Header logo is


2019


no image
A 32-channel multi-coil setup optimized for human brain shimming at 9.4T

Aghaeifar, A., Zhou, J., Heule, R., Tabibian, B., Schölkopf, B., Jia, F., Zaitsev, M., Scheffler, K.

Magnetic Resonance in Medicine, 2019, (Early View) (article)

ei

DOI [BibTex]

2019


DOI [BibTex]


Thumb xl fig multidimensional contrast limited adaptive histogram equalization kb
Multidimensional Contrast Limited Adaptive Histogram Equalization

Stimper, V., Bauer, S., Ernstorfer, R., Schölkopf, B., Xian, R. P.

IEEE Access, 7, pages: 165437-165447, 2019 (article)

ei

arXiv link (url) DOI [BibTex]

arXiv link (url) DOI [BibTex]


no image
Enhancing Human Learning via Spaced Repetition Optimization

Tabibian, B., Upadhyay, U., De, A., Zarezade, A., Schölkopf, B., Gomez Rodriguez, M.

Proceedings of the National Academy of Sciences, 2019, PNAS published ahead of print January 22, 2019 (article)

ei

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


Thumb xl screenshot 2019 03 25 at 14.29.22
Learning to Control Highly Accelerated Ballistic Movements on Muscular Robots

Büchler, D., Calandra, R., Peters, J.

2019 (article) Submitted

Abstract
High-speed and high-acceleration movements are inherently hard to control. Applying learning to the control of such motions on anthropomorphic robot arms can improve the accuracy of the control but might damage the system. The inherent exploration of learning approaches can lead to instabilities and the robot reaching joint limits at high speeds. Having hardware that enables safe exploration of high-speed and high-acceleration movements is therefore desirable. To address this issue, we propose to use robots actuated by Pneumatic Artificial Muscles (PAMs). In this paper, we present a four degrees of freedom (DoFs) robot arm that reaches high joint angle accelerations of up to 28000 °/s^2 while avoiding dangerous joint limits thanks to the antagonistic actuation and limits on the air pressure ranges. With this robot arm, we are able to tune control parameters using Bayesian optimization directly on the hardware without additional safety considerations. The achieved tracking performance on a fast trajectory exceeds previous results on comparable PAM-driven robots. We also show that our system can be controlled well on slow trajectories with PID controllers due to careful construction considerations such as minimal bending of cables, lightweight kinematics and minimal contact between PAMs and PAMs with the links. Finally, we propose a novel technique to control the the co-contraction of antagonistic muscle pairs. Experimental results illustrate that choosing the optimal co-contraction level is vital to reach better tracking performance. Through the use of PAM-driven robots and learning, we do a small step towards the future development of robots capable of more human-like motions.

ei

Arxiv Video [BibTex]


no image
AReS and MaRS Adversarial and MMD-Minimizing Regression for SDEs

Abbati*, G., Wenk*, P., Osborne, M. A., Krause, A., Schölkopf, B., Bauer, S.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 1-10, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, 2019, *equal contribution (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


Thumb xl screen shot 2019 04 19 at 11.36.04 am
Quantifying the Robustness of Natural Dynamics: a Viability Approach

Heim, S., Sproewitz, A.

Proceedings of Dynamic Walking , Dynamic Walking , 2019 (conference) Accepted

dlg

Submission DW2019 [BibTex]

Submission DW2019 [BibTex]


no image
Inferring causation from time series with perspectives in Earth system sciences

Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., Glymour, C., Kretschmer, M., Mahecha, M., van Nes, E., Peters, J., Quax, R., Reichstein, M., Scheffer, M. S. B., Spirtes, P., Sugihara, G., Sun, J., Zhang, K., Zscheischler, J.

Nature Communications, 2019 (article) In revision

ei

[BibTex]

[BibTex]


no image
Quantum mean embedding of probability distributions

Kübler, J. M., Muandet, K., Schölkopf, B.

Physical Review Research, 1(3):033159, American Physical Society, 2019 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
MYND: A Platform for Large-scale Neuroscientific Studies

Hohmann, M. R., Hackl, M., Wirth, B., Zaman, T., Enficiaud, R., Grosse-Wentrup, M., Schölkopf, B.

Proceedings of the 2019 Conference on Human Factors in Computing Systems (CHI), 2019 (conference) Accepted

ei

[BibTex]

[BibTex]


Thumb xl screenshot from 2019 03 21 12 11 19
Automated Generation of Reactive Programs from Human Demonstration for Orchestration of Robot Behaviors

Berenz, V., Bjelic, A., Mainprice, J.

ArXiv, 2019 (article)

Abstract
Social robots or collaborative robots that have to interact with people in a reactive way are difficult to program. This difficulty stems from the different skills required by the programmer: to provide an engaging user experience the behavior must include a sense of aesthetics while robustly operating in a continuously changing environment. The Playful framework allows composing such dynamic behaviors using a basic set of action and perception primitives. Within this framework, a behavior is encoded as a list of declarative statements corresponding to high-level sensory-motor couplings. To facilitate non-expert users to program such behaviors, we propose a Learning from Demonstration (LfD) technique that maps motion capture of humans directly to a Playful script. The approach proceeds by identifying the sensory-motor couplings that are active at each step using the Viterbi path in a Hidden Markov Model (HMM). Given these activation patterns, binary classifiers called evaluations are trained to associate activations to sensory data. Modularity is increased by clustering the sensory-motor couplings, leading to a hierarchical tree structure. The novelty of the proposed approach is that the learned behavior is encoded not in terms of trajectories in a task space, but as couplings between sensory information and high-level motor actions. This provides advantages in terms of behavioral generalization and reactivity displayed by the robot.

am

Support Video link (url) [BibTex]


no image
A Kernel Stein Test for Comparing Latent Variable Models

Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.

2019 (conference) Submitted

ei

arXiv [BibTex]

arXiv [BibTex]


no image
Learning to Disentangle Latent Physical Factors for Video Prediction

Zhu, D., Munderloh, M., Rosenhahn, B., Stückler, J.

In German Conference on Pattern Recognition (GCPR), 2019, to appear (inproceedings)

ev

dataset & evaluation code video preprint [BibTex]

dataset & evaluation code video preprint [BibTex]


no image
Visual-Inertial Mapping with Non-Linear Factor Recovery

Usenko, V., Demmel, N., Schubert, D., Stückler, J., Cremers, D.

IEEE Robotics and Automation Letters (RA-L), 2019, to appear, arXiv:1904.06504 (article)

Abstract
Cameras and inertial measurement units are complementary sensors for ego-motion estimation and environment mapping. Their combination makes visual-inertial odometry (VIO) systems more accurate and robust. For globally consistent mapping, however, combining visual and inertial information is not straightforward. To estimate the motion and geometry with a set of images large baselines are required. Because of that, most systems operate on keyframes that have large time intervals between each other. Inertial data on the other hand quickly degrades with the duration of the intervals and after several seconds of integration, it typically contains only little useful information. In this paper, we propose to extract relevant information for visual-inertial mapping from visual-inertial odometry using non-linear factor recovery. We reconstruct a set of non-linear factors that make an optimal approximation of the information on the trajectory accumulated by VIO. To obtain a globally consistent map we combine these factors with loop-closing constraints using bundle adjustment. The VIO factors make the roll and pitch angles of the global map observable, and improve the robustness and the accuracy of the mapping. In experiments on a public benchmark, we demonstrate superior performance of our method over the state-of-the-art approaches.

ev

[BibTex]

[BibTex]


Thumb xl rae
From Variational to Deterministic Autoencoders

Ghosh*, P., Sajjadi*, M. S. M., Vergari, A., Black, M. J., Schölkopf, B.

2019, *equal contribution (conference) Submitted

Abstract
Variational Autoencoders (VAEs) provide a theoretically-backed framework for deep generative models. However, they often produce “blurry” images, which is linked to their training objective. Sampling in the most popular implementation, the Gaussian VAE, can be interpreted as simply injecting noise to the input of a deterministic decoder. In practice, this simply enforces a smooth latent space structure. We challenge the adoption of the full VAE framework on this specific point in favor of a simpler, deterministic one. Specifically, we investigate how substituting stochasticity with other explicit and implicit regularization schemes can lead to a meaningful latent space without having to force it to conform to an arbitrarily chosen prior. To retrieve a generative mechanism for sampling new data points, we propose to employ an efficient ex-post density estimation step that can be readily adopted both for the proposed deterministic autoencoders as well as to improve sample quality of existing VAEs. We show in a rigorous empirical study that regularized deterministic autoencoding achieves state-of-the-art sample quality on the common MNIST, CIFAR-10 and CelebA datasets.

ei ps

arXiv [BibTex]


no image
3D Birds-Eye-View Instance Segmentation

Elich, C., Engelmann, F., Kontogianni, T., Leibe, B.

In German Conference on Pattern Recognition (GCPR), 2019, arXiv:1904.02199, to appear (inproceedings)

ev

[BibTex]

[BibTex]


no image
Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces

Klus, S., Schuster, I., Muandet, K.

Journal of Nonlinear Science, 2019, First Online: 21 August 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]

2016


no image
Consistent Kernel Mean Estimation for Functions of Random Variables

Simon-Gabriel*, C. J., Ścibior*, A., Tolstikhin, I., Schölkopf, B.

Advances in Neural Information Processing Systems 29, pages: 1732-1740, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems, December 2016, *joint first authors (conference)

ei

link (url) Project Page Project Page Project Page [BibTex]

2016


link (url) Project Page Project Page Project Page [BibTex]


Thumb xl nonlinear approximate vs exact
A New Perspective and Extension of the Gaussian Filter

Wüthrich, M., Trimpe, S., Garcia Cifuentes, C., Kappler, D., Schaal, S.

The International Journal of Robotics Research, 35(14):1731-1749, December 2016 (article)

Abstract
The Gaussian Filter (GF) is one of the most widely used filtering algorithms; instances are the Extended Kalman Filter, the Unscented Kalman Filter and the Divided Difference Filter. The GF represents the belief of the current state by a Gaussian distribution, whose mean is an affine function of the measurement. We show that this representation can be too restrictive to accurately capture the dependences in systems with nonlinear observation models, and we investigate how the GF can be generalized to alleviate this problem. To this end, we view the GF as the solution to a constrained optimization problem. From this new perspective, the GF is seen as a special case of a much broader class of filters, obtained by relaxing the constraint on the form of the approximate posterior. On this basis, we outline some conditions which potential generalizations have to satisfy in order to maintain the computational efficiency of the GF. We propose one concrete generalization which corresponds to the standard GF using a pseudo measurement instead of the actual measurement. Extending an existing GF implementation in this manner is trivial. Nevertheless, we show that this small change can have a major impact on the estimation accuracy.

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
Understanding Probabilistic Sparse Gaussian Process Approximations

Bauer, M., van der Wilk, M., Rasmussen, C. E.

Advances in Neural Information Processing Systems 29, pages: 1533-1541, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems, December 2016 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Minimax Estimation of Maximum Mean Discrepancy with Radial Kernels

Tolstikhin, I., Sriperumbudur, B. K., Schölkopf, B.

Advances in Neural Information Processing Systems 29, pages: 1930-1938, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems, December 2016 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Local-utopia Policy Selection for Multi-objective Reinforcement Learning

Parisi, S., Blank, A., Viernickel, T., Peters, J.

In IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), pages: 1-7, IEEE, December 2016 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Lifelong Learning with Weighted Majority Votes

Pentina, A., Urner, R.

Advances in Neural Information Processing Systems 29, pages: 3612-3620, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems, December 2016 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Active Nearest-Neighbor Learning in Metric Spaces

Kontorovich, A., Sabato, S., Urner, R.

Advances in Neural Information Processing Systems 29, pages: 856-864, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems, December 2016 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Predictive and Self Triggering for Event-based State Estimation

Trimpe, S.

In Proceedings of the 55th IEEE Conference on Decision and Control (CDC), pages: 3098-3105, Las Vegas, NV, USA, December 2016 (inproceedings)

am ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


no image
Catching heuristics are optimal control policies

Belousov, B., Neumann, G., Rothkopf, C., Peters, J.

Advances in Neural Information Processing Systems 29, pages: 1426-1434, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems, December 2016 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Incremental Imitation Learning of Context-Dependent Motor Skills

Ewerton, M., Maeda, G., Kollegger, G., Wiemeyer, J., Peters, J.

IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pages: 351-358, IEEE, November 2016 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Using Probabilistic Movement Primitives for Striking Movements

Gomez-Gonzalez, S., Neumann, G., Schölkopf, B., Peters, J.

16th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pages: 502-508, November 2016 (conference)

am ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Demonstration Based Trajectory Optimization for Generalizable Robot Motions

Koert, D., Maeda, G., Lioutikov, R., Neumann, G., Peters, J.

IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pages: 351-358, IEEE, November 2016 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl screen shot 2019 01 07 at 11.54.16
Jointly Learning Trajectory Generation and Hitting Point Prediction in Robot Table Tennis

Huang, Y., Büchler, D., Koc, O., Schölkopf, B., Peters, J.

16th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pages: 650-655, November 2016 (conference)

am ei

final link (url) DOI Project Page [BibTex]

final link (url) DOI Project Page [BibTex]


no image
Deep Spiking Networks for Model-based Planning in Humanoids

Tanneberg, D., Paraschos, A., Peters, J., Rueckert, E.

IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pages: 656-661, IEEE, November 2016 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Anticipative Interaction Primitives for Human-Robot Collaboration

Maeda, G., Maloo, A., Ewerton, M., Lioutikov, R., Peters, J.

AAAI Fall Symposium Series. Shared Autonomy in Research and Practice, pages: 325-330, November 2016 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
The Role of Measurement Uncertainty in Optimal Control for Contact Interactions
Workshop on the Algorithmic Foundations of Robotics, pages: 22, November 2016 (conference)

Abstract
Stochastic Optimal Control (SOC) typically considers noise only in the process model, i.e. unknown disturbances. However, in many robotic applications that involve interaction with the environment, such as locomotion and manipulation, uncertainty also comes from lack of pre- cise knowledge of the world, which is not an actual disturbance. We de- velop a computationally efficient SOC algorithm, based on risk-sensitive control, that takes into account uncertainty in the measurements. We include the dynamics of an observer in such a way that the control law explicitly depends on the current measurement uncertainty. We show that high measurement uncertainty leads to low impedance behaviors, a result in contrast with the effects of process noise variance that creates stiff behaviors. Simulation results on a simple 2D manipulator show that our controller can create better interaction with the environment under uncertain contact locations than traditional SOC approaches.

am

arXiv [BibTex]

arXiv [BibTex]


no image
Unifying distillation and privileged information

Lopez-Paz, D., Schölkopf, B., Bottou, L., Vapnik, V.

International Conference on Learning Representations (ICLR), November 2016 (conference)

ei

Arxiv Project Page [BibTex]

Arxiv Project Page [BibTex]


no image
Learning High-Order Filters for Efficient Blind Deconvolution of Document Photographs

Xiao, L., Wang, J., Heidrich, W., Hirsch, M.

Computer Vision - ECCV 2016, Lecture Notes in Computer Science, LNCS 9907, Part III, pages: 734-749, (Editors: Bastian Leibe, Jiri Matas, Nicu Sebe and Max Welling), Springer, October 2016 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Adaptive Training Strategies for BCIs

Sharma, D., Tanneberg, D., Grosse-Wentrup, M., Peters, J., Rueckert, E.

Cybathlon Symposium, October 2016 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl img
Learning Where to Search Using Visual Attention

Kloss, A., Kappler, D., Lensch, H. P. A., Butz, M. V., Schaal, S., Bohg, J.

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, IEEE, IROS, October 2016 (conference)

Abstract
One of the central tasks for a household robot is searching for specific objects. It does not only require localizing the target object but also identifying promising search locations in the scene if the target is not immediately visible. As computation time and hardware resources are usually limited in robotics, it is desirable to avoid expensive visual processing steps that are exhaustively applied over the entire image. The human visual system can quickly select those image locations that have to be processed in detail for a given task. This allows us to cope with huge amounts of information and to efficiently deploy the limited capacities of our visual system. In this paper, we therefore propose to use human fixation data to train a top-down saliency model that predicts relevant image locations when searching for specific objects. We show that the learned model can successfully prune bounding box proposals without rejecting the ground truth object locations. In this aspect, the proposed model outperforms a model that is trained only on the ground truth segmentations of the target object instead of fixation data.

am

Project Page [BibTex]

PDF Project Page [BibTex]


Thumb xl oxfordlight
Parameter Learning for Improving Binary Descriptor Matching

Sankaran, B., Ramalingam, S., Taguchi, Y.

In International Conference on Intelligent Robots and Systems (IROS) 2016, IEEE/RSJ International Conference on Intelligent Robots and Systems, October 2016 (inproceedings)

Abstract
Binary descriptors allow fast detection and matching algorithms in computer vision problems. Though binary descriptors can be computed at almost two orders of magnitude faster than traditional gradient based descriptors, they suffer from poor matching accuracy in challenging conditions. In this paper we propose three improvements for binary descriptors in their computation and matching that enhance their performance in comparison to traditional binary and non-binary descriptors without compromising their speed. This is achieved by learning some weights and threshold parameters that allow customized matching under some variations such as lighting and viewpoint. Our suggested improvements can be easily applied to any binary descriptor. We demonstrate our approach on the ORB (Oriented FAST and Rotated BRIEF) descriptor and compare its performance with the traditional ORB and SIFT descriptors on a wide variety of datasets. In all instances, our enhancements outperform standard ORB and is comparable to SIFT.

am

[BibTex]

[BibTex]


no image
Experiments with Hierarchical Reinforcement Learning of Multiple Grasping Policies

Osa, T., Peters, J., Neumann, G.

International Symposium on Experimental Robotics (ISER), 1, pages: 160-172, Springer Proceedings in Advanced Robotics, (Editors: Dana Kulic, Yoshihiko Nakamura, Oussama Khatib and Gentiane Venture), Springer, October 2016 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Stable Reinforcement Learning with Autoencoders for Tactile and Visual Data

van Hoof, H., Chen, N., Karl, M., van der Smagt, P., Peters, J.

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), pages: 3928-3934, IEEE, October 2016 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
A New Trajectory Generation Framework in Robotic Table Tennis

Koc, O., Maeda, G., Peters, J.

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), pages: 3750-3756, October 2016 (conference)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl gadde
Superpixel Convolutional Networks using Bilateral Inceptions

Gadde, R., Jampani, V., Kiefel, M., Kappler, D., Gehler, P.

In European Conference on Computer Vision (ECCV), Lecture Notes in Computer Science, Springer, 14th European Conference on Computer Vision, October 2016 (inproceedings)

Abstract
In this paper we propose a CNN architecture for semantic image segmentation. We introduce a new “bilateral inception” module that can be inserted in existing CNN architectures and performs bilateral filtering, at multiple feature-scales, between superpixels in an image. The feature spaces for bilateral filtering and other parameters of the module are learned end-to-end using standard backpropagation techniques. The bilateral inception module addresses two issues that arise with general CNN segmentation architectures. First, this module propagates information between (super) pixels while respecting image edges, thus using the structured information of the problem for improved results. Second, the layer recovers a full resolution segmentation result from the lower resolution solution of a CNN. In the experiments, we modify several existing CNN architectures by inserting our inception modules between the last CNN (1 × 1 convolution) layers. Empirical results on three different datasets show reliable improvements not only in comparison to the baseline networks, but also in comparison to several dense-pixel prediction techniques such as CRFs, while being competitive in time.

am ps

pdf supplementary poster Project Page Project Page [BibTex]

pdf supplementary poster Project Page Project Page [BibTex]


no image
Probabilistic Decomposition of Sequential Force Interaction Tasks into Movement Primitives

Manschitz, S., Gienger, M., Kober, J., Peters, J.

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 3920-3927, IEEE, October 2016 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl thumb
Barrista - Caffe Well-Served

Lassner, C., Kappler, D., Kiefel, M., Gehler, P.

In ACM Multimedia Open Source Software Competition, ACM OSSC16, October 2016 (inproceedings)

Abstract
The caffe framework is one of the leading deep learning toolboxes in the machine learning and computer vision community. While it offers efficiency and configurability, it falls short of a full interface to Python. With increasingly involved procedures for training deep networks and reaching depths of hundreds of layers, creating configuration files and keeping them consistent becomes an error prone process. We introduce the barrista framework, offering full, pythonic control over caffe. It separates responsibilities and offers code to solve frequently occurring tasks for pre-processing, training and model inspection. It is compatible to all caffe versions since mid 2015 and can import and export .prototxt files. Examples are included, e.g., a deep residual network implemented in only 172 lines (for arbitrary depths), comparing to 2320 lines in the official implementation for the equivalent model.

am ps

pdf link (url) DOI Project Page [BibTex]

pdf link (url) DOI Project Page [BibTex]


no image
Multi-task logistic regression in brain-computer interfaces

Fiebig, K., Jayaram, V., Peters, J., Grosse-Wentrup, M.

6th Workshop on Brain-Machine Interface Systems at IEEE International Conference on Systems, Man, and Cybernetics (SMC 2016), pages: 002307-002312, IEEE, October 2016 (conference)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Active Tactile Object Exploration with Gaussian Processes

Yi, Z., Calandra, R., Veiga, F., van Hoof, H., Hermans, T., Zhang, Y., Peters, J.

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 4925-4930, IEEE, October 2016 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
On Version Space Compression

Ben-David, S., Urner, R.

Algorithmic Learning Theory - 27th International Conference (ALT), 9925, pages: 50-64, Lecture Notes in Computer Science, (Editors: Ortner, R., Simon, H. U., and Zilles, S.), September 2016 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]