Header logo is


2004


no image
Hilbertian Metrics and Positive Definite Kernels on Probability Measures

Hein, M., Bousquet, O.

(126), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, July 2004 (techreport)

Abstract
We investigate the problem of defining Hilbertian metrics resp. positive definite kernels on probability measures, continuing previous work. This type of kernels has shown very good results in text classification and has a wide range of possible applications. In this paper we extend the two-parameter family of Hilbertian metrics of Topsoe such that it now includes all commonly used Hilbertian metrics on probability measures. This allows us to do model selection among these metrics in an elegant and unified way. Second we investigate further our approach to incorporate similarity information of the probability space into the kernel. The analysis provides a better understanding of these kernels and gives in some cases a more efficient way to compute them. Finally we compare all proposed kernels in two text and one image classification problem.

ei

PDF [BibTex]

2004


PDF [BibTex]


no image
Kernels, Associated Structures and Generalizations

Hein, M., Bousquet, O.

(127), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, July 2004 (techreport)

Abstract
This paper gives a survey of results in the mathematical literature on positive definite kernels and their associated structures. We concentrate on properties which seem potentially relevant for Machine Learning and try to clarify some results that have been misused in the literature. Moreover we consider different lines of generalizations of positive definite kernels. Namely we deal with operator-valued kernels and present the general framework of Hilbertian subspaces of Schwartz which we use to introduce kernels which are distributions. Finally indefinite kernels and their associated reproducing kernel spaces are considered.

ei

PDF [BibTex]

PDF [BibTex]


no image
Support Vector Channel Selection in BCI

Lal, T., Schröder, M., Hinterberger, T., Weston, J., Bogdan, M., Birbaumer, N., Schölkopf, B.

IEEE Transactions on Biomedical Engineering, 51(6):1003-1010, June 2004 (article)

Abstract
Designing a Brain Computer Interface (BCI) system one can choose from a variety of features that may be useful for classifying brain activity during a mental task. For the special case of classifying EEG signals we propose the usage of the state of the art feature selection algorithms Recursive Feature Elimination and Zero-Norm Optimization which are based on the training of Support Vector Machines (SVM). These algorithms can provide more accurate solutions than standard filter methods for feature selection. We adapt the methods for the purpose of selecting EEG channels. For a motor imagery paradigm we show that the number of used channels can be reduced significantly without increasing the classification error. The resulting best channels agree well with the expected underlying cortical activity patterns during the mental tasks. Furthermore we show how time dependent task specific information can be visualized.

ei

DOI [BibTex]

DOI [BibTex]


no image
Distance-Based Classification with Lipschitz Functions

von Luxburg, U., Bousquet, O.

Journal of Machine Learning Research, 5, pages: 669-695, June 2004 (article)

Abstract
The goal of this article is to develop a framework for large margin classification in metric spaces. We want to find a generalization of linear decision functions for metric spaces and define a corresponding notion of margin such that the decision function separates the training points with a large margin. It will turn out that using Lipschitz functions as decision functions, the inverse of the Lipschitz constant can be interpreted as the size of a margin. In order to construct a clean mathematical setup we isometrically embed the given metric space into a Banach space and the space of Lipschitz functions into its dual space. To analyze the resulting algorithm, we prove several representer theorems. They state that there always exist solutions of the Lipschitz classifier which can be expressed in terms of distance functions to training points. We provide generalization bounds for Lipschitz classifiers in terms of the Rademacher complexities of some Lipschitz function classes. The generality of our approach can be seen from the fact that several well-known algorithms are special cases of the Lipschitz classifier, among them the support vector machine, the linear programming machine, and the 1-nearest neighbor classifier.

ei

PDF PostScript PDF [BibTex]

PDF PostScript PDF [BibTex]


no image
cDNA-Microarray Technology in Cartilage Research - Functional Genomics of Osteoarthritis [in German]

Aigner, T., Finger, F., Zien, A., Bartnik, E.

Zeitschrift f{\"u}r Orthop{\"a}die und ihre Grenzgebiete, 142(2):241-247, April 2004 (article)

Abstract
Functional genomics represents a new challenging approach in order to analyze complex diseases such as osteoarthritis on a molecular level. The characterization of the molecular changes of the cartilage cells, the chondrocytes, enables a better understanding of the pathomechanisms of the disease. In particular, the identification and characterization of new target molecules for therapeutic intervention is of interest. Also, potential molecular markers for diagnosis and monitoring of osteoarthritis contribute to a more appropriate patient management. The DNA-microarray technology complements (but does not replace) biochemical and biological research in new disease-relevant genes. Large-scale functional genomics will identify molecular networks such as yet identified players in the anabolic-catabolic balance of articular cartilage as well as disease-relevant intracellular signaling cascades so far rather unknown in articular chondrocytes. However, at the moment it is also important to recognize the limitations of the microarray technology in order to avoid over-interpretation of the results. This might lead to misleading results and prevent to a significant extent a proper use of the potential of this technology in the field of osteoarthritis.

ei

[BibTex]

[BibTex]


no image
A Compression Approach to Support Vector Model Selection

von Luxburg, U., Bousquet, O., Schölkopf, B.

Journal of Machine Learning Research, 5, pages: 293-323, April 2004 (article)

Abstract
In this paper we investigate connections between statistical learning theory and data compression on the basis of support vector machine (SVM) model selection. Inspired by several generalization bounds we construct "compression coefficients" for SVMs which measure the amount by which the training labels can be compressed by a code built from the separating hyperplane. The main idea is to relate the coding precision to geometrical concepts such as the width of the margin or the shape of the data in the feature space. The so derived compression coefficients combine well known quantities such as the radius-margin term R^2/rho^2, the eigenvalues of the kernel matrix, and the number of support vectors. To test whether they are useful in practice we ran model selection experiments on benchmark data sets. As a result we found that compression coefficients can fairly accurately predict the parameters for which the test error is minimized.

ei

PDF [BibTex]

PDF [BibTex]


no image
Kamerakalibrierung und Tiefenschätzung: Ein Vergleich von klassischer Bündelblockausgleichung und statistischen Lernalgorithmen

Sinz, FH.

Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Tübingen, Germany, March 2004 (techreport)

Abstract
Die Arbeit verleicht zwei Herangehensweisen an das Problem der Sch{\"a}tzung der r{\"a}umliche Position eines Punktes aus den Bildkoordinaten in zwei verschiedenen Kameras. Die klassische Methode der B{\"u}ndelblockausgleichung modelliert zwei Einzelkameras und sch{\"a}tzt deren {\"a}ußere und innere Orientierung mit einer iterativen Kalibrationsmethode, deren Konvergenz sehr stark von guten Startwerten abh{\"a}ngt. Die Tiefensch{\"a}tzung eines Punkts geschieht durch die Invertierung von drei der insgesamt vier Projektionsgleichungen der Einzalkameramodelle. Die zweite Methode benutzt Kernel Ridge Regression und Support Vector Regression, um direkt eine Abbildung von den Bild- auf die Raumkoordinaten zu lernen. Die Resultate zeigen, daß der Ansatz mit maschinellem Lernen, neben einer erheblichen Vereinfachung des Kalibrationsprozesses, zu h{\"o}heren Positionsgenaugikeiten f{\"u}hren kann.

ei

PDF [BibTex]

PDF [BibTex]


no image
Experimentally optimal v in support vector regression for different noise models and parameter settings

Chalimourda, A., Schölkopf, B., Smola, A.

Neural Networks, 17(1):127-141, January 2004 (article)

Abstract
In Support Vector (SV) regression, a parameter ν controls the number of Support Vectors and the number of points that come to lie outside of the so-called var epsilon-insensitive tube. For various noise models and SV parameter settings, we experimentally determine the values of ν that lead to the lowest generalization error. We find good agreement with the values that had previously been predicted by a theoretical argument based on the asymptotic efficiency of a simplified model of SV regression. As a side effect of the experiments, valuable information about the generalization behavior of the remaining SVM parameters and their dependencies is gained. The experimental findings are valid even for complex ‘real-world’ data sets. Based on our results on the role of the ν-SVM parameters, we discuss various model selection methods.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Protein ranking: from local to global structure in the protein similarity network

Weston, J., Elisseeff, A., Zhou, D., Leslie, C., Noble, W.

Proceedings of the National Academy of Science, 101(17):6559-6563, 2004 (article)

Abstract
Biologists regularly search databases of DNA or protein sequences for evolutionary or functional relationships to a given query sequence. We describe a ranking algorithm that exploits the entire network structure of similarity relationships among proteins in a sequence database by performing a diffusion operation on a pre-computed, weighted network. The resulting ranking algorithm, evaluated using a human-curated database of protein structures, is efficient and provides significantly better rankings than a local network search algorithm such as PSI-BLAST.

ei

Web [BibTex]

Web [BibTex]


no image
Multivariate Regression with Stiefel Constraints

Bakir, G., Gretton, A., Franz, M., Schölkopf, B.

(128), MPI for Biological Cybernetics, Spemannstr 38, 72076, Tuebingen, 2004 (techreport)

Abstract
We introduce a new framework for regression between multi-dimensional spaces. Standard methods for solving this problem typically reduce the problem to one-dimensional regression by choosing features in the input and/or output spaces. These methods, which include PLS (partial least squares), KDE (kernel dependency estimation), and PCR (principal component regression), select features based on different a-priori judgments as to their relevance. Moreover, loss function and constraints are chosen not primarily on statistical grounds, but to simplify the resulting optimisation. By contrast, in our approach the feature construction and the regression estimation are performed jointly, directly minimizing a loss function that we specify, subject to a rank constraint. A major advantage of this approach is that the loss is no longer chosen according to the algorithmic requirements, but can be tailored to the characteristics of the task at hand; the features will then be optimal with respect to this objective. Our approach also allows for the possibility of using a regularizer in the optimization. Finally, by processing the observations sequentially, our algorithm is able to work on large scale problems.

ei

PDF [BibTex]

PDF [BibTex]


no image
Statistical Performance of Support Vector Machines

Blanchard, G., Bousquet, O., Massart, P.

2004 (article)

ei

PostScript [BibTex]


no image
Asymptotic Properties of the Fisher Kernel

Tsuda, K., Akaho, S., Kawanabe, M., Müller, K.

Neural Computation, 16(1):115-137, 2004 (article)

ei

PDF [BibTex]

PDF [BibTex]


no image
Some observations on the effects of slant and texture type on slant-from-texture

Rosas, P., Wichmann, F., Wagemans, J.

Vision Research, 44(13):1511-1535, 2004 (article)

Abstract
We measure the performance of five subjects in a slant-discrimination task for differently textured planes. As textures we used uniform lattices, randomly displaced lattices, circles (polka dots), Voronoi tessellations, plaids, 1/f noise, “coherent” noise and a leopard skin-like texture. Our results show: (1) Improving performance with larger slants for all textures. (2) Thus, following from (1), cases of “non-symmetrical” performance around a particular orientation. (3) For orientations sufficiently slanted, the different textures do not elicit major differences in performance, (4) while for orientations closer to the vertical plane there are marked differences between them. (5) These differences allow a rank-order of textures to be formed according to their “helpfulness”– that is, how easy the discrimination task is when a particular texture is mapped on the plane. Polka dots tend to allow the best slant discrimination performance, noise patterns the worst. Two additional experiments were conducted to test the generality of the obtained rank-order. First, the tilt of the planes was rotated to break the axis of gravity present in the original discrimination experiment. Second, the task was changed to a slant report task via probe adjustment. The results of both control experiments confirmed the texture-based rank-order previously obtained. We comment on the importance of these results for depth perception research in general, and in particular the implications our results have for studies of cue combination (sensor fusion) using texture as one of the cues involved.

ei

PDF [BibTex]

PDF [BibTex]


no image
Learning from Labeled and Unlabeled Data Using Random Walks

Zhou, D., Schölkopf, B.

Max Planck Institute for Biological Cybernetics, 2004 (techreport)

Abstract
We consider the general problem of learning from labeled and unlabeled data. Given a set of points, some of them are labeled, and the remaining points are unlabeled. The goal is to predict the labels of the unlabeled points. Any supervised learning algorithm can be applied to this problem, for instance, Support Vector Machines (SVMs). The problem of our interest is if we can implement a classifier which uses the unlabeled data information in some way and has higher accuracy than the classifiers which use the labeled data only. Recently we proposed a simple algorithm, which can substantially benefit from large amounts of unlabeled data and demonstrates clear superiority to supervised learning methods. In this paper we further investigate the algorithm using random walks and spectral graph theory, which shed light on the key steps in this algorithm.

ei

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Minimizing the Cross Validation Error to Mix Kernel Matrices of Heterogeneous Biological Data

Tsuda, K., Uda, S., Kin, T., Asai, K.

Neural Processing Letters, 19, pages: 63-72, 2004 (article)

ei

PDF [BibTex]

PDF [BibTex]


no image
A Tutorial on Support Vector Regression

Smola, A., Schölkopf, B.

Statistics and Computing, 14(3):199-222, 2004 (article)

ei

Web [BibTex]

Web [BibTex]


no image
Behaviour and Convergence of the Constrained Covariance

Gretton, A., Smola, A., Bousquet, O., Herbrich, R., Schölkopf, B., Logothetis, N.

(130), MPI for Biological Cybernetics, 2004 (techreport)

Abstract
We discuss reproducing kernel Hilbert space (RKHS)-based measures of statistical dependence, with emphasis on constrained covariance (COCO), a novel criterion to test dependence of random variables. We show that COCO is a test for independence if and only if the associated RKHSs are universal. That said, no independence test exists that can distinguish dependent and independent random variables in all circumstances. Dependent random variables can result in a COCO which is arbitrarily close to zero when the source densities are highly non-smooth, which can make dependence hard to detect empirically. All current kernel-based independence tests share this behaviour. Finally, we demonstrate exponential convergence between the population and empirical COCO, which implies that COCO does not suffer from slow learning rates when used as a dependence test.

ei

PDF [BibTex]

PDF [BibTex]


no image
Bayesian analysis of the Scatterometer Wind Retrieval Inverse Problem: Some New Approaches

Cornford, D., Csato, L., Evans, D., Opper, M.

Journal of the Royal Statistical Society B, 66, pages: 1-17, 3, 2004 (article)

Abstract
The retrieval of wind vectors from satellite scatterometer observations is a non-linear inverse problem.A common approach to solving inverse problems is to adopt a Bayesian framework and to infer the posterior distribution of the parameters of interest given the observations by using a likelihood model relating the observations to the parameters, and a prior distribution over the parameters.We show how Gaussian process priors can be used efficiently with a variety of likelihood models, using local forward (observation) models and direct inverse models for the scatterometer.We present an enhanced Markov chain Monte Carlo method to sample from the resulting multimodal posterior distribution.We go on to show how the computational complexity of the inference can be controlled by using a sparse, sequential Bayes algorithm for estimation with Gaussian processes.This helps to overcome the most serious barrier to the use of probabilistic, Gaussian process methods in remote sensing inverse problems, which is the prohibitively large size of the data sets.We contrast the sampling results with the approximations that are found by using the sparse, sequential Bayes algorithm.

ei

PDF [BibTex]

PDF [BibTex]


no image
Feature Selection for Support Vector Machines Using Genetic Algorithms

Fröhlich, H., Chapelle, O., Schölkopf, B.

International Journal on Artificial Intelligence Tools (Special Issue on Selected Papers from the 15th IEEE International Conference on Tools with Artificial Intelligence 2003), 13(4):791-800, 2004 (article)

ei

Web [BibTex]

Web [BibTex]


no image
Confidence Sets for Ratios: A Purely Geometric Approach To Fieller’s Theorem

von Luxburg, U., Franz, V.

(133), Max Planck Institute for Biological Cybernetics, 2004 (techreport)

Abstract
We present a simple, geometric method to construct Fieller's exact confidence sets for ratios of jointly normally distributed random variables. Contrary to previous geometric approaches in the literature, our method is valid in the general case where both sample mean and covariance are unknown. Moreover, not only the construction but also its proof are purely geometric and elementary, thus giving intuition into the nature of the confidence sets.

ei

PDF [BibTex]

PDF [BibTex]


no image
Transductive Inference with Graphs

Zhou, D., Schölkopf, B.

Max Planck Institute for Biological Cybernetics, 2004, See the improved version Regularization on Discrete Spaces. (techreport)

Abstract
We propose a general regularization framework for transductive inference. The given data are thought of as a graph, where the edges encode the pairwise relationships among data. We develop discrete analysis and geometry on graphs, and then naturally adapt the classical regularization in the continuous case to the graph situation. A new and effective algorithm is derived from this general framework, as well as an approach we developed before.

ei

[BibTex]

[BibTex]


no image
Phenotypic Characterization of Human Chondrocyte Cell Line C-20/A4: A Comparison between Monolayer and Alginate Suspension Culture

Finger, F., Schorle, C., Söder, S., Zien, A., Goldring, M., Aigner, T.

Cells Tissues Organs, 178(2):65-77, 2004 (article)

Abstract
DNA microarray analysis was used to investigate the molecular phenotype of one of the first human chondrocyte cell lines, C-20/A4, derived from juvenile costal chondrocytes by immortalization with origin-defective simian virus 40 large T antigen. Clontech Human Cancer Arrays 1.2 and quantitative PCR were used to examine gene expression profiles of C-20/A4 cells cultured in the presence of serum in monolayer and alginate beads. In monolayer cultures, genes involved in cell proliferation were strongly upregulated compared to those expressed by human adult articular chondrocytes in primary culture. Of the cell cycle-regulated genes, only two, the CDK regulatory subunit and histone H4, were downregulated after culture in alginate beads, consistent with the ability of these cells to proliferate in suspension culture. In contrast, the expression of several genes that are involved in pericellular matrix formation, including MMP-14, COL6A1, fibronectin, biglycan and decorin, was upregulated when the C-20/A4 cells were transferred to suspension culture in alginate. Also, nexin-1, vimentin, and IGFBP-3, which are known to be expressed by primary chondrocytes, were differentially expressed in our study. Consistent with the proliferative phenotype of this cell line, few genes involved in matrix synthesis and turnover were highly expressed in the presence of serum. These results indicate that immortalized chondrocyte cell lines, rather than substituting for primary chondrocytes, may serve as models for extending findings on chondrocyte function not achievable by the use of primary chondrocytes.

ei

[BibTex]

[BibTex]


no image
Kernel Methods and their Potential Use in Signal Processing

Perez-Cruz, F., Bousquet, O.

IEEE Signal Processing Magazine, (Special issue on Signal Processing for Mining), 2004 (article) Accepted

ei

PostScript [BibTex]

PostScript [BibTex]