikert, G., Philips, P., Behr, J., Rätsch, G.

BMC Bioinformatics, 8(Supplement 10):1-16, December 2007 (article)

Abstract
Background: For splice site recognition, one has to solve two classification problems: discriminating true from decoy splice sites for both acceptor and donor sites. Gene finding systems typically rely on Markov Chains to solve these tasks. Results: In this work we consider Support Vector Machines for splice site recognition. We employ the so-called weighted degree kernel which turns out well suited for this task, as we will illustrate in several experiments where we compare its prediction accuracy with that of recently proposed systems. We apply our method to the genome-wide recognition of splice sites in Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, Danio rerio, and Homo sapiens. Our performance estimates indicate that splice sites can be recognized very accurately in these genomes and that our method outperforms many other methods including Markov Chains, GeneSplicer and SpliceMachine. We provide genome-wide predictions of splice sites and a stand-alone prediction tool ready to be used for incorporation in a gene finder. Availability: Data, splits, additional information on the model selection, the whole genome predictions, as well as the stand-alone prediction tool are available for download at http:// www.fml.mpg.de/raetsch/projects/splice.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
A unifying framework for robot control with redundant DOFs

Peters, J., Mistry, M., Udwadia, F., Nakanishi, J., Schaal, S.

Autonomous Robots, 24(1):1-12, October 2007 (article)

Abstract
Recently, Udwadia (Proc. R. Soc. Lond. A 2003:1783–1800, 2003) suggested to derive tracking controllers for mechanical systems with redundant degrees-of-freedom (DOFs) using a generalization of Gauss’ principle of least constraint. This method allows reformulating control problems as a special class of optimal controllers. In this paper, we take this line of reasoning one step further and demonstrate that several well-known and also novel nonlinear robot control laws can be derived from this generic methodology. We show experimental verifications on a Sarcos Master Arm robot for some of the derived controllers. The suggested approach offers a promising unification and simplification of nonlinear control law design for robots obeying rigid body dynamics equations, both with or without external constraints, with over-actuation or underactuation, as well as open-chain and closed-chain kinematics.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
The Need for Open Source Software in Machine Learning

Sonnenburg, S., Braun, M., Ong, C., Bengio, S., Bottou, L., Holmes, G., LeCun, Y., Müller, K., Pereira, F., Rasmussen, C., Rätsch, G., Schölkopf, B., Smola, A., Vincent, P., Weston, J., Williamson, R.

Journal of Machine Learning Research, 8, pages: 2443-2466, October 2007 (article)

Abstract
Open source tools have recently reached a level of maturity which makes them suitable for building large-scale real-world systems. At the same time, the field of machine learning has developed a large body of powerful learning algorithms for diverse applications. However, the true potential of these methods is not realized, since existing implementations are not openly shared, resulting in software with low usability, and weak interoperability. We argue that this situation can be significantly improved by increasing incentives for researchers to publish their software under an open source model. Additionally, we outline the problems authors are faced with when trying to publish algorithmic implementations of machine learning methods. We believe that a resource of peer reviewed software accompanied by short articles would be highly valuable to both the machine learning and the general scientific community.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
On the Representer Theorem and Equivalent Degrees of Freedom of SVR

Dinuzzo, F., Neve, M., De Nicolao, G., Gianazza, U.

Journal of Machine Learning Research, 8, pages: 2467-2495, October 2007 (article)

Abstract
Support Vector Regression (SVR) for discrete data is considered. An alternative formulation of the representer theorem is derived. This result is based on the newly introduced notion of pseudoresidual and the use of subdifferential calculus. The representer theorem is exploited to analyze the sensitivity properties of ε-insensitive SVR and introduce the notion of approximate degrees of freedom. The degrees of freedom are shown to play a key role in the evaluation of the optimism, that is the difference between the expected in-sample error and the expected empirical risk. In this way, it is possible to define a Cp-like statistic that can be used for tuning the parameters of SVR. The proposed tuning procedure is tested on a simulated benchmark problem and on a real world problem (Boston Housing data set).

ei

Web [BibTex]

Web [BibTex]


no image
Some observations on the masking effects of Mach bands

Curnow, T., Cowie, DA., Henning, GB., Hill, NJ.

Journal of the Optical Society of America A, 24(10):3233-3241, October 2007 (article)

Abstract
There are 8 cycle / deg ripples or oscillations in performance as a function of location near Mach bands in experiments measuring Mach bands’ masking effects on random polarity signal bars. The oscillations with increments are 180 degrees out of phase with those for decrements. The oscillations, much larger than the measurement error, appear to relate to the weighting function of the spatial-frequency-tuned channel detecting the broad- band signals. The ripples disappear with step maskers and become much smaller at durations below 25 ms, implying either that the site of masking has changed or that the weighting function and hence spatial-frequency tuning is slow to develop.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Mining complex genotypic features for predicting HIV-1 drug resistance

Saigo, H., Uno, T., Tsuda, K.

Bioinformatics, 23(18):2455-2462, September 2007 (article)

Abstract
Human immunodeficiency virus type 1 (HIV-1) evolves in human body, and its exposure to a drug often causes mutations that enhance the resistance against the drug. To design an effective pharmacotherapy for an individual patient, it is important to accurately predict the drug resistance based on genotype data. Notably, the resistance is not just the simple sum of the effects of all mutations. Structural biological studies suggest that the association of mutations is crucial: Even if mutations A or B alone do not affect the resistance, a significant change might happen when the two mutations occur together. Linear regression methods cannot take the associations into account, while decision tree methods can reveal only limited associations. Kernel methods and neural networks implicitly use all possible associations for prediction, but cannot select salient associations explicitly. Our method, itemset boosting, performs linear regression in the complete space of power sets of mutations. It implements a forward feature selection procedure where, in each iteration, one mutation combination is found by an efficient branch-and-bound search. This method uses all possible combinations, and salient associations are explicitly shown. In experiments, our method worked particularly well for predicting the resistance of nucleotide reverse transcriptase inhibitors (NRTIs). Furthermore, it successfully recovered many mutation associations known in biological literature.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Real-Time Fetal Heart Monitoring in Biomagnetic Measurements Using Adaptive Real-Time ICA

Waldert, S., Bensch, M., Bogdan, M., Rosenstiel, W., Schölkopf, B., Lowery, C., Eswaran, H., Preissl, H.

IEEE Transactions on Biomedical Engineering, 54(10):1867-1874, September 2007 (article)

Abstract
Electrophysiological signals of the developing fetal brain and heart can be investigated by fetal magnetoencephalography (fMEG). During such investigations, the fetal heart activity and that of the mother should be monitored continuously to provide an important indication of current well-being. Due to physical constraints of an fMEG system, it is not possible to use clinically established heart monitors for this purpose. Considering this constraint, we developed a real-time heart monitoring system for biomagnetic measurements and showed its reliability and applicability in research and for clinical examinations. The developed system consists of real-time access to fMEG data, an algorithm based on Independent Component Analysis (ICA), and a graphical user interface (GUI). The algorithm extracts the current fetal and maternal heart signal from a noisy and artifact-contaminated data stream in real-time and is able to adapt automatically to continuously varying environmental parameters. This algorithm has been na med Adaptive Real-time ICA (ARICA) and is applicable to real-time artifact removal as well as to related blind signal separation problems.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Overcomplete Independent Component Analysis via Linearly Constrained Minimum Variance Spatial Filtering

Grosse-Wentrup, M., Buss, M.

Journal of VLSI Signal Processing, 48(1-2):161-171, August 2007 (article)

Abstract
Independent Component Analysis (ICA) designed for complete bases is used in a variety of applications with great success, despite the often questionable assumption of having N sensors and M sources with N&#8805;M. In this article, we assume a source model with more sources than sensors (M>N), only L<N of which are assumed to have a non-Gaussian distribution. We argue that this is a realistic source model for a variety of applications, and prove that for ICA algorithms designed for complete bases (i.e., algorithms assuming N=M) based on mutual information the mixture coefficients of the L non-Gaussian sources can be reconstructed in spite of the overcomplete mixture model. Further, it is shown that the reconstructed temporal activity of non-Gaussian sources is arbitrarily mixed with Gaussian sources. To obtain estimates of the temporal activity of the non-Gaussian sources, we use the correctly reconstructed mixture coefficients in conjunction with linearly constrained minimum variance spatial filtering. This results in estimates of the non-Gaussian sources minimizing the variance of the interference of other sources. The approach is applied to the denoising of Event Related Fields recorded by MEG, and it is shown that it performs superiorly to ordinary ICA.

ei

PDF PDF DOI [BibTex]


no image
Feature Selection for Trouble Shooting in Complex Assembly Lines

Pfingsten, T., Herrmann, D., Schnitzler, T., Feustel, A., Schölkopf, B.

IEEE Transactions on Automation Science and Engineering, 4(3):465-469, July 2007 (article)

Abstract
The final properties of sophisticated products can be affected by many unapparent dependencies within the manufacturing process, and the products’ integrity can often only be checked in a final measurement. Troubleshooting can therefore be very tedious if not impossible in large assembly lines. In this paper we show that Feature Selection is an efficient tool for serial-grouped lines to reveal causes for irregularities in product attributes. We compare the performance of several methods for Feature Selection on real-world problems in mass-production of semiconductor devices. Note to Practitioners— We present a data based procedure to localize flaws in large production lines: using the results of final quality inspections and information about which machines processed which batches, we are able to identify machines which cause low yield.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Gene selection via the BAHSIC family of algorithms

Song, L., Bedo, J., Borgwardt, K., Gretton, A., Smola, A.

Bioinformatics, 23(13: ISMB/ECCB 2007 Conference Proceedings):i490-i498, July 2007 (article)

Abstract
Motivation: Identifying significant genes among thousands of sequences on a microarray is a central challenge for cancer research in bioinformatics. The ultimate goal is to detect the genes that are involved in disease outbreak and progression. A multitude of methods have been proposed for this task of feature selection, yet the selected gene lists differ greatly between different methods. To accomplish biologically meaningful gene selection from microarray data, we have to understand the theoretical connections and the differences between these methods. In this article, we define a kernel-based framework for feature selection based on the Hilbert–Schmidt independence criterion and backward elimination, called BAHSIC. We show that several well-known feature selectors are instances of BAHSIC, thereby clarifying their relationship. Furthermore, by choosing a different kernel, BAHSIC allows us to easily define novel feature selection algorithms. As a further advantage, feature selection via BAHSIC works directly on multiclass problems. Results: In a broad experimental evaluation, the members of the BAHSIC family reach high levels of accuracy and robustness when compared to other feature selection techniques. Experiments show that features selected with a linear kernel provide the best classification performance in general, but if strong non-linearities are present in the data then non-linear kernels can be more suitable.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Phenotyping of Chondrocytes In Vivo and In Vitro Using cDNA Array Technology

Zien, A., Gebhard, P., Fundel, K., Aigner, T.

Clinical Orthopaedics and Related Research, 460, pages: 226-233, July 2007 (article)

Abstract
The cDNA array technology is a powerful tool to analyze a high number of genes in parallel. We investigated whether large-scale gene expression analysis allows clustering and identification of cellular phenotypes of chondrocytes in different in vivo and in vitro conditions. In 100% of cases, clustering analysis distinguished between in vivo and in vitro samples, suggesting fundamental differences in chondrocytes in situ and in vitro regardless of the culture conditions or disease status. It also allowed us to differentiate between healthy and osteoarthritic cartilage. The clustering also revealed the relative importance of the investigated culturing conditions (stimulation agent, stimulation time, bead/monolayer). We augmented the cluster analysis with a statistical search for genes showing differential expression. The identified genes provided hints to the molecular basis of the differences between the sample classes. Our approach shows the power of modern bioinformatic algorithms for understanding and class ifying chondrocytic phenotypes in vivo and in vitro. Although it does not generate new experimental data per se, it provides valuable information regarding the biology of chondrocytes and may provide tools for diagnosing and staging the osteoarthritic disease process.

ei

DOI [BibTex]

DOI [BibTex]