Header logo is


2008


no image
Natural Actor-Critic

Peters, J., Schaal, S.

Neurocomputing, 71(7-9):1180-1190, March 2008 (article)

Abstract
In this paper, we suggest a novel reinforcement learning architecture, the Natural Actor-Critic. The actor updates are achieved using stochastic policy gradients em- ploying Amari’s natural gradient approach, while the critic obtains both the natural policy gradient and additional parameters of a value function simultaneously by lin- ear regression. We show that actor improvements with natural policy gradients are particularly appealing as these are independent of coordinate frame of the chosen policy representation, and can be estimated more efficiently than regular policy gra- dients. The critic makes use of a special basis function parameterization motivated by the policy-gradient compatible function approximation. We show that several well-known reinforcement learning methods such as the original Actor-Critic and Bradtke’s Linear Quadratic Q-Learning are in fact Natural Actor-Critic algorithms. Empirical evaluations illustrate the effectiveness of our techniques in comparison to previous methods, and also demonstrate their applicability for learning control on an anthropomorphic robot arm.

ei

PDF PDF DOI [BibTex]

2008


PDF PDF DOI [BibTex]


no image
Inferring Spike Trains From Local Field Potentials

Rasch, M., Gretton, A., Murayama, Y., Maass, W., Logothetis, N.

Journal of Neurophysiology, 99(3):1461-1476, March 2008 (article)

Abstract
We investigated whether it is possible to infer spike trains solely on the basis of the underlying local field potentials (LFPs). Using support vector machines and linear regression models, we found that in the primary visual cortex (V1) of monkeys, spikes can indeed be inferred from LFPs, at least with moderate success. Although there is a considerable degree of variation across electrodes, the low-frequency structure in spike trains (in the 100-ms range) can be inferred with reasonable accuracy, whereas exact spike positions are not reliably predicted. Two kinds of features of the LFP are exploited for prediction: the frequency power of bands in the high gamma-range (40–90 Hz) and information contained in lowfrequency oscillations ( 10 Hz), where both phase and power modulations are informative. Information analysis revealed that both features code (mainly) independent aspects of the spike-to-LFP relationship, with the low-frequency LFP phase coding for temporally clustered spiking activity. Although both features and prediction quality are similar during seminatural movie stimuli and spontaneous activity, prediction performance during spontaneous activity degrades much more slowly with increasing electrode distance. The general trend of data obtained with anesthetized animals is qualitatively mirrored in that of a more limited data set recorded in V1 of non-anesthetized monkeys. In contrast to the cortical field potentials, thalamic LFPs (e.g., LFPs derived from recordings in the dorsal lateral geniculate nucleus) hold no useful information for predicting spiking activity.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
ISD: A Software Package for Bayesian NMR Structure Calculation

Rieping, W., Nilges, M., Habeck, M.

Bioinformatics, 24(8):1104-1105, February 2008 (article)

Abstract
SUMMARY: The conventional approach to calculating biomolecular structures from nuclear magnetic resonance (NMR) data is often viewed as subjective due to its dependence on rules of thumb for deriving geometric constraints and suitable values for theory parameters from noisy experimental data. As a result, it can be difficult to judge the precision of an NMR structure in an objective manner. The Inferential Structure Determination (ISD) framework, which has been introduced recently, addresses this problem by using Bayesian inference to derive a probability distribution that represents both the unknown structure and its uncertainty. It also determines additional unknowns, such as theory parameters, that normally need be chosen empirically. Here we give an overview of the ISD software package, which implements this methodology. AVAILABILITY: The program is available at http://www.bioc.cam.ac.uk/isd

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Probabilistic Structure Calculation

Nilges, M., Habeck, M., Rieping, W.

Comptes Rendus Chimie, 11(4-5):356-369, February 2008 (article)

Abstract
Molecular structures are usually calculated from experimental data with some method of energy minimisation or non-linear optimisation. Key aims of a structure calculation are to estimate the coordinate uncertainty, and to provide a meaningful measure of the quality of the fit to the data. We discuss approaches to optimally combine prior information and experimental data and the connection to probability theory. We analyse the appropriate statistics for NOEs and NOE-derived distances, and the related question of restraint potentials. Finally, we will discuss approaches to determine the appropriate weight on the experimental evidence and to obtain in this way an estimate of the data quality from the structure calculation. Whereas objective estimates of coordinates and their uncertainties can only be obtained by a full Bayesian treatment of the problem, standard structure calculation methods continue to play an important role. To obtain the full benefit of these methods, they should be founded on a rigorous Baye sian analysis.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Fast Projection-based Methods for the Least Squares Nonnegative Matrix Approximation Problem

Kim, D., Sra, S., Dhillon, I.

Statistical Analysis and Data Mining, 1(1):38-51, February 2008 (article)

Abstract
Nonnegative matrix approximation (NNMA) is a popular matrix decomposition technique that has proven to be useful across a diverse variety of fields with applications ranging from document analysis and image processing to bioinformatics and signal processing. Over the years, several algorithms for NNMA have been proposed, e.g. Lee and Seung‘s multiplicative updates, alternating least squares (ALS), and gradient descent-based procedures. However, most of these procedures suffer from either slow convergence, numerical instability, or at worst, serious theoretical drawbacks. In this paper, we develop a new and improved algorithmic framework for the least-squares NNMA problem, which is not only theoretically well-founded, but also overcomes many deficiencies of other methods. Our framework readily admits powerful optimization techniques and as concrete realizations we present implementations based on the Newton, BFGS and conjugate gradient methods. Our algorithms provide numerical resu lts supe rior to both Lee and Seung‘s method as well as to the alternating least squares heuristic, which was reported to work well in some situations but has no theoretical guarantees[1]. Our approach extends naturally to include regularization and box-constraints without sacrificing convergence guarantees. We present experimental results on both synthetic and real-world datasets that demonstrate the superiority of our methods, both in terms of better approximations as well as computational efficiency.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
A Unifying Probabilistic Framework for Analyzing Residual Dipolar Couplings

Habeck, M., Nilges, M., Rieping, W.

Journal of Biomolecular NMR, 40(2):135-144, February 2008 (article)

Abstract
Residual dipolar couplings provide complementary information to the nuclear Overhauser effect measurements that are traditionally used in biomolecular structure determination by NMR. In a de novo structure determination, however, lack of knowledge about the degree and orientation of molecular alignment complicates the analysis of dipolar coupling data. We present a probabilistic framework for analyzing residual dipolar couplings and demonstrate that it is possible to estimate the atomic coordinates, the complete molecular alignment tensor, and the error of the couplings simultaneously. As a by-product, we also obtain estimates of the uncertainty in the coordinates and the alignment tensor. We show that our approach encompasses existing methods for determining the alignment tensor as special cases, including least squares estimation, histogram fitting, and elimination of an explicit alignment tensor in the restraint energy.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Contour-propagation Algorithms for Semi-automated Reconstruction of Neural Processes

Macke, J., Maack, N., Gupta, R., Denk, W., Schölkopf, B., Borst, A.

Journal of Neuroscience Methods, 167(2):349-357, January 2008 (article)

Abstract
A new technique, ”Serial Block Face Scanning Electron Microscopy” (SBFSEM), allows for automatic sectioning and imaging of biological tissue with a scanning electron microscope. Image stacks generated with this technology have a resolution sufficient to distinguish different cellular compartments, including synaptic structures, which should make it possible to obtain detailed anatomical knowledge of complete neuronal circuits. Such an image stack contains several thousands of images and is recorded with a minimal voxel size of 10-20nm in the x and y- and 30nm in z-direction. Consequently, a tissue block of 1mm3 (the approximate volume of the Calliphora vicina brain) will produce several hundred terabytes of data. Therefore, highly automated 3D reconstruction algorithms are needed. As a first step in this direction we have developed semiautomated segmentation algorithms for a precise contour tracing of cell membranes. These algorithms were embedded into an easy-to-operate user interface, which allows direct 3D observation of the extracted objects during the segmentation of image stacks. Compared to purely manual tracing, processing time is greatly accelerated.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A Quantum-Statistical-Mechanical Extension of Gaussian Mixture Model

Tanaka, K., Tsuda, K.

Journal of Physics: Conference Series, 95(012023):1-9, January 2008 (article)

Abstract
We propose an extension of Gaussian mixture models in the statistical-mechanical point of view. The conventional Gaussian mixture models are formulated to divide all points in given data to some kinds of classes. We introduce some quantum states constructed by superposing conventional classes in linear combinations. Our extension can provide a new algorithm in classifications of data by means of linear response formulas in the statistical mechanics.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Learning to control in operational space

Peters, J., Schaal, S.

International Journal of Robotics Research, 27, pages: 197-212, 2008, clmc (article)

Abstract
One of the most general frameworks for phrasing control problems for complex, redundant robots is operational space control. However, while this framework is of essential importance for robotics and well-understood from an analytical point of view, it can be prohibitively hard to achieve accurate control in face of modeling errors, which are inevitable in com- plex robots, e.g., humanoid robots. In this paper, we suggest a learning approach for opertional space control as a direct inverse model learning problem. A first important insight for this paper is that a physically cor- rect solution to the inverse problem with redundant degrees-of-freedom does exist when learning of the inverse map is performed in a suitable piecewise linear way. The second crucial component for our work is based on the insight that many operational space controllers can be understood in terms of a constrained optimal control problem. The cost function as- sociated with this optimal control problem allows us to formulate a learn- ing algorithm that automatically synthesizes a globally consistent desired resolution of redundancy while learning the operational space controller. From the machine learning point of view, this learning problem corre- sponds to a reinforcement learning problem that maximizes an immediate reward. We employ an expectation-maximization policy search algorithm in order to solve this problem. Evaluations on a three degrees of freedom robot arm are used to illustrate the suggested approach. The applica- tion to a physically realistic simulator of the anthropomorphic SARCOS Master arm demonstrates feasibility for complex high degree-of-freedom robots. We also show that the proposed method works in the setting of learning resolved motion rate control on real, physical Mitsubishi PA-10 medical robotics arm.

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Pattern generators with sensory feedback for the control of quadruped locomotion

Righetti, L., Ijspeert, A.

In 2008 IEEE International Conference on Robotics and Automation, pages: 819-824, IEEE, Pasadena, USA, 2008 (inproceedings)

Abstract
Central pattern generators (CPGs) are becoming a popular model for the control of locomotion of legged robots. Biological CPGs are neural networks responsible for the generation of rhythmic movements, especially locomotion. In robotics, a systematic way of designing such CPGs as artificial neural networks or systems of coupled oscillators with sensory feedback inclusion is still missing. In this contribution, we present a way of designing CPGs with coupled oscillators in which we can independently control the ascending and descending phases of the oscillations (i.e. the swing and stance phases of the limbs). Using insights from dynamical system theory, we construct generic networks of oscillators able to generate several gaits under simple parameter changes. Then we introduce a systematic way of adding sensory feedback from touch sensors in the CPG such that the controller is strongly coupled with the mechanical system it controls. Finally we control three different simulated robots (iCub, Aibo and Ghostdog) using the same controller to show the effectiveness of the approach. Our simulations prove the importance of independent control of swing and stance duration. The strong mutual coupling between the CPG and the robot allows for more robust locomotion, even under non precise parameters and non-flat environment.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Experimental Study of Limit Cycle and Chaotic Controllers for the Locomotion of Centipede Robots

Matthey, L., Righetti, L., Ijspeert, A.

In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 1860-1865, IEEE, Nice, France, sep 2008 (inproceedings)

Abstract
In this contribution we present a CPG (central pattern generator) controller based on coupled Rossler systems. It is able to generate both limit cycle and chaotic behaviors through bifurcation. We develop an experimental test bench to measure quantitatively the performance of different controllers on unknown terrains of increasing difficulty. First, we show that for flat terrains, open loop limit cycle systems are the most efficient (in terms of speed of locomotion) but that they are quite sensitive to environmental changes. Second, we show that sensory feedback is a crucial addition for unknown terrains. Third, we show that the chaotic controller with sensory feedback outperforms the other controllers in very difficult terrains and actually promotes the emergence of short synchronized movement patterns. All that is done using an unified framework for the generation of limit cycle and chaotic behaviors, where a simple parameter change can switch from one behavior to the other through bifurcation. Such flexibility would allow the automatic adaptation of the robot locomotion strategy to the terrain uncertainty.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A Dynamical System for Online Learning of Periodic Movements of Unknown Waveform and Frequency

Gams, A., Righetti, L., Ijspeert, A., Lenarčič, J.

In 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pages: 85-90, IEEE, Scottsdale, USA, October 2008 (inproceedings)

Abstract
The paper presents a two-layered system for learning and encoding a periodic signal onto a limit cycle without any knowledge on the waveform and the frequency of the signal, and without any signal processing. The first dynamical system is responsible for extracting the main frequency of the input signal. It is based on adaptive frequency phase oscillators in a feedback structure, enabling us to extract separate frequency components without any signal processing, as all of the processing is embedded in the dynamics of the system itself. The second dynamical system is responsible for learning of the waveform. It has a built-in learning algorithm based on locally weighted regression, which adjusts the weights according to the amplitude of the input signal. By combining the output of the first system with the input of the second system we can rapidly teach new trajectories to robots. The systems works online for any periodic signal and can be applied in parallel to multiple dimensions. Furthermore, it can adapt to changes in frequency and shape, e.g. to non-stationary signals, and is computationally inexpensive. Results using simulated and hand-generated input signals, along with applying the algorithm to a HOAP-2 humanoid robot are presented.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Passive compliant quadruped robot using central pattern generators for locomotion control

Rutishauser, S., Sproewitz, A., Righetti, L., Ijspeert, A.

In 2008 IEEE International Conference on Biomedical Robotics and Biomechatronics, pages: 710-715, IEEE, Scottsdale, USA, October 2008 (inproceedings)

Abstract
We present a new quadruped robot, ldquoCheetahrdquo, featuring three-segment pantographic legs with passive compliant knee joints. Each leg has two degrees of freedom - knee and hip joint can be actuated using proximal mounted RC servo motors, force transmission to the knee is achieved by means of a bowden cable mechanism. Simple electronics to command the actuators from a desktop computer have been designed in order to test the robot. A Central Pattern Generator (CPG) network has been implemented to generate different gaits. A parameter space search was performed and tested on the robot to optimize forward velocity.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Frequency analysis with coupled nonlinear oscillators

Buchli, J., Righetti, L., Ijspeert, A.

Physica D: Nonlinear Phenomena, 237(13):1705-1718, August 2008 (article)

Abstract
We present a method to obtain the frequency spectrum of a signal with a nonlinear dynamical system. The dynamical system is composed of a pool of adaptive frequency oscillators with negative mean-field coupling. For the frequency analysis, the synchronization and adaptation properties of the component oscillators are exploited. The frequency spectrum of the signal is reflected in the statistics of the intrinsic frequencies of the oscillators. The frequency analysis is completely embedded in the dynamics of the system. Thus, no pre-processing or additional parameters, such as time windows, are needed. Representative results of the numerical integration of the system are presented. It is shown, that the oscillators tune to the correct frequencies for both discrete and continuous spectra. Due to its dynamic nature the system is also capable to track non-stationary spectra. Further, we show that the system can be modeled in a probabilistic manner by means of a nonlinear Fokker–Planck equation. The probabilistic treatment is in good agreement with the numerical results, and provides a useful tool to understand the underlying mechanisms leading to convergence.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A modular bio-inspired architecture for movement generation for the infant-like robot iCub

Degallier, S., Righetti, L., Natale, L., Nori, F., Metta, G., Ijspeert, A.

In 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pages: 795-800, IEEE, Scottsdale, USA, October 2008 (inproceedings)

Abstract
Movement generation in humans appears to be processed through a three-layered architecture, where each layer corresponds to a different level of abstraction in the representation of the movement. In this article, we will present an architecture reflecting this organization and based on a modular approach to human movement generation. We will show that our architecture is well suited for the online generation and modulation of motor behaviors, but also for switching between motor behaviors. This will be illustrated respectively through an interactive drumming task and through switching between reaching and crawling.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]