Header logo is


2016


Thumb xl untitled
Probabilistic Approximate Least-Squares

Bartels, S., Hennig, P.

Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS), 51, pages: 676-684, JMLR Workshop and Conference Proceedings, (Editors: Gretton, A. and Robert, C. C. ), May 2016 (conference)

Abstract
Least-squares and kernel-ridge / Gaussian process regression are among the foundational algorithms of statistics and machine learning. Famously, the worst-case cost of exact nonparametric regression grows cubically with the data-set size; but a growing number of approximations have been developed that estimate good solutions at lower cost. These algorithms typically return point estimators, without measures of uncertainty. Leveraging recent results casting elementary linear algebra operations as probabilistic inference, we propose a new approximate method for nonparametric least-squares that affords a probabilistic uncertainty estimate over the error between the approximate and exact least-squares solution (this is not the same as the posterior variance of the associated Gaussian process regressor). This allows estimating the error of the least-squares solution on a subset of the data relative to the full-data solution. The uncertainty can be used to control the computational effort invested in the approximation. Our algorithm has linear cost in the data-set size, and a simple formal form, so that it can be implemented with a few lines of code in programming languages with linear algebra functionality.

ei pn

link (url) Project Page Project Page [BibTex]

2016


link (url) Project Page Project Page [BibTex]


no image
Learning soft task priorities for control of redundant robots

Modugno, V., Neumann, G., Rueckert, E., Oriolo, G., Peters, J., Ivaldi, S.

IEEE International Conference on Robotics and Automation (ICRA), pages: 221-226, IEEE, May 2016 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
On the Reliability of Information and Trustworthiness of Web Sources in Wikipedia

Tabibian, B., Farajtabar, M., Valera, I., Song, L., Schölkopf, B., Gomez Rodriguez, M.

Wikipedia workshop at the 10th International AAAI Conference on Web and Social Media (ICWSM), May 2016 (conference)

ei

[BibTex]

[BibTex]


Thumb xl 2016 peer grading
Peer Grading in a Course on Algorithms and Data Structures: Machine Learning Algorithms do not Improve over Simple Baselines

Sajjadi, M. S. M., Alamgir, M., von Luxburg, U.

Proceedings of the 3rd ACM conference on Learning @ Scale, pages: 369-378, (Editors: Haywood, J. and Aleven, V. and Kay, J. and Roll, I.), ACM, L@S, April 2016, (An earlier version of this paper had been presented at the ICML 2015 workshop for Machine Learning for Education.) (conference)

ei

Arxiv Peer-Grading dataset request [BibTex]

Arxiv Peer-Grading dataset request [BibTex]


no image
On estimation of functional causal models: General results and application to post-nonlinear causal model

Zhang, K., Wang, Z., Zhang, J., Schölkopf, B.

ACM Transactions on Intelligent Systems and Technologies, 7(2):article no. 13, January 2016 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Fabular: Regression Formulas As Probabilistic Programming

Borgström, J., Gordon, A. D., Ouyang, L., Russo, C., Ścibior, A., Szymczak, M.

Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pages: 271-283, POPL ’16, ACM, January 2016 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl cloud tracking
Gaussian Process-Based Predictive Control for Periodic Error Correction

Klenske, E. D., Zeilinger, M., Schölkopf, B., Hennig, P.

IEEE Transactions on Control Systems Technology , 24(1):110-121, 2016 (article)

ei pn

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Pymanopt: A Python Toolbox for Optimization on Manifolds using Automatic Differentiation

Townsend, J., Koep, N., Weichwald, S.

Journal of Machine Learning Research, 17(137):1-5, 2016 (article)

ei

PDF Arxiv Code Project page link (url) [BibTex]


no image
A Causal, Data-driven Approach to Modeling the Kepler Data

Wang, D., Hogg, D. W., Foreman-Mackey, D., Schölkopf, B.

Publications of the Astronomical Society of the Pacific, 128(967):094503, 2016 (article)

ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Probabilistic Inference for Determining Options in Reinforcement Learning

Daniel, C., van Hoof, H., Peters, J., Neumann, G.

Machine Learning, Special Issue, 104(2):337-357, (Editors: Gärtner, T., Nanni, M., Passerini, A. and Robardet, C.), European Conference on Machine Learning im Machine Learning, Journal Track, 2016, Best Student Paper Award of ECML-PKDD 2016 (article)

am ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Influence of initial fixation position in scene viewing

Rothkegel, L. O. M., Trukenbrod, H. A., Schütt, H. H., Wichmann, F. A., Engbert, R.

Vision Research, 129, pages: 33-49, 2016 (article)

ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Testing models of peripheral encoding using metamerism in an oddity paradigm

Wallis, T. S. A., Bethge, M., Wichmann, F. A.

Journal of Vision, 16(2), 2016 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Modeling Confounding by Half-Sibling Regression

Schölkopf, B., Hogg, D., Wang, D., Foreman-Mackey, D., Janzing, D., Simon-Gabriel, C. J., Peters, J.

Proceedings of the National Academy of Science, 113(27):7391-7398, 2016 (article)

ei

Code link (url) DOI Project Page [BibTex]

Code link (url) DOI Project Page [BibTex]


Thumb xl dual control sampled b
Dual Control for Approximate Bayesian Reinforcement Learning

Klenske, E. D., Hennig, P.

Journal of Machine Learning Research, 17(127):1-30, 2016 (article)

ei pn

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
A Population Based Gaussian Mixture Model Incorporating 18F-FDG-PET and DW-MRI Quantifies Tumor Tissue Classes

Divine, M. R., Katiyar, P., Kohlhofer, U., Quintanilla-Martinez, L., Disselhorst, J. A., Pichler, B. J.

Journal of Nuclear Medicine, 57(3):473-479, 2016 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Painfree and accurate Bayesian estimation of psychometric functions for (potentially) overdispersed data

Schütt, H. H., Harmeling, S., Macke, J. H., Wichmann, F. A.

Vision Research, 122, pages: 105-123, 2016 (article)

ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Hierarchical Relative Entropy Policy Search

Daniel, C., Neumann, G., Kroemer, O., Peters, J.

Journal of Machine Learning Research, 17(93):1-50, 2016 (article)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Kernel Mean Shrinkage Estimators

Muandet, K., Sriperumbudur, B., Fukumizu, K., Gretton, A., Schölkopf, B.

Journal of Machine Learning Research, 17(48):1-41, 2016 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Learning to Deblur

Schuler, C. J., Hirsch, M., Harmeling, S., Schölkopf, B.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(7):1439-1451, IEEE, 2016 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Transfer Learning in Brain-Computer Interfaces

Jayaram, V., Alamgir, M., Altun, Y., Schölkopf, B., Grosse-Wentrup, M.

IEEE Computational Intelligence Magazine, 11(1):20-31, 2016 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
MERLiN: Mixture Effect Recovery in Linear Networks

Weichwald, S., Grosse-Wentrup, M., Gretton, A.

IEEE Journal of Selected Topics in Signal Processing, 10(7):1254-1266, 2016 (article)

ei

Arxiv Code PDF DOI Project Page [BibTex]

Arxiv Code PDF DOI Project Page [BibTex]


no image
Causal inference using invariant prediction: identification and confidence intervals

Peters, J., Bühlmann, P., Meinshausen, N.

Journal of the Royal Statistical Society, Series B (Statistical Methodology), 78(5):947-1012, 2016, (with discussion) (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Causal discovery and inference: concepts and recent methodological advances

Spirtes, P., Zhang, K.

Applied Informatics, 3(3):1-28, 2016 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Self-regulation of brain rhythms in the precuneus: a novel BCI paradigm for patients with ALS

Fomina, T., Lohmann, G., Erb, M., Ethofer, T., Schölkopf, B., Grosse-Wentrup, M.

Journal of Neural Engineering, 13(6):066021, 2016 (article)

ei

link (url) Project Page [BibTex]


no image
Influence Estimation and Maximization in Continuous-Time Diffusion Networks

Gomez-Rodriguez, M., Song, L., Du, N., Zha, H., Schölkopf, B.

ACM Transactions on Information Systems, 34(2):9:1-9:33, 2016 (article)

ei

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


Thumb xl heteroscedasticgp
Modeling Variability of Musculoskeletal Systems with Heteroscedastic Gaussian Processes

Büchler, D., Calandra, R., Peters, J.

Workshop on Neurorobotics, Neural Information Processing Systems (NIPS), 2016 (conference)

am ei

NIPS16Neurorobotics [BibTex]

NIPS16Neurorobotics [BibTex]


no image
The population of long-period transiting exoplanets

Foreman-Mackey, D., Morton, T. D., Hogg, D. W., Agol, E., Schölkopf, B.

The Astronomical Journal, 152(6):206, 2016 (article)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
An overview of quantitative approaches in Gestalt perception

Jäkel, F., Singh, M., Wichmann, F. A., Herzog, M. H.

Vision Research, 126, pages: 3-8, 2016 (article)

ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Causal and statistical learning

Schölkopf, B., Janzing, D., Lopez-Paz, D.

Oberwolfach Reports, 13(3):1896-1899, (Editors: A. Christmann and K. Jetter and S. Smale and D.-X. Zhou), 2016 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Bootstrat: Population Informed Bootstrapping for Rare Variant Tests

Huang, H., Peloso, G. M., Howrigan, D., Rakitsch, B., Simon-Gabriel, C. J., Goldstein, J. I., Daly, M. J., Borgwardt, K., Neale, B. M.

bioRxiv, 2016, preprint (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Probabilistic Movement Models Show that Postural Control Precedes and Predicts Volitional Motor Control

Rueckert, E., Camernik, J., Peters, J., Babic, J.

Nature PG: Scientific Reports, 6(Article number: 28455), 2016 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Learning Taxonomy Adaptation in Large-scale Classification

Babbar, R., Partalas, I., Gaussier, E., Amini, M., Amblard, C.

Journal of Machine Learning Research, 17(98):1-37, 2016 (article)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
BOiS—Berlin Object in Scene Database: Controlled Photographic Images for Visual Search Experiments with Quantified Contextual Priors

Mohr, J., Seyfarth, J., Lueschow, A., Weber, J. E., Wichmann, F. A., Obermayer, K.

Frontiers in Psychology, 2016 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Preface to the ACM TIST Special Issue on Causal Discovery and Inference

Zhang, K., Li, J., Bareinboim, E., Schölkopf, B., Pearl, J.

ACM Transactions on Intelligent Systems and Technologies, 7(2):article no. 17, 2016 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Recurrent Spiking Networks Solve Planning Tasks

Rueckert, E., Kappel, D., Tanneberg, D., Pecevski, D., Peters, J.

Nature PG: Scientific Reports, 6(Article number: 21142), 2016 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Bio-inspired feedback-circuit implementation of discrete, free energy optimizing, winner-take-all computations

Genewein, T, Braun, DA

Biological Cybernetics, 110(2):135–150, June 2016 (article)

Abstract
Bayesian inference and bounded rational decision-making require the accumulation of evidence or utility, respectively, to transform a prior belief or strategy into a posterior probability distribution over hypotheses or actions. Crucially, this process cannot be simply realized by independent integrators, since the different hypotheses and actions also compete with each other. In continuous time, this competitive integration process can be described by a special case of the replicator equation. Here we investigate simple analog electric circuits that implement the underlying differential equation under the constraint that we only permit a limited set of building blocks that we regard as biologically interpretable, such as capacitors, resistors, voltage-dependent conductances and voltage- or current-controlled current and voltage sources. The appeal of these circuits is that they intrinsically perform normalization without requiring an explicit divisive normalization. However, even in idealized simulations, we find that these circuits are very sensitive to internal noise as they accumulate error over time. We discuss in how far neural circuits could implement these operations that might provide a generic competitive principle underlying both perception and action.

ei

DOI [BibTex]

DOI [BibTex]


no image
Decision-Making under Ambiguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor Context: Experiments and an Information-Theoretic Ambiguity Model

Grau-Moya, J, Ortega, PA, Braun, DA

PLoS ONE, 11(4):1-21, April 2016 (article)

Abstract
A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects’ choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects’ choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain.

ei

DOI [BibTex]

2008


no image
Stereo Matching for Calibrated Cameras without Correspondence

Helmke, U., Hüper, K., Vences, L.

In CDC 2008, pages: 2408-2413, IEEE Service Center, Piscataway, NJ, USA, 47th IEEE Conference on Decision and Control, December 2008 (inproceedings)

Abstract
We study the stereo matching problem for reconstruction of the location of 3D-points on an unknown surface patch from two calibrated identical cameras without using any a priori information about the pointwise correspondences. We assume that camera parameters and the pose between the cameras are known. Our approach follows earlier work for coplanar cameras where a gradient flow algorithm was proposed to match associated Gramians. Here we extend this method by allowing arbitrary poses for the cameras. We introduce an intrinsic Riemannian Newton algorithm that achieves local quadratic convergence rates. A closed form solution is presented, too. The efficiency of both algorithms is demonstrated by numerical experiments.

ei

PDF Web DOI [BibTex]

2008


PDF Web DOI [BibTex]


no image
Joint Kernel Support Estimation for Structured Prediction

Lampert, C., Blaschko, M.

In Proceedings of the NIPS 2008 Workshop on "Structured Input - Structured Output" (NIPS SISO 2008), pages: 1-4, NIPS Workshop on "Structured Input - Structured Output" (NIPS SISO), December 2008 (inproceedings)

Abstract
We present a new technique for structured prediction that works in a hybrid generative/ discriminative way, using a one-class support vector machine to model the joint probability of (input, output)-pairs in a joint reproducing kernel Hilbert space. Compared to discriminative techniques, like conditional random elds or structured out- put SVMs, the proposed method has the advantage that its training time depends only on the number of training examples, not on the size of the label space. Due to its generative aspect, it is also very tolerant against ambiguous, incomplete or incorrect labels. Experiments on realistic data show that our method works eciently and robustly in situations for which discriminative techniques have computational or statistical problems.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Frequent Subgraph Retrieval in Geometric Graph Databases

Nowozin, S., Tsuda, K.

In ICDM 2008, pages: 953-958, (Editors: Giannotti, F. , D. Gunopulos, F. Turini, C. Zaniolo, N. Ramakrishnan, X. Wu), IEEE Computer Society, Los Alamitos, CA, USA, 8th IEEE International Conference on Data Mining, December 2008 (inproceedings)

Abstract
Discovery of knowledge from geometric graph databases is of particular importance in chemistry and biology, because chemical compounds and proteins are represented as graphs with 3D geometric coordinates. In such applications, scientists are not interested in the statistics of the whole database. Instead they need information about a novel drug candidate or protein at hand, represented as a query graph. We propose a polynomial-delay algorithm for geometric frequent subgraph retrieval. It enumerates all subgraphs of a single given query graph which are frequent geometric $epsilon$-subgraphs under the entire class of rigid geometric transformations in a database. By using geometric$epsilon$-subgraphs, we achieve tolerance against variations in geometry. We compare the proposed algorithm to gSpan on chemical compound data, and we show that for a given minimum support the total number of frequent patterns is substantially limited by requiring geometric matching. Although the computation time per pattern is lar ger than for non-geometric graph mining,the total time is within a reasonable level even for small minimum support.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Block Iterative Algorithms for Non-negative Matrix Approximation

Sra, S.

In ICDM 2008, pages: 1037-1042, (Editors: Giannotti, F. , D. Gunopulos, F. Turini, C. Zaniolo, N. Ramakrishnan, X. Wu), IEEE Service Center, Piscataway, NJ, USA, Eighth IEEE International Conference on Data Mining, December 2008 (inproceedings)

Abstract
In this paper we present new algorithms for non-negative matrix approximation (NMA), commonly known as the NMF problem. Our methods improve upon the well-known methods of Lee & Seung~cite{lee00} for both the Frobenius norm as well the Kullback-Leibler divergence versions of the problem. For the latter problem, our results are especially interesting because it seems to have witnessed much lesser algorithmic progress as compared to the Frobenius norm NMA problem. Our algorithms are based on a particular textbf {block-iterative} acceleration technique for EM, which preserves the multiplicative nature of the updates and also ensures monotonicity. Furthermore, our algorithms also naturally apply to the Bregman-divergence NMA algorithms of~cite{suv.nips}. Experimentally, we show that our algorithms outperform the traditional Lee/Seung approach most of the time.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
A Bayesian Approach to Switching Linear Gaussian State-Space Models for Unsupervised Time-Series Segmentation

Chiappa, S.

In ICMLA 2008, pages: 3-9, (Editors: Wani, M. A., X.-W. Chen, D. Casasent, L. Kurgan, T. Hu, K. Hafeez), IEEE Computer Society, Los Alamitos, CA, USA, 7th International Conference on Machine Learning and Applications, December 2008 (inproceedings)

Abstract
Time-series segmentation in the fully unsupervised scenario in which the number of segment-types is a priori unknown is a fundamental problem in many applications. We propose a Bayesian approach to a segmentation model based on the switching linear Gaussian state-space model that enforces a sparse parametrization, such as to use only a small number of a priori available different dynamics to explain the data. This enables us to estimate the number of segment-types within the model, in contrast to previous non-Bayesian approaches where training and comparing several separate models was required. As the resulting model is computationally intractable, we introduce a variational approximation where a reformulation of the problem enables the use of efficient inference algorithms.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Iterative Subgraph Mining for Principal Component Analysis

Saigo, H., Tsuda, K.

In ICDM 2008, pages: 1007-1012, (Editors: Giannotti, F. , D. Gunopulos, F. Turini, C. Zaniolo, N. Ramakrishnan, X. Wu), IEEE Computer Society, Los Alamitos, CA, USA, IEEE International Conference on Data Mining, December 2008 (inproceedings)

Abstract
Graph mining methods enumerate frequent subgraphs efficiently, but they are not necessarily good features for machine learning due to high correlation among features. Thus it makes sense to perform principal component analysis to reduce the dimensionality and create decorrelated features. We present a novel iterative mining algorithm that captures informative patterns corresponding to major entries of top principal components. It repeatedly calls weighted substructure mining where example weights are updated in each iteration. The Lanczos algorithm, a standard algorithm of eigendecomposition, is employed to update the weights. In experiments, our patterns are shown to approximate the principal components obtained by frequent mining.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Modelling contrast discrimination data suggest both the pedestal effect and stochastic resonance to be caused by the same mechanism

Goris, R., Wagemans, J., Wichmann, F.

Journal of Vision, 8(15):1-21, November 2008 (article)

Abstract
Computational models of spatial vision typically make use of a (rectified) linear filter, a nonlinearity and dominant late noise to account for human contrast discrimination data. Linear–nonlinear cascade models predict an improvement in observers' contrast detection performance when low, subthreshold levels of external noise are added (i.e., stochastic resonance). Here, we address the issue whether a single contrast gain-control model of early spatial vision can account for both the pedestal effect, i.e., the improved detectability of a grating in the presence of a low-contrast masking grating, and stochastic resonance. We measured contrast discrimination performance without noise and in both weak and moderate levels of noise. Making use of a full quantitative description of our data with few parameters combined with comprehensive model selection assessments, we show the pedestal effect to be more reduced in the presence of weak noise than in moderate noise. This reduction rules out independent, additive sources of performance improvement and, together with a simulation study, supports the parsimonious explanation that a single mechanism underlies the pedestal effect and stochastic resonance in contrast perception.

ei

Web DOI [BibTex]