Header logo is


2008


no image
Approximations for Binary Gaussian Process Classification

Nickisch, H., Rasmussen, C.

Journal of Machine Learning Research, 9, pages: 2035-2078, October 2008 (article)

Abstract
We provide a comprehensive overview of many recent algorithms for approximate inference in Gaussian process models for probabilistic binary classification. The relationships between several approaches are elucidated theoretically, and the properties of the different algorithms are corroborated by experimental results. We examine both 1) the quality of the predictive distributions and 2) the suitability of the different marginal likelihood approximations for model selection (selecting hyperparameters) and compare to a gold standard based on MCMC. Interestingly, some methods produce good predictive distributions although their marginal likelihood approximations are poor. Strong conclusions are drawn about the methods: The Expectation Propagation algorithm is almost always the method of choice unless the computational budget is very tight. We also extend existing methods in various ways, and provide unifying code implementing all approaches.

ei

PDF PDF [BibTex]

2008


PDF PDF [BibTex]


no image
Accurate NMR Structures Through Minimization of an Extended Hybrid Energy

Nilges, M., Bernard, A., Bardiaux, B., Malliavin, T., Habeck, M., Rieping, W.

Structure, 16(9):1305-1312, September 2008 (article)

Abstract
The use of generous distance bounds has been the hallmark of NMR structure determination. However, bounds necessitate the estimation of data quality before the calculation, reduce the information content, introduce human bias, and allow for major errors in the structures. Here, we propose a new rapid structure calculation scheme based on Bayesian analysis. The minimization of an extended energy function, including a new type of distance restraint and a term depending on the data quality, results in an estimation of the data quality in addition to coordinates. This allows for the determination of the optimal weight on the experimental information. The resulting structures are of better quality and closer to the X–ray crystal structure of the same molecule. With the new calculation approach, the analysis of discrepancies from the target distances becomes meaningful. The strategy may be useful in other applications—for example, in homology modeling.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Similarity, Kernels, and the Triangle Inequality

Jäkel, F., Schölkopf, B., Wichmann, F.

Journal of Mathematical Psychology, 52(5):297-303, September 2008 (article)

Abstract
Similarity is used as an explanatory construct throughout psychology and multidimensional scaling (MDS) is the most popular way to assess similarity. In MDS, similarity is intimately connected to the idea of a geometric representation of stimuli in a perceptual space. Whilst connecting similarity and closeness of stimuli in a geometric representation may be intuitively plausible, Tversky and Gati [Tversky, A., Gati, I. (1982). Similarity, separability, and the triangle inequality. Psychological Review, 89(2), 123–154] have reported data which are inconsistent with the usual geometric representations that are based on segmental additivity. We show that similarity measures based on Shepard’s universal law of generalization [Shepard, R. N. (1987). Toward a universal law of generalization for psychologica science. Science, 237(4820), 1317–1323] lead to an inner product representation in a reproducing kernel Hilbert space. In such a space stimuli are represented by their similarity to all other stimuli. This representation, based on Shepard’s law, has a natural metric that does not have additive segments whilst still retaining the intuitive notion of connecting similarity and distance between stimuli. Furthermore, this representation has the psychologically appealing property that the distance between stimuli is bounded.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Comparison of Pattern Recognition Methods in Classifying High-resolution BOLD Signals Obtained at High Magnetic Field in Monkeys

Ku, S., Gretton, A., Macke, J., Logothetis, N.

Magnetic Resonance Imaging, 26(7):1007-1014, September 2008 (article)

Abstract
Pattern recognition methods have shown that functional magnetic resonance imaging (fMRI) data can reveal significant information about brain activity. For example, in the debate of how object categories are represented in the brain, multivariate analysis has been used to provide evidence of a distributed encoding scheme [Science 293:5539 (2001) 2425–2430]. Many follow-up studies have employed different methods to analyze human fMRI data with varying degrees of success [Nature reviews 7:7 (2006) 523–534]. In this study, we compare four popular pattern recognition methods: correlation analysis, support-vector machines (SVM), linear discriminant analysis (LDA) and Gaussian naïve Bayes (GNB), using data collected at high field (7 Tesla) with higher resolution than usual fMRI studies. We investigate prediction performance on single trials and for averages across varying numbers of stimulus presentations. The performance of the various algorithms depends on the nature of the brain activity being categorized: for several tasks, many of the methods work well, whereas for others, no method performs above chance level. An important factor in overall classification performance is careful preprocessing of the data, including dimensionality reduction, voxel selection and outlier elimination.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A Single-shot Measurement of the Energy of Product States in a Translation Invariant Spin Chain Can Replace Any Quantum Computation

Janzing, D., Wocjan, P., Zhang, S.

New Journal of Physics, 10(093004):1-18, September 2008 (article)

Abstract
In measurement-based quantum computation, quantum algorithms are implemented via sequences of measurements. We describe a translationally invariant finite-range interaction on a one-dimensional qudit chain and prove that a single-shot measurement of the energy of an appropriate computational basis state with respect to this Hamiltonian provides the output of any quantum circuit. The required measurement accuracy scales inverse polynomially with the size of the simulated quantum circuit. This shows that the implementation of energy measurements on generic qudit chains is as hard as the realization of quantum computation. Here, a ‘measurement‘ is any procedure that samples from the spectral measurement induced by the observable and the state under consideration. As opposed to measurement-based quantum computation, the post-measurement state is irrelevant.

ei

PDF DOI [BibTex]


no image
Voluntary Brain Regulation and Communication with ECoG-Signals

Hinterberger, T., Widmann, G., Lal, T., Hill, J., Tangermann, M., Rosenstiel, W., Schölkopf, B., Elger, C., Birbaumer, N.

Epilepsy and Behavior, 13(2):300-306, August 2008 (article)

Abstract
Brain–computer interfaces (BCIs) can be used for communication in writing without muscular activity or for learning to control seizures by voluntary regulation of brain signals such as the electroencephalogram (EEG). Three of five patients with epilepsy were able to spell their names with electrocorticogram (ECoG) signals derived from motor-related areas within only one or two training sessions. Imagery of finger or tongue movements was classified with support-vector classification of autoregressive coefficients derived from the ECoG signals. After training of the classifier, binary classification responses were used to select letters from a computer-generated menu. Offline analysis showed increased theta activity in the unsuccessful patients, whereas the successful patients exhibited dominant sensorimotor rhythms that they could control. The high spatial resolution and increased signal-to-noise ratio in ECoG signals, combined with short training periods, may offer an alternative for communication in complete paralysis, locked-in syndrome, and motor restoration.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Predicting phenotypic effects of gene perturbations in C. elegans using an integrated network model

Borgwardt, K.

BioEssays, 30(8):707–710, August 2008 (article)

Abstract
Predicting the phenotype of an organism from its genotype is a central question in genetics. Most importantly, we would like to find out if the perturbation of a single gene may be the cause of a disease. However, our current ability to predict the phenotypic effects of perturbations of individual genes is limited. Network models of genes are one tool for tackling this problem. In a recent study, (Lee et al.) it has been shown that network models covering the majority of genes of an organism can be used for accurately predicting phenotypic effects of gene perturbations in multicellular organisms.

ei

Web DOI [BibTex]


no image
Multi-class Common Spatial Pattern and Information Theoretic Feature Extraction

Grosse-Wentrup, M., Buss, M.

IEEE Transactions on Biomedical Engineering, 55(8):1991-2000, August 2008 (article)

Abstract
We address two shortcomings of the common spatial patterns (CSP) algorithm for spatial filtering in the context of brain--computer interfaces (BCIs) based on electroencephalography/magnetoencephalography (EEG/MEG): First, the question of optimality of CSP in terms of the minimal achievable classification error remains unsolved. Second, CSP has been initially proposed for two-class paradigms. Extensions to multiclass paradigms have been suggested, but are based on heuristics. We address these shortcomings in the framework of information theoretic feature extraction (ITFE). We show that for two-class paradigms, CSP maximizes an approximation of mutual information of extracted EEG/MEG components and class labels. This establishes a link between CSP and the minimal classification error. For multiclass paradigms, we point out that CSP by joint approximate diagonalization (JAD) is equivalent to independent component analysis (ICA), and provide a method to choose those independent components (ICs) that approximately maximize mutual information of ICs and class labels. This eliminates the need for heuristics in multiclass CSP, and allows incorporating prior class probabilities. The proposed method is applied to the dataset IIIa of the third BCI competition, and is shown to increase the mean classification accuracy by 23.4% in comparison to multiclass CSP.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
At-TAX: A Whole Genome Tiling Array Resource for Developmental Expression Analysis and Transcript Identification in Arabidopsis thaliana

Laubinger, S., Zeller, G., Henz, S., Sachsenberg, T., Widmer, C., Naouar, N., Vuylsteke, M., Schölkopf, B., Rätsch, G., Weigel, D.

Genome Biology, 9(7: R112):1-16, July 2008 (article)

Abstract
Gene expression maps for model organisms, including Arabidopsis thaliana, have typically been created using gene-centric expression arrays. Here, we describe a comprehensive expression atlas, Arabidopsis thaliana Tiling Array Express (At-TAX), which is based on whole-genome tiling arrays. We demonstrate that tiling arrays are accurate tools for gene expression analysis and identified more than 1,000 unannotated transcribed regions. Visualizations of gene expression estimates, transcribed regions, and tiling probe measurements are accessible online at the At-TAX homepage.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Graphical Analysis of NMR Structural Quality and Interactive Contact Map of NOE Assignments in ARIA

Bardiaux, B., Bernard, A., Rieping, W., Habeck, M., Malliavin, T., Nilges, M.

BMC Structural Biology, 8(30):1-5, June 2008 (article)

Abstract
BACKGROUND: The Ambiguous Restraints for Iterative Assignment (ARIA) approach is widely used for NMR structure determination. It is based on simultaneously calculating structures and assigning NOE through an iterative protocol. The final solution consists of a set of conformers and a list of most probable assignments for the input NOE peak list. RESULTS: ARIA was extended with a series of graphical tools to facilitate a detailed analysis of the intermediate and final results of the ARIA protocol. These additional features provide (i) an interactive contact map, serving as a tool for the analysis of assignments, and (ii) graphical representations of structure quality scores and restraint statistics. The interactive contact map between residues can be clicked to obtain information about the restraints and their contributions. Profiles of quality scores are plotted along the protein sequence, and contact maps provide information of the agreement with the data on a residue pair level. CONCLUSIONS: The g raphical tools and outputs described here significantly extend the validation and analysis possibilities of NOE assignments given by ARIA as well as the analysis of the quality of the final structure ensemble. These tools are included in the latest version of ARIA, which is available at http://aria.pasteur.fr. The Web site also contains an installation guide, a user manual and example calculations.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Operational Space Control: A Theoretical and Empirical Comparison

Nakanishi, J., Cory, R., Mistry, M., Peters, J., Schaal, S.

International Journal of Robotics Research, 27(6):737-757, June 2008 (article)

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Kernel Methods in Machine Learning

Hofmann, T., Schölkopf, B., Smola, A.

Annals of Statistics, 36(3):1171-1220, June 2008 (article)

Abstract
We review machine learning methods employing positive definite kernels. These methods formulate learning and estimation problems in a reproducing kernel Hilbert space (RKHS) of functions defined on the data domain, expanded in terms of a kernel. Working in linear spaces of function has the benefit of facilitating the construction and analysis of learning algorithms while at the same time allowing large classes of functions. The latter include nonlinear functions as well as functions defined on nonvectorial data.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Cross-validation Optimization for Large Scale Structured Classification Kernel Methods

Seeger, M.

Journal of Machine Learning Research, 9, pages: 1147-1178, June 2008 (article)

Abstract
We propose a highly efficient framework for penalized likelihood kernel methods applied to multi-class models with a large, structured set of classes. As opposed to many previous approaches which try to decompose the fitting problem into many smaller ones, we focus on a Newton optimization of the complete model, making use of model structure and linear conjugate gradients in order to approximate Newton search directions. Crucially, our learning method is based entirely on matrix-vector multiplication primitives with the kernel matrices and their derivatives, allowing straightforward specialization to new kernels, and focusing code optimization efforts to these primitives only. Kernel parameters are learned automatically, by maximizing the cross-validation log likelihood in a gradient-based way, and predictive probabilities are estimated. We demonstrate our approach on large scale text classification tasks with hierarchical structure on thousands of classes, achieving state-of-the-art results in an order of magnitude less time than previous work.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Integrated Information in Discrete Dynamical Systems: Motivation and Theoretical Framework

Balduzzi, D., Tononi, G.

PLoS Computational Biology, 4(6):1-18, June 2008 (article)

Abstract
This paper introduces a time- and state-dependent measure of integrated information, φ, which captures the repertoire of causal states available to a system as a whole. Specifically, φ quantifies how much information is generated (uncertainty is reduced) when a system enters a particular state through causal interactions among its elements, above and beyond the information generated independently by its parts. Such mathematical characterization is motivated by the observation that integrated information captures two key phenomenological properties of consciousness: (i) there is a large repertoire of conscious experiences so that, when one particular experience occurs, it generates a large amount of information by ruling out all the others; and (ii) this information is integrated, in that each experience appears as a whole that cannot be decomposed into independent parts. This paper extends previous work on stationary systems and applies integrated information to discrete networks as a function of their dynamics and causal architecture. An analysis of basic examples indicates the following: (i) φ varies depending on the state entered by a network, being higher if active and inactive elements are balanced and lower if the network is inactive or hyperactive. (ii) φ varies for systems with identical or similar surface dynamics depending on the underlying causal architecture, being low for systems that merely copy or replay activity states. (iii) φ varies as a function of network architecture. High φ values can be obtained by architectures that conjoin functional specialization with functional integration. Strictly modular and homogeneous systems cannot generate high φ because the former lack integration, whereas the latter lack information. Feedforward and lattice architectures are capable of generating high φ but are inefficient. (iv) In Hopfield networks, φ is low for attractor states and neutral states, but increases if the networks are optimized to achieve tension between local and global interactions. These basic examples appear to match well against neurobiological evidence concerning the neural substrates of consciousness. More generally, φ appears to be a useful metric to characterize the capacity of any physical system to integrate information.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Reinforcement Learning of Motor Skills with Policy Gradients

Peters, J., Schaal, S.

Neural Networks, 21(4):682-697, May 2008 (article)

ei

PDF Web DOI [BibTex]


no image
Information Consistency of Nonparametric Gaussian Process Methods

Seeger, MW., Kakade, SM., Foster, DP.

IEEE Transactions on Information Theory, 54(5):2376-2382, May 2008 (article)

Abstract
Abstract—Bayesian nonparametric models are widely and successfully used for statistical prediction. While posterior consistency properties are well studied in quite general settings, results have been proved using abstract concepts such as metric entropy, and they come with subtle conditions which are hard to validate and not intuitive when applied to concrete models. Furthermore, convergence rates are difficult to obtain. By focussing on the concept of information consistency for Bayesian Gaussian process (GP)models, consistency results and convergence rates are obtained via a regret bound on cumulative log loss. These results depend strongly on the covariance function of the prior process, thereby giving a novel interpretation to penalization with reproducing kernel Hilbert space norms and to commonly used covariance function classes and their parameters. The proof of the main result employs elementary convexity arguments only. A theorem of Widom is used in order to obtain precise convergence rates for several covariance functions widely used in practice.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Relating the Thermodynamic Arrow of Time to the Causal Arrow

Allahverdyan, A., Janzing, D.

Journal of Statistical Mechanics, 2008(P04001):1-21, April 2008 (article)

Abstract
Consider a Hamiltonian system that consists of a slow subsystem S and a fast subsystem F. The autonomous dynamics of S is driven by an effective Hamiltonian, but its thermodynamics is unexpected. We show that a well-defined thermodynamic arrow of time (second law) emerges for S whenever there is a well-defined causal arrow from S to F and the back-action is negligible. This is because the back-action of F on S is described by a non-globally Hamiltonian Born–Oppenheimer term that violates the Liouville theorem, and makes the second law inapplicable to S. If S and F are mixing, under the causal arrow condition they are described by microcanonical distributions P(S) and P(S|F). Their structure supports a causal inference principle proposed recently in machine learning.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Generalization and Similarity in Exemplar Models of Categorization: Insights from Machine Learning

Jäkel, F., Schölkopf, B., Wichmann, F.

Psychonomic Bulletin and Review, 15(2):256-271, April 2008 (article)

Abstract
Exemplar theories of categorization depend on similarity for explaining subjects’ ability to generalize to new stimuli. A major criticism of exemplar theories concerns their lack of abstraction mechanisms and thus, seemingly, generalization ability. Here, we use insights from machine learning to demonstrate that exemplar models can actually generalize very well. Kernel methods in machine learning are akin to exemplar models and very successful in real-world applications. Their generalization performance depends crucially on the chosen similaritymeasure. While similarity plays an important role in describing generalization behavior it is not the only factor that controls generalization performance. In machine learning, kernel methods are often combined with regularization techniques to ensure good generalization. These same techniques are easily incorporated in exemplar models. We show that the Generalized Context Model (Nosofsky, 1986) and ALCOVE (Kruschke, 1992) are closely related to a statistical model called kernel logistic regression. We argue that generalization is central to the enterprise of understanding categorization behavior and suggest how insights from machine learning can offer some guidance. Keywords: kernel, similarity, regularization, generalization, categorization.

ei

PDF Web DOI [BibTex]


no image
Data-driven efficient score tests for deconvolution hypotheses

Langovoy, M.

Inverse Problems, 24(2):1-17, April 2008 (article)

Abstract
We consider testing statistical hypotheses about densities of signals in deconvolution models. A new approach to this problem is proposed. We constructed score tests for the deconvolution density testing with the known noise density and efficient score tests for the case of unknown density. The tests are incorporated with model selection rules to choose reasonable model dimensions automatically by the data. Consistency of the tests is proved.

ei

PDF DOI [BibTex]


no image
Manifold-valued Thin-plate Splines with Applications in Computer Graphics

Steinke, F., Hein, M., Peters, J., Schölkopf, B.

Computer Graphics Forum, 27(2):437-448, April 2008 (article)

Abstract
We present a generalization of thin-plate splines for interpolation and approximation of manifold-valued data, and demonstrate its usefulness in computer graphics with several applications from different fields. The cornerstone of our theoretical framework is an energy functional for mappings between two Riemannian manifolds which is independent of parametrization and respects the geometry of both manifolds. If the manifolds are Euclidean, the energy functional reduces to the classical thin-plate spline energy. We show how the resulting optimization problems can be solved efficiently in many cases. Our example applications range from orientation interpolation and motion planning in animation over geometric modelling tasks to color interpolation.

ei

PDF AVI Web DOI [BibTex]


no image
The Metric Nearness Problem

Brickell, J., Dhillon, I., Sra, S., Tropp, J.

SIAM Journal on Matrix Analysis and Applications, 30(1):375-396, April 2008 (article)

Abstract
Metric nearness refers to the problem of optimally restoring metric properties to distance measurements that happen to be nonmetric due to measurement errors or otherwise. Metric data can be important in various settings, for example, in clustering, classification, metric-based indexing, query processing, and graph theoretic approximation algorithms. This paper formulates and solves the metric nearness problem: Given a set of pairwise dissimilarities, find a “nearest” set of distances that satisfy the properties of a metric—principally the triangle inequality. For solving this problem, the paper develops efficient triangle fixing algorithms that are based on an iterative projection method. An intriguing aspect of the metric nearness problem is that a special case turns out to be equivalent to the all pairs shortest paths problem. The paper exploits this equivalence and develops a new algorithm for the latter problem using a primal-dual method. Applications to graph clustering are provided as an illustratio n. We include experiments that demonstrate the computational superiority of triangle fixing over general purpose convex programming software. Finally, we conclude by suggesting various useful extensions and generalizations to metric nearness.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Bayesian Inference and Optimal Design for the Sparse Linear Model

Seeger, MW.

Journal of Machine Learning Research, 9, pages: 759-813, April 2008 (article)

Abstract
The linear model with sparsity-favouring prior on the coefficients has important applications in many different domains. In machine learning, most methods to date search for maximum a posteriori sparse solutions and neglect to represent posterior uncertainties. In this paper, we address problems of Bayesian optimal design (or experiment planning), for which accurate estimates of uncertainty are essential. To this end, we employ expectation propagation approximate inference for the linear model with Laplace prior, giving new insight into numerical stability properties and proposing a robust algorithm. We also show how to estimate model hyperparameters by empirical Bayesian maximisation of the marginal likelihood, and propose ideas in order to scale up the method to very large underdetermined problems. We demonstrate the versatility of our framework on the application of gene regulatory network identification from micro-array expression data, where both the Laplace prior and the active experimental design approach are shown to result in significant improvements. We also address the problem of sparse coding of natural images, and show how our framework can be used for compressive sensing tasks.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Consistency of Spectral Clustering

von Luxburg, U., Belkin, M., Bousquet, O.

Annals of Statistics, 36(2):555-586, April 2008 (article)

Abstract
Consistency is a key property of statistical algorithms when the data is drawn from some underlying probability distribution. Surprisingly, despite decades of work, little is known about consistency of most clustering algorithms. In this paper we investigate consistency of the popular family of spectral clustering algorithms, which clusters the data with the help of eigenvectors of graph Laplacian matrices. We develop new methods to establish that for increasing sample size, those eigenvectors converge to the eigenvectors of certain limit operators. As a result we can prove that one of the two major classes of spectral clustering (normalized clustering) converges under very general conditions, while the other (unnormalized clustering) is only consistent under strong additional assumptions, which are not always satisfied in real data. We conclude that our analysis provides strong evidence for the superiority of normalized spectral clustering.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Plant Classification from Bat-Like Echolocation Signals

Yovel, Y., Franz, MO., Stilz, P., Schnitzler, H-U.

PLoS Computational Biology, 4(3, e1000032):1-13, March 2008 (article)

Abstract
Classification of plants according to their echoes is an elementary component of bat behavior that plays an important role in spatial orientation and food acquisition. Vegetation echoes are, however, highly complex stochastic signals: from an acoustical point of view, a plant can be thought of as a three-dimensional array of leaves reflecting the emitted bat call. The received echo is therefore a superposition of many reflections. In this work we suggest that the classification of these echoes might not be such a troublesome routine for bats as formerly thought. We present a rather simple approach to classifying signals from a large database of plant echoes that were created by ensonifying plants with a frequency-modulated bat-like ultrasonic pulse. Our algorithm uses the spectrogram of a single echo from which it only uses features that are undoubtedly accessible to bats. We used a standard machine learning algorithm (SVM) to automatically extract suitable linear combinations of time and frequency cues from the spectrograms such that classification with high accuracy is enabled. This demonstrates that ultrasonic echoes are highly informative about the species membership of an ensonified plant, and that this information can be extracted with rather simple, biologically plausible analysis. Thus, our findings provide a new explanatory basis for the poorly understood observed abilities of bats in classifying vegetation and other complex objects.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Causal Reasoning by Evaluating the Complexity of Conditional Densities with Kernel Methods

Sun, X., Janzing, D., Schölkopf, B.

Neurocomputing, 71(7-9):1248-1256, March 2008 (article)

Abstract
We propose a method to quantify the complexity of conditional probability measures by a Hilbert space seminorm of the logarithm of its density. The concept of reproducing kernel Hilbert spaces (RKHSs) is a flexible tool to define such a seminorm by choosing an appropriate kernel. We present several examples with artificial data sets where our kernel-based complexity measure is consistent with our intuitive understanding of complexity of densities. The intention behind the complexity measure is to provide a new approach to inferring causal directions. The idea is that the factorization of the joint probability measure P(effect, cause) into P(effect|cause)P(cause) leads typically to "simpler" and "smoother" terms than the factorization into P(cause|effect)P(effect). Since the conventional constraint-based approach of causal discovery is not able to determine the causal direction between only two variables, our inference principle can in particular be useful when combined with other existing methods. We provide several simple examples with real-world data where the true causal directions indeed lead to simpler (conditional) densities.

ei

Web DOI [BibTex]


no image
Natural Actor-Critic

Peters, J., Schaal, S.

Neurocomputing, 71(7-9):1180-1190, March 2008 (article)

Abstract
In this paper, we suggest a novel reinforcement learning architecture, the Natural Actor-Critic. The actor updates are achieved using stochastic policy gradients em- ploying Amari’s natural gradient approach, while the critic obtains both the natural policy gradient and additional parameters of a value function simultaneously by lin- ear regression. We show that actor improvements with natural policy gradients are particularly appealing as these are independent of coordinate frame of the chosen policy representation, and can be estimated more efficiently than regular policy gra- dients. The critic makes use of a special basis function parameterization motivated by the policy-gradient compatible function approximation. We show that several well-known reinforcement learning methods such as the original Actor-Critic and Bradtke’s Linear Quadratic Q-Learning are in fact Natural Actor-Critic algorithms. Empirical evaluations illustrate the effectiveness of our techniques in comparison to previous methods, and also demonstrate their applicability for learning control on an anthropomorphic robot arm.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Poisson Geometry of Parabolic Bundles on Elliptic Curves

Balduzzi, D.

International Journal of Mathematics , 19(3):339-367, March 2008 (article)

Abstract
The moduli space of G-bundles on an elliptic curve with additional flag structure admits a Poisson structure. The bivector can be defined using double loop group, loop group and sheaf cohomology constructions. We investigate the links between these methods and for the case SL2 perform explicit computations, describing the bracket and its leaves in detail.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Inferring Spike Trains From Local Field Potentials

Rasch, M., Gretton, A., Murayama, Y., Maass, W., Logothetis, N.

Journal of Neurophysiology, 99(3):1461-1476, March 2008 (article)

Abstract
We investigated whether it is possible to infer spike trains solely on the basis of the underlying local field potentials (LFPs). Using support vector machines and linear regression models, we found that in the primary visual cortex (V1) of monkeys, spikes can indeed be inferred from LFPs, at least with moderate success. Although there is a considerable degree of variation across electrodes, the low-frequency structure in spike trains (in the 100-ms range) can be inferred with reasonable accuracy, whereas exact spike positions are not reliably predicted. Two kinds of features of the LFP are exploited for prediction: the frequency power of bands in the high gamma-range (40–90 Hz) and information contained in lowfrequency oscillations ( 10 Hz), where both phase and power modulations are informative. Information analysis revealed that both features code (mainly) independent aspects of the spike-to-LFP relationship, with the low-frequency LFP phase coding for temporally clustered spiking activity. Although both features and prediction quality are similar during seminatural movie stimuli and spontaneous activity, prediction performance during spontaneous activity degrades much more slowly with increasing electrode distance. The general trend of data obtained with anesthetized animals is qualitatively mirrored in that of a more limited data set recorded in V1 of non-anesthetized monkeys. In contrast to the cortical field potentials, thalamic LFPs (e.g., LFPs derived from recordings in the dorsal lateral geniculate nucleus) hold no useful information for predicting spiking activity.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
ISD: A Software Package for Bayesian NMR Structure Calculation

Rieping, W., Nilges, M., Habeck, M.

Bioinformatics, 24(8):1104-1105, February 2008 (article)

Abstract
SUMMARY: The conventional approach to calculating biomolecular structures from nuclear magnetic resonance (NMR) data is often viewed as subjective due to its dependence on rules of thumb for deriving geometric constraints and suitable values for theory parameters from noisy experimental data. As a result, it can be difficult to judge the precision of an NMR structure in an objective manner. The Inferential Structure Determination (ISD) framework, which has been introduced recently, addresses this problem by using Bayesian inference to derive a probability distribution that represents both the unknown structure and its uncertainty. It also determines additional unknowns, such as theory parameters, that normally need be chosen empirically. Here we give an overview of the ISD software package, which implements this methodology. AVAILABILITY: The program is available at http://www.bioc.cam.ac.uk/isd

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Probabilistic Structure Calculation

Nilges, M., Habeck, M., Rieping, W.

Comptes Rendus Chimie, 11(4-5):356-369, February 2008 (article)

Abstract
Molecular structures are usually calculated from experimental data with some method of energy minimisation or non-linear optimisation. Key aims of a structure calculation are to estimate the coordinate uncertainty, and to provide a meaningful measure of the quality of the fit to the data. We discuss approaches to optimally combine prior information and experimental data and the connection to probability theory. We analyse the appropriate statistics for NOEs and NOE-derived distances, and the related question of restraint potentials. Finally, we will discuss approaches to determine the appropriate weight on the experimental evidence and to obtain in this way an estimate of the data quality from the structure calculation. Whereas objective estimates of coordinates and their uncertainties can only be obtained by a full Bayesian treatment of the problem, standard structure calculation methods continue to play an important role. To obtain the full benefit of these methods, they should be founded on a rigorous Baye sian analysis.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Optimization Techniques for Semi-Supervised Support Vector Machines

Chapelle, O., Sindhwani, V., Keerthi, S.

Journal of Machine Learning Research, 9, pages: 203-233, February 2008 (article)

Abstract
Due to its wide applicability, the problem of semi-supervised classification is attracting increasing attention in machine learning. Semi-Supervised Support Vector Machines (S3VMs) are based on applying the margin maximization principle to both labeled and unlabeled examples. Unlike SVMs, their formulation leads to a non-convex optimization problem. A suite of algorithms have recently been proposed for solving S3VMs. This paper reviews key ideas in this literature. The performance and behavior of various S3VMs algorithms is studied together, under a common experimental setting.

ei

PDF [BibTex]

PDF [BibTex]


no image
Fast Projection-based Methods for the Least Squares Nonnegative Matrix Approximation Problem

Kim, D., Sra, S., Dhillon, I.

Statistical Analysis and Data Mining, 1(1):38-51, February 2008 (article)

Abstract
Nonnegative matrix approximation (NNMA) is a popular matrix decomposition technique that has proven to be useful across a diverse variety of fields with applications ranging from document analysis and image processing to bioinformatics and signal processing. Over the years, several algorithms for NNMA have been proposed, e.g. Lee and Seung‘s multiplicative updates, alternating least squares (ALS), and gradient descent-based procedures. However, most of these procedures suffer from either slow convergence, numerical instability, or at worst, serious theoretical drawbacks. In this paper, we develop a new and improved algorithmic framework for the least-squares NNMA problem, which is not only theoretically well-founded, but also overcomes many deficiencies of other methods. Our framework readily admits powerful optimization techniques and as concrete realizations we present implementations based on the Newton, BFGS and conjugate gradient methods. Our algorithms provide numerical resu lts supe rior to both Lee and Seung‘s method as well as to the alternating least squares heuristic, which was reported to work well in some situations but has no theoretical guarantees[1]. Our approach extends naturally to include regularization and box-constraints without sacrificing convergence guarantees. We present experimental results on both synthetic and real-world datasets that demonstrate the superiority of our methods, both in terms of better approximations as well as computational efficiency.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
A Unifying Probabilistic Framework for Analyzing Residual Dipolar Couplings

Habeck, M., Nilges, M., Rieping, W.

Journal of Biomolecular NMR, 40(2):135-144, February 2008 (article)

Abstract
Residual dipolar couplings provide complementary information to the nuclear Overhauser effect measurements that are traditionally used in biomolecular structure determination by NMR. In a de novo structure determination, however, lack of knowledge about the degree and orientation of molecular alignment complicates the analysis of dipolar coupling data. We present a probabilistic framework for analyzing residual dipolar couplings and demonstrate that it is possible to estimate the atomic coordinates, the complete molecular alignment tensor, and the error of the couplings simultaneously. As a by-product, we also obtain estimates of the uncertainty in the coordinates and the alignment tensor. We show that our approach encompasses existing methods for determining the alignment tensor as special cases, including least squares estimation, histogram fitting, and elimination of an explicit alignment tensor in the restraint energy.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Contour-propagation Algorithms for Semi-automated Reconstruction of Neural Processes

Macke, J., Maack, N., Gupta, R., Denk, W., Schölkopf, B., Borst, A.

Journal of Neuroscience Methods, 167(2):349-357, January 2008 (article)

Abstract
A new technique, ”Serial Block Face Scanning Electron Microscopy” (SBFSEM), allows for automatic sectioning and imaging of biological tissue with a scanning electron microscope. Image stacks generated with this technology have a resolution sufficient to distinguish different cellular compartments, including synaptic structures, which should make it possible to obtain detailed anatomical knowledge of complete neuronal circuits. Such an image stack contains several thousands of images and is recorded with a minimal voxel size of 10-20nm in the x and y- and 30nm in z-direction. Consequently, a tissue block of 1mm3 (the approximate volume of the Calliphora vicina brain) will produce several hundred terabytes of data. Therefore, highly automated 3D reconstruction algorithms are needed. As a first step in this direction we have developed semiautomated segmentation algorithms for a precise contour tracing of cell membranes. These algorithms were embedded into an easy-to-operate user interface, which allows direct 3D observation of the extracted objects during the segmentation of image stacks. Compared to purely manual tracing, processing time is greatly accelerated.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A Quantum-Statistical-Mechanical Extension of Gaussian Mixture Model

Tanaka, K., Tsuda, K.

Journal of Physics: Conference Series, 95(012023):1-9, January 2008 (article)

Abstract
We propose an extension of Gaussian mixture models in the statistical-mechanical point of view. The conventional Gaussian mixture models are formulated to divide all points in given data to some kinds of classes. We introduce some quantum states constructed by superposing conventional classes in linear combinations. Our extension can provide a new algorithm in classifications of data by means of linear response formulas in the statistical mechanics.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Minimal Nonlinear Distortion Principle for Nonlinear Independent Component Analysis

Zhang, K., Chan, L.

Journal of Machine Learning Research, 9, pages: 2455-2487, 2008 (article)

Abstract
It is well known that solutions to the nonlinear independent component analysis (ICA) problem are highly non-unique. In this paper we propose the "minimal nonlinear distortion" (MND) principle for tackling the ill-posedness of nonlinear ICA problems. MND prefers the nonlinear ICA solution with the estimated mixing procedure as close as possible to linear, among all possible solutions. It also helps to avoid local optima in the solutions. To achieve MND, we exploit a regularization term to minimize the mean square error between the nonlinear mixing mapping and the best-fitting linear one. The effect of MND on the inherent trivial and non-trivial indeterminacies in nonlinear ICA solutions is investigated. Moreover, we show that local MND is closely related to the smoothness regularizer penalizing large curvature, which provides another useful regularization condition for nonlinear ICA. Experiments on synthetic data show the usefulness of the MND principle for separating various nonlinear mixtures. Finally, as an application, we use nonlinear ICA with MND to separate daily returns of a set of stocks in Hong Kong, and the linear causal relations among them are successfully discovered. The resulting causal relations give some interesting insights into the stock market. Such a result can not be achieved by linear ICA. Simulation studies also verify that when doing causality discovery, sometimes one should not ignore the nonlinear distortion in the data generation procedure, even if it is weak.

ei

Web [BibTex]

Web [BibTex]


no image
Transport processes in networks with scattering ramification nodes

Radl, A.

Journal of Applied Functional Analysis, 3, pages: 461-483, 2008 (article)

ei

Web [BibTex]

Web [BibTex]


no image
Learning to control in operational space

Peters, J., Schaal, S.

International Journal of Robotics Research, 27, pages: 197-212, 2008, clmc (article)

Abstract
One of the most general frameworks for phrasing control problems for complex, redundant robots is operational space control. However, while this framework is of essential importance for robotics and well-understood from an analytical point of view, it can be prohibitively hard to achieve accurate control in face of modeling errors, which are inevitable in com- plex robots, e.g., humanoid robots. In this paper, we suggest a learning approach for opertional space control as a direct inverse model learning problem. A first important insight for this paper is that a physically cor- rect solution to the inverse problem with redundant degrees-of-freedom does exist when learning of the inverse map is performed in a suitable piecewise linear way. The second crucial component for our work is based on the insight that many operational space controllers can be understood in terms of a constrained optimal control problem. The cost function as- sociated with this optimal control problem allows us to formulate a learn- ing algorithm that automatically synthesizes a globally consistent desired resolution of redundancy while learning the operational space controller. From the machine learning point of view, this learning problem corre- sponds to a reinforcement learning problem that maximizes an immediate reward. We employ an expectation-maximization policy search algorithm in order to solve this problem. Evaluations on a three degrees of freedom robot arm are used to illustrate the suggested approach. The applica- tion to a physically realistic simulator of the anthropomorphic SARCOS Master arm demonstrates feasibility for complex high degree-of-freedom robots. We also show that the proposed method works in the setting of learning resolved motion rate control on real, physical Mitsubishi PA-10 medical robotics arm.

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Frequency analysis with coupled nonlinear oscillators

Buchli, J., Righetti, L., Ijspeert, A.

Physica D: Nonlinear Phenomena, 237(13):1705-1718, August 2008 (article)

Abstract
We present a method to obtain the frequency spectrum of a signal with a nonlinear dynamical system. The dynamical system is composed of a pool of adaptive frequency oscillators with negative mean-field coupling. For the frequency analysis, the synchronization and adaptation properties of the component oscillators are exploited. The frequency spectrum of the signal is reflected in the statistics of the intrinsic frequencies of the oscillators. The frequency analysis is completely embedded in the dynamics of the system. Thus, no pre-processing or additional parameters, such as time windows, are needed. Representative results of the numerical integration of the system are presented. It is shown, that the oscillators tune to the correct frequencies for both discrete and continuous spectra. Due to its dynamic nature the system is also capable to track non-stationary spectra. Further, we show that the system can be modeled in a probabilistic manner by means of a nonlinear Fokker–Planck equation. The probabilistic treatment is in good agreement with the numerical results, and provides a useful tool to understand the underlying mechanisms leading to convergence.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2007


no image
HPLC analysis and pharmacokinetic study of quercitrin and isoquercitrin in rat plasma after administration of Hypericum japonicum thunb. extract.

Li, J., Wang, W., Zhang, L., Chen, H., Bi, S.

Biomedical Chromatography, 22(4):374-378, December 2007 (article)

Abstract
A simple HPLC method was developed for determination of quercitrin and isoquercitrin in rat plasma. Reversed-phase HPLC was employed for the quantitative analysis using kaempferol-3-O--d-glucopyranoside-7-O--l-rhamnoside as an internal standard. Following extraction from the plasma samples with ethyl acetate-isopropanol (95:5, v/v), these two compounds were successfully separated on a Luna C18 column (250 × 4.6 mm, 5 µm) with isocratic elution of acetonitrile-0.5% aqueous acetic acid (17:83, v/v) as the mobile phase. The flow-rate was set at 1 mL/min and the eluent was detected at 350 nm for both quercitrin and isoquercitrin. The method was linear over the studied ranges of 50-6000 and 50-5000 ng/mL for quercitrin and isoquercitrin, respectively. The intra- and inter-day precisions of the analysis were better than 13.1 and 13.2%, respectively. The lower limits of quantitation for quercitrin and isoquercitrin in plasma were both of 50 ng/mL. The mean extraction recoveries were 73 and 61% for quercitrin and i soquercitrin, respectively. The validated method was successfully applied to pharmacokinetic studies of the two analytes in rat plasma after the oral administration of Hypericum japonicum thunb. ethanol extract.

ei

Web DOI [BibTex]

2007



no image
Graph sharpening plus graph integration: a synergy that improves protein functional classification

Shin, HH., Lisewski, AM., Lichtarge, O.

Bioinformatics, 23(23):3217-3224, December 2007 (article)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
A Tutorial on Spectral Clustering

von Luxburg, U.

Statistics and Computing, 17(4):395-416, December 2007 (article)

Abstract
In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. On the first glance spectral clustering appears slightly mysterious, and it is not obvious to see why it works at all and what it really does. The goal of this tutorial is to give some intuition on those questions. We describe different graph Laplacians and their basic properties, present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
A Tutorial on Kernel Methods for Categorization

Jäkel, F., Schölkopf, B., Wichmann, F.

Journal of Mathematical Psychology, 51(6):343-358, December 2007 (article)

Abstract
The abilities to learn and to categorize are fundamental for cognitive systems, be it animals or machines, and therefore have attracted attention from engineers and psychologists alike. Modern machine learning methods and psychological models of categorization are remarkably similar, partly because these two fields share a common history in artificial neural networks and reinforcement learning. However, machine learning is now an independent and mature field that has moved beyond psychologically or neurally inspired algorithms towards providing foundations for a theory of learning that is rooted in statistics and functional analysis. Much of this research is potentially interesting for psychological theories of learning and categorization but also hardly accessible for psychologists. Here, we provide a tutorial introduction to a popular class of machine learning tools, called kernel methods. These methods are closely related to perceptrons, radial-basis-function neural networks and exemplar theories of catego rization. Recent theoretical advances in machine learning are closely tied to the idea that the similarity of patterns can be encapsulated in a positive definite kernel. Such a positive definite kernel can define a reproducing kernel Hilbert space which allows one to use powerful tools from functional analysis for the analysis of learning algorithms. We give basic explanations of some key concepts—the so-called kernel trick, the representer theorem and regularization—which may open up the possibility that insights from machine learning can feed back into psychology.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A semigroup approach to queueing systems

Haji, A., Radl, A.

Semigroup Forum, 75(3):610-624, December 2007 (article)

Abstract
We prove asymptotic stability of the solutions of equations describing a simple queueing system consisting of two machines separated by a finite storage buffer. Following an approach by G. Gupur, we apply the theory of C0-semigroups and spectral theory of positive operators.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Point-spread functions for backscattered imaging in the scanning electron microscope

Hennig, P., Denk, W.

Journal of Applied Physics , 102(12):1-8, December 2007 (article)

Abstract
One knows the imaging system's properties are central to the correct interpretation of any image. In a scanning electron microscope regions of different composition generally interact in a highly nonlinear way during signal generation. Using Monte Carlo simulations we found that in resin-embedded, heavy metal-stained biological specimens staining is sufficiently dilute to allow an approximately linear treatment. We then mapped point-spread functions for backscattered-electron contrast, for primary energies of 3 and 7 keV and for different detector specifications. The point-spread functions are surprisingly well confined (both laterally and in depth) compared even to the distribution of only those scattered electrons that leave the sample again.

ei pn

Web DOI [BibTex]

Web DOI [BibTex]


no image
Accurate Splice site Prediction Using Support Vector Machines

Sonnenburg, S., Schweikert, G., Philips, P., Behr, J., Rätsch, G.

BMC Bioinformatics, 8(Supplement 10):1-16, December 2007 (article)

Abstract
Background: For splice site recognition, one has to solve two classification problems: discriminating true from decoy splice sites for both acceptor and donor sites. Gene finding systems typically rely on Markov Chains to solve these tasks. Results: In this work we consider Support Vector Machines for splice site recognition. We employ the so-called weighted degree kernel which turns out well suited for this task, as we will illustrate in several experiments where we compare its prediction accuracy with that of recently proposed systems. We apply our method to the genome-wide recognition of splice sites in Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, Danio rerio, and Homo sapiens. Our performance estimates indicate that splice sites can be recognized very accurately in these genomes and that our method outperforms many other methods including Markov Chains, GeneSplicer and SpliceMachine. We provide genome-wide predictions of splice sites and a stand-alone prediction tool ready to be used for incorporation in a gene finder. Availability: Data, splits, additional information on the model selection, the whole genome predictions, as well as the stand-alone prediction tool are available for download at http:// www.fml.mpg.de/raetsch/projects/splice.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
A unifying framework for robot control with redundant DOFs

Peters, J., Mistry, M., Udwadia, F., Nakanishi, J., Schaal, S.

Autonomous Robots, 24(1):1-12, October 2007 (article)

Abstract
Recently, Udwadia (Proc. R. Soc. Lond. A 2003:1783–1800, 2003) suggested to derive tracking controllers for mechanical systems with redundant degrees-of-freedom (DOFs) using a generalization of Gauss’ principle of least constraint. This method allows reformulating control problems as a special class of optimal controllers. In this paper, we take this line of reasoning one step further and demonstrate that several well-known and also novel nonlinear robot control laws can be derived from this generic methodology. We show experimental verifications on a Sarcos Master Arm robot for some of the derived controllers. The suggested approach offers a promising unification and simplification of nonlinear control law design for robots obeying rigid body dynamics equations, both with or without external constraints, with over-actuation or underactuation, as well as open-chain and closed-chain kinematics.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
The Need for Open Source Software in Machine Learning

Sonnenburg, S., Braun, M., Ong, C., Bengio, S., Bottou, L., Holmes, G., LeCun, Y., Müller, K., Pereira, F., Rasmussen, C., Rätsch, G., Schölkopf, B., Smola, A., Vincent, P., Weston, J., Williamson, R.

Journal of Machine Learning Research, 8, pages: 2443-2466, October 2007 (article)

Abstract
Open source tools have recently reached a level of maturity which makes them suitable for building large-scale real-world systems. At the same time, the field of machine learning has developed a large body of powerful learning algorithms for diverse applications. However, the true potential of these methods is not realized, since existing implementations are not openly shared, resulting in software with low usability, and weak interoperability. We argue that this situation can be significantly improved by increasing incentives for researchers to publish their software under an open source model. Additionally, we outline the problems authors are faced with when trying to publish algorithmic implementations of machine learning methods. We believe that a resource of peer reviewed software accompanied by short articles would be highly valuable to both the machine learning and the general scientific community.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
On the Representer Theorem and Equivalent Degrees of Freedom of SVR

Dinuzzo, F., Neve, M., De Nicolao, G., Gianazza, U.

Journal of Machine Learning Research, 8, pages: 2467-2495, October 2007 (article)

Abstract
Support Vector Regression (SVR) for discrete data is considered. An alternative formulation of the representer theorem is derived. This result is based on the newly introduced notion of pseudoresidual and the use of subdifferential calculus. The representer theorem is exploited to analyze the sensitivity properties of ε-insensitive SVR and introduce the notion of approximate degrees of freedom. The degrees of freedom are shown to play a key role in the evaluation of the optimism, that is the difference between the expected in-sample error and the expected empirical risk. In this way, it is possible to define a Cp-like statistic that can be used for tuning the parameters of SVR. The proposed tuning procedure is tested on a simulated benchmark problem and on a real world problem (Boston Housing data set).

ei

Web [BibTex]

Web [BibTex]