Header logo is


2014


no image
Information-Theoretic Bounded Rationality and ϵ-Optimality

Braun, DA, Ortega, PA

Entropy, 16(8):4662-4676, August 2014 (article)

Abstract
Bounded rationality concerns the study of decision makers with limited information processing resources. Previously, the free energy difference functional has been suggested to model bounded rational decision making, as it provides a natural trade-off between an energy or utility function that is to be optimized and information processing costs that are measured by entropic search costs. The main question of this article is how the information-theoretic free energy model relates to simple \(\epsilon\)-optimality models of bounded rational decision making, where the decision maker is satisfied with any action in an \(\epsilon\)-neighborhood of the optimal utility. We find that the stochastic policies that optimize the free energy trade-off comply with the notion of \(\epsilon\)-optimality. Moreover, this optimality criterion even holds when the environment is adversarial. We conclude that the study of bounded rationality based on \(\epsilon\)-optimality criteria that abstract away from the particulars of the information processing constraints is compatible with the information-theoretic free energy model of bounded rationality.

ei

DOI [BibTex]

2014


DOI [BibTex]


no image
Unidirectional sub-100-ps magnetic vortex core reversal

Noske, M., Gangwar, A., Stoll, H., Kammerer, M., Sproll, M., Dieterle, G., Weigand, M., Fähnle, M., Woltersdorf, G., Back, C. H., Schütz, G.

{Physical Review B}, 90(10), American Physical Society, Woodbury, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Domain wall transformations and hopping in La0.7Sr0.3MnO3 nanostructures imaged with high resolution x-ray magnetic microscopy

Finizio, S., Foerster, M., Krüger, B., Vaz, C. A. F., Miyawaki, T., Mawass, M. A., Pena, L., Méchin, L., Hühn, S., Moshnyaga, V., Büttner, F., Bisig, A., Le Guyader, L., El Moussaoui, S., Valencia, S., Kronast, F., Eisebitt, S., Kläui, M.

{Journal of Physics: Condensed Matter}, 26(45), IOP Publishing, Bristol, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Tunable eigenmodes of coupled magnetic vortex oscillators

Hänze, M., Adolff, C. F., Weigand, M., Meier, G.

{Applied Physics Letters}, 104(18), American Institute of Physics, Melville, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Domain wall pinning in ultra-narrow electromigrated break junctions

Reeve, R. M., Loescher, A., Mawass, M.-A., Hoffmann-Vogel, R., Kläui, M.

{Journal of Physics: Condensed Matter}, 26(47), IOP Publishing, Bristol, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Highly effective hydrogen isotope separation in nanoporous metal-organic framworks with open metal sites: Direct measurement and theoretical analysis

Oh, H., Savchenko, I., Mavrandonakis, A., Heine, T., Hirscher, M.

{ACS Nano}, 8(1):761-770, American Chemical Society, Washington, DC, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Stabilization of the dissipation-free current transport in inhomogeneous MgB2 thin films

Treiber, S., Stahl, C., Schütz, G., Soltan, S., Albrecht, J.

{Physica C}, 506, pages: 1-5, North-Holland, Amsterdam, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Thermal conductivity of mechanically joined semiconducting/metal nanomembrane superlattices

Grimm, D., Wilson, R. B., Teshome, B., Gorantla, S., Rümmeli, M. H., Bublat, T., Zallo, E., Li, G., Cahill, D. G., Schmidt, O. G.

{Nano Letters}, 14(5):2387-2393, American Chemical Society, Washington, DC, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Role of the sample boundaries in the problem of dissipative magnetization dynamics

Fähnle, M., Slavin, A., Hertel, R.

{Journal of Magnetism and Magnetic Materials}, 360, pages: 126-130, Elsevier, Amsterdam, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Using magnetic coupling in bilayers of superconducting YBCO and soft-magnetic CoFeB to map supercurrent flow

Stahl, C., Walker, P., Treiber, S., Christiani, G., Schütz, G., Albrecht, J.

{EPL}, 106(2), 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Element-specific depth profile of magnetism and stoichiometry at the La0.67Sr0.33MnO3/BiFeO3 interface

Bertinshaw, J., Brück, S., Lott, D., Fritzsche, H., Khaydukov, Y., Soltwedel, O., Keller, T., Goering, E., Audehm, P., Cortie, D. L., Hutchison, W. D., Ramasse, Q. M., Arredondo, M., Maran, R., Nagarajan, V., Klose, F., Ulrich, C.

{Physical Review B}, 90(4), American Physical Society, Woodbury, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic reflectometry of heterostructures (Topical Review)

Macke, S., Goering, E.

{Journal of Physics: Condensed Matter}, 26(36), IOP Publishing, Bristol, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Optimizing the fabrication of diffractive optical elements using a focused ion beam system

Vijayakumar, A., Eigenthaler, U., Keskinbora, K., Sridharan, G. M., Pramitha, V., Hirscher, M., Spatz, J. P., Bhattacharya, S.

{Proceedings of SPIE}, 9130, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Direct observation of internal vortex domain-wall dynamics

Stein, F.-U., Bocklage, L., Weigand, M., Meier, G.

{Physical Review B}, 89(2), American Physical Society, Woodbury, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Synchronous precessional motion of multiple domain walls in a ferromagnetic nanowire by perpendicular field pulses

Kim, J., Mawass, M., Bisig, A., Krüger, B., Reeve, R. M., Schulz, T., Büttner, F., Yoon, J., You, C., Weigand, M., Stoll, H., Schütz, G., Swagten, H. J. M., Koopmans, B., Eisebitt, S., Kläui, M.

{Nature Communications}, 5, Nature Publishing Group, London, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Occam’s Razor in sensorimotor learning

Genewein, T, Braun, D

Proceedings of the Royal Society of London B, 281(1783):1-7, May 2014 (article)

Abstract
A large number of recent studies suggest that the sensorimotor system uses probabilistic models to predict its environment and makes inferences about unobserved variables in line with Bayesian statistics. One of the important features of Bayesian statistics is Occam's Razor—an inbuilt preference for simpler models when comparing competing models that explain some observed data equally well. Here, we test directly for Occam's Razor in sensorimotor control. We designed a sensorimotor task in which participants had to draw lines through clouds of noisy samples of an unobserved curve generated by one of two possible probabilistic models—a simple model with a large length scale, leading to smooth curves, and a complex model with a short length scale, leading to more wiggly curves. In training trials, participants were informed about the model that generated the stimulus so that they could learn the statistics of each model. In probe trials, participants were then exposed to ambiguous stimuli. In probe trials where the ambiguous stimulus could be fitted equally well by both models, we found that participants showed a clear preference for the simpler model. Moreover, we found that participants’ choice behaviour was quantitatively consistent with Bayesian Occam's Razor. We also show that participants’ drawn trajectories were similar to samples from the Bayesian predictive distribution over trajectories and significantly different from two non-probabilistic heuristics. In two control experiments, we show that the preference of the simpler model cannot be simply explained by a difference in physical effort or by a preference for curve smoothness. Our results suggest that Occam's Razor is a general behavioural principle already present during sensorimotor processing.

ei

DOI [BibTex]

DOI [BibTex]


no image
Generalized Thompson sampling for sequential decision-making and causal inference

Ortega, PA, Braun, DA

Complex Adaptive Systems Modeling, 2(2):1-23, March 2014 (article)

Abstract
Purpose Sampling an action according to the probability that the action is believed to be the optimal one is sometimes called Thompson sampling. Methods Although mostly applied to bandit problems, Thompson sampling can also be used to solve sequential adaptive control problems, when the optimal policy is known for each possible environment. The predictive distribution over actions can then be constructed by a Bayesian superposition of the policies weighted by their posterior probability of being optimal. Results Here we discuss two important features of this approach. First, we show in how far such generalized Thompson sampling can be regarded as an optimal strategy under limited information processing capabilities that constrain the sampling complexity of the decision-making process. Second, we show how such Thompson sampling can be extended to solve causal inference problems when interacting with an environment in a sequential fashion. Conclusion In summary, our results suggest that Thompson sampling might not merely be a useful heuristic, but a principled method to address problems of adaptive sequential decision-making and causal inference.

ei

DOI [BibTex]

DOI [BibTex]


no image
Magnetic field distribution and characteristic fields of the vortex lattice for a clean superconducting niobium sample in an external field applied along a three-fold axis

Yaouanc, A., Maisuradze, A., Nakai, N., Machida, K., Khasanov, R., Amato, A., Biswas, P. K., Baines, C., Herlach, D., Henes, Rolf, Keppler, P., Keller, H.

{Physical Review B}, 89(18), American Physical Society, Woodbury, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Experimental assessment of Physical upper limit for hydrogen storage capacity at 20 K in densified MIL-101 monoliths

Oh, H., Lupu, D., Blanita, G., Hirscher, M.

{RSC Advances}, 4(6):2648-2651, Royal Society of Chemistry, Cambridge, UK, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Strengthening zones in the Co matrix of WC-Co cemented carbides

Konyashin, I., Lachmann, F., Ries, B., Mazilkin, A. A., Straumal, B. B., Kübel, C., Llanes, L., Baretzky, B.

{Scripta Materialia}, 83, pages: 17-20, Pergamon, Tarrytown, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Multilayer Fresnel zone plates for high energy radiation resolve 21 nm features at 1.2 keV

Keskinbora, K., Robisch, A., Mayer, M., Sanli, U., Grévent, C., Wolter, C., Weigand, M., Szeghalmi, A., Knez, M., Salditt, T., Schütz, G.

{Optics Express}, 22(15):18440-18453, Optical Society of America, Washington, DC, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Interplay of linker functionalization and hydrogen adsorption in the metal-organic framework MIL-101

Szilágyi, P. A., Weinrauch, I., Oh, H., Hirscher, M., Juan-Alcaniz, J., Serra-Crespo, P., de Respinis, M., Trzesniewski, B. J., Kapteijn, F., Geerlings, H., Gascon, J., Dam, B., Grzech, A., van de Krol, R.

{The Journal of Physical Chemistry C}, 118(34):19572-19579, American Chemical Society, Washington DC, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Application of magneto-optical Kerr effect to first-order reversal curve measurements

Gräfe, J., Schmidt, M., Audehm, P., Schütz, G., Goering, E.

{Review of Scientific Instruments}, 85, American Institute of Physics, Woodbury, N.Y. [etc.], 2014 (article)

mms

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling. Erratum

Mayer, M., Keskinbora, K., Grévent, C., Szeghalmi, A., Knez, M., Weigand, M., Snigirev, A., Snigireva, I., Schütz, G.

{Journal of Synchrotron Radiation}, 640, pages: 640-640, Published for the International Union of Crystallography by Munksgaard, Copenhagen, Denmark, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Low-amplitude magnetic vortex core reversal by non-linear interaction between azimuthal spin waves and the vortex gyromode

Sproll, M., Noske, M., Bauer, H., Kammerer, M., Gangwar, A., Dieterle, G., Weigand, M., Stoll, H., Woltersdorf, G., Back, C. H., Schütz, G.

{Applied Physics Letters}, 104(1), American Institute of Physics, Melville, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Assessing randomness and complexity in human motion trajectories through analysis of symbolic sequences

Peng, Z, Genewein, T, Braun, DA

Frontiers in Human Neuroscience, 8(168):1-13, March 2014 (article)

Abstract
Complexity is a hallmark of intelligent behavior consisting both of regular patterns and random variation. To quantitatively assess the complexity and randomness of human motion, we designed a motor task in which we translated subjects' motion trajectories into strings of symbol sequences. In the first part of the experiment participants were asked to perform self-paced movements to create repetitive patterns, copy pre-specified letter sequences, and generate random movements. To investigate whether the degree of randomness can be manipulated, in the second part of the experiment participants were asked to perform unpredictable movements in the context of a pursuit game, where they received feedback from an online Bayesian predictor guessing their next move. We analyzed symbol sequences representing subjects' motion trajectories with five common complexity measures: predictability, compressibility, approximate entropy, Lempel-Ziv complexity, as well as effective measure complexity. We found that subjects’ self-created patterns were the most complex, followed by drawing movements of letters and self-paced random motion. We also found that participants could change the randomness of their behavior depending on context and feedback. Our results suggest that humans can adjust both complexity and regularity in different movement types and contexts and that this can be assessed with information-theoretic measures of the symbolic sequences generated from movement trajectories.

ei

DOI [BibTex]

DOI [BibTex]


no image
Curiosity-driven learning with Context Tree Weighting

Peng, Z, Braun, DA

pages: 366-367, IEEE, Piscataway, NJ, USA, 4th Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics (IEEE ICDL-EPIROB), October 2014 (conference)

Abstract
In the first simulation, the intrinsic motivation of the agent was given by measuring learning progress through reduction in informational surprise (Figure 1 A-C). This way the agent should first learn the action that is easiest to learn (a1), and then switch to other actions that still allow for learning (a2) and ignore actions that cannot be learned at all (a3). This is exactly what we found in our simple environment. Compared to the original developmental learning algorithm based on learning progress proposed by Oudeyer [2], our Context Tree Weighting approach does not require local experts to do prediction, rather it learns the conditional probability distribution over observations given action in one structure. In the second simulation, the intrinsic motivation of the agent was given by measuring compression progress through improvement in compressibility (Figure 1 D-F). The agent behaves similarly: the agent first concentrates on the action with the most predictable consequence and then switches over to the regular action where the consequence is more difficult to predict, but still learnable. Unlike the previous simulation, random actions are also interesting to some extent because the compressed symbol strings use 8-bit representations, while only 2 bits are required for our observation space. Our preliminary results suggest that Context Tree Weighting might provide a useful representation to study problems of development.

ei

DOI [BibTex]

DOI [BibTex]


no image
Monte Carlo methods for exact & efficient solution of the generalized optimality equations

Ortega, PA, Braun, DA, Tishby, N

pages: 4322-4327, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), June 2014 (conference)

Abstract
Previous work has shown that classical sequential decision making rules, including expectimax and minimax, are limit cases of a more general class of bounded rational planning problems that trade off the value and the complexity of the solution, as measured by its information divergence from a given reference. This allows modeling a range of novel planning problems having varying degrees of control due to resource constraints, risk-sensitivity, trust and model uncertainty. However, so far it has been unclear in what sense information constraints relate to the complexity of planning. In this paper, we introduce Monte Carlo methods to solve the generalized optimality equations in an efficient \& exact way when the inverse temperatures in a generalized decision tree are of the same sign. These methods highlight a fundamental relation between inverse temperatures and the number of Monte Carlo proposals. In particular, it is seen that the number of proposals is essentially independent of the size of the decision tree.

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
The local magnetic properties of [MnIII6 CrIII]3+ and [FeIII6 CrIII]3+ single-molecule magnets deposited on surfaces studied by spin-polarized photoemission and XMCD with circularly polarized synchrotron radiation

Heinzmann, U., Helmstedt, A., Dohmeier, N., Müller, N., Gryzia, A., Brechling, A., Hoeke, V., Krickemeyer, E., Glaser, T., Fonin, M., Bouvron, S., Leicht, P., Tietze, T., Goering, E., Kuepper, K.

{Journal of Physics: Conference Series}, 488(13), IOP Publishing, Bristol, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
A fluorene based covalent triazine framework with high CO2 and H2 capture and storage capacities

Hug, S., Mesch, M. B., Oh, H., Popp, N., Hirscher, M., Senker, J., Lotsch, B. V.

{Journal of Materials Chemistry A}, 2(16):5928-5936, Royal Society of Chemistry, Cambridge, UK, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ab-initio calculations and atomistic calculations on the magnetoelectric effects in metallic nanostructures

Fähnle, M., Subkow, S.

{Physica Status Solidi C}, 11(2):185-191, Wiley-VCH, Weinheim, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Role of electron-magnon scatterings in ultrafast demagnetization

Haag, M., Illg, C., Fähnle, M.

{Physical Review B}, 90(1), American Physical Society, Woodbury, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Element specific monolayer depth profiling

Macke, S., Radi, A., Hamann-Borrero, J. E., Verna, A., Bluschke, M., Brück, S., Goering, E., Sutarto, R., He, F., Cristiani, G., Wu, M., Benckiser, E., Habermeier, H., Logvenov, G., Gauquelin, N., Botton, G. A., Kajdos, A. P., Stemmer, S., Sawatzky, G. A., Haverkort, M. W., Keimer, B., Hinkov, V.

{Advanced Materials}, 26(38):6554-6559, Wiley VCH, Weinheim, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Local modification of the magnetic vortex-core velocity by gallium implantation

Langner, H. H., Vogel, A., Beyersdorff, B., Weigand, M., Frömter, R., Oepen, H. P., Meier, G.

{Journal of Applied Physcis}, (10), American Institute of Physics, New York, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Influence of magnetic fields on spin-mixing in transition metals

Haag, M., Illg, C., Fähnle, M.

{Physical Review B}, 90(13), American Physical Society, Woodbury, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]

2009


no image
Learning an Interactive Segmentation System

Nickisch, H., Kohli, P., Rother, C.

Max Planck Institute for Biological Cybernetics, December 2009 (techreport)

Abstract
Many successful applications of computer vision to image or video manipulation are interactive by nature. However, parameters of such systems are often trained neglecting the user. Traditionally, interactive systems have been treated in the same manner as their fully automatic counterparts. Their performance is evaluated by computing the accuracy of their solutions under some fixed set of user interactions. This paper proposes a new evaluation and learning method which brings the user in the loop. It is based on the use of an active robot user - a simulated model of a human user. We show how this approach can be used to evaluate and learn parameters of state-of-the-art interactive segmentation systems. We also show how simulated user models can be integrated into the popular max-margin method for parameter learning and propose an algorithm to solve the resulting optimisation problem.

ei

Web [BibTex]

2009


Web [BibTex]


no image
Efficient Subwindow Search: A Branch and Bound Framework for Object Localization

Lampert, C., Blaschko, M., Hofmann, T.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(12):2129-2142, December 2009 (article)

Abstract
Most successful object recognition systems rely on binary classification, deciding only if an object is present or not, but not providing information on the actual object location. To estimate the object‘s location, one can take a sliding window approach, but this strongly increases the computational cost because the classifier or similarity function has to be evaluated over a large set of candidate subwindows. In this paper, we propose a simple yet powerful branch and bound scheme that allows efficient maximization of a large class of quality functions over all possible subimages. It converges to a globally optimal solution typically in linear or even sublinear time, in contrast to the quadratic scaling of exhaustive or sliding window search. We show how our method is applicable to different object detection and image retrieval scenarios. The achieved speedup allows the use of classifiers for localization that formerly were considered too slow for this task, such as SVMs with a spatial pyramid kernel or nearest-neighbor classifiers based on the chi^2 distance. We demonstrate state-of-the-art localization performance of the resulting systems on the UIUC Cars data set, the PASCAL VOC 2006 data set, and in the PASCAL VOC 2007 competition.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A computational model of human table tennis for robot application

Mülling, K., Peters, J.

In AMS 2009, pages: 57-64, (Editors: Dillmann, R. , J. Beyerer, C. Stiller, M. Zöllner, T. Gindele), Springer, Berlin, Germany, Autonome Mobile Systeme, December 2009 (inproceedings)

Abstract
Table tennis is a difficult motor skill which requires all basic components of a general motor skill learning system. In order to get a step closer to such a generic approach to the automatic acquisition and refinement of table tennis, we study table tennis from a human motor control point of view. We make use of the basic models of discrete human movement phases, virtual hitting points, and the operational timing hypothesis. Using these components, we create a computational model which is aimed at reproducing human-like behavior. We verify the functionality of this model in a physically realistic simulation of a BarrettWAM.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Generation of three-dimensional random rotations in fitting and matching problems

Habeck, M.

Computational Statistics, 24(4):719-731, December 2009 (article)

Abstract
An algorithm is developed to generate random rotations in three-dimensional space that follow a probability distribution arising in fitting and matching problems. The rotation matrices are orthogonally transformed into an optimal basis and then parameterized using Euler angles. The conditional distributions of the three Euler angles have a very simple form: the two azimuthal angles can be decoupled by sampling their sum and difference from a von Mises distribution; the cosine of the polar angle is exponentially distributed and thus straighforward to generate. Simulation results are shown and demonstrate the effectiveness of the method. The algorithm is compared to other methods for generating random rotations such as a random walk Metropolis scheme and a Gibbs sampling algorithm recently introduced by Green and Mardia. Finally, the algorithm is applied to a probabilistic version of the Procrustes problem of fitting two point sets and applied in the context of protein structure superposition.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Adaptive Importance Sampling for Value Function Approximation in Off-policy Reinforcement Learning

Hachiya, H., Akiyama, T., Sugiyama, M., Peters, J.

Neural Networks, 22(10):1399-1410, December 2009 (article)

Abstract
Off-policy reinforcement learning is aimed at efficiently using data samples gathered from a policy that is different from the currently optimized policy. A common approach is to use importance sampling techniques for compensating for the bias of value function estimators caused by the difference between the data-sampling policy and the target policy. However, existing off-policy methods often do not take the variance of the value function estimators explicitly into account and therefore their performance tends to be unstable. To cope with this problem, we propose using an adaptive importance sampling technique which allows us to actively control the trade-off between bias and variance. We further provide a method for optimally determining the trade-off parameter based on a variant of cross-validation. We demonstrate the usefulness of the proposed approach through simulations.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A PAC-Bayesian Approach to Formulation of Clustering Objectives

Seldin, Y., Tishby, N.

In Proceedings of the NIPS 2009 Workshop "Clustering: Science or Art? Towards Principled Approaches", pages: 1-4, NIPS Workshop "Clustering: Science or Art? Towards Principled Approaches", December 2009 (inproceedings)

Abstract
Clustering is a widely used tool for exploratory data analysis. However, the theoretical understanding of clustering is very limited. We still do not have a well-founded answer to the seemingly simple question of “how many clusters are present in the data?”, and furthermore a formal comparison of clusterings based on different optimization objectives is far beyond our abilities. The lack of good theoretical support gives rise to multiple heuristics that confuse the practitioners and stall development of the field. We suggest that the ill-posed nature of clustering problems is caused by the fact that clustering is often taken out of its subsequent application context. We argue that one does not cluster the data just for the sake of clustering it, but rather to facilitate the solution of some higher level task. By evaluation of the clustering’s contribution to the solution of the higher level task it is possible to compare different clusterings, even those obtained by different optimization objectives. In the preceding work it was shown that such an approach can be applied to evaluation and design of co-clustering solutions. Here we suggest that this approach can be extended to other settings, where clustering is applied.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Notes on Graph Cuts with Submodular Edge Weights

Jegelka, S., Bilmes, J.

In pages: 1-6, NIPS Workshop on Discrete Optimization in Machine Learning: Submodularity, Sparsity & Polyhedra (DISCML), December 2009 (inproceedings)

Abstract
Generalizing the cost in the standard min-cut problem to a submodular cost function immediately makes the problem harder. Not only do we prove NP hardness even for nonnegative submodular costs, but also show a lower bound of (|V |1/3) on the approximation factor for the (s, t) cut version of the problem. On the positive side, we propose and compare three approximation algorithms with an overall approximation factor of O(min{|V |,p|E| log |V |}) that appear to do well in practice.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Guest editorial: special issue on structured prediction

Parker, C., Altun, Y., Tadepalli, P.

Machine Learning, 77(2-3):161-164, December 2009 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Structured prediction by joint kernel support estimation

Lampert, CH., Blaschko, MB.

Machine Learning, 77(2-3):249-269, December 2009 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Learning new basic Movements for Robotics

Kober, J., Peters, J.

In AMS 2009, pages: 105-112, (Editors: Dillmann, R. , J. Beyerer, C. Stiller, M. Zöllner, T. Gindele), Springer, Berlin, Germany, Autonome Mobile Systeme, December 2009 (inproceedings)

Abstract
Obtaining novel skills is one of the most important problems in robotics. Machine learning techniques may be a promising approach for automatic and autonomous acquisition of movement policies. However, this requires both an appropriate policy representation and suitable learning algorithms. Employing the most recent form of the dynamical systems motor primitives originally introduced by Ijspeert et al. [1], we show how both discrete and rhythmic tasks can be learned using a concerted approach of both imitation and reinforcement learning, and present our current best performing learning algorithms. Finally, we show that it is possible to include a start-up phase in rhythmic primitives. We apply our approach to two elementary movements, i.e., Ball-in-a-Cup and Ball-Paddling, which can be learned on a real Barrett WAM robot arm at a pace similar to human learning.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
From Motor Learning to Interaction Learning in Robots

Sigaud, O., Peters, J.

In Proceedings of 7ème Journées Nationales de la Recherche en Robotique, pages: 189-195, JNRR, November 2009 (inproceedings)

Abstract
The number of advanced robot systems has been increasing in recent years yielding a large variety of versatile designs with many degrees of freedom. These robots have the potential of being applicable in uncertain tasks outside well-structured industrial settings. However, the complexity of both systems and tasks is often beyond the reach of classical robot programming methods. As a result, a more autonomous solution for robot task acquisition is needed where robots adaptively adjust their behaviour to the encountered situations and required tasks. Learning approaches pose one of the most appealing ways to achieve this goal. However, while learning approaches are of high importance for robotics, we cannot simply use off-the-shelf methods from the machine learning community as these usually do not scale into the domains of robotics due to excessive computational cost as well as a lack of scalability. Instead, domain appropriate approaches are needed. We focus here on several core domains of robot learning. For accurate task execution, we need motor learning capabilities. For fast learning of the motor tasks, imitation learning offers the most promising approach. Self improvement requires reinforcement learning approaches that scale into the domain of complex robots. Finally, for efficient interaction of humans with robot systems, we will need a form of interaction learning. This contribution provides a general introduction to these issues and briefly presents the contributions of the related book chapters to the corresponding research topics.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
A note on ethical aspects of BCI

Haselager, P., Vlek, R., Hill, J., Nijboer, F.

Neural Networks, 22(9):1352-1357, November 2009 (article)

Abstract
This paper focuses on ethical aspects of BCI, as a research and a clinical tool, that are challenging for practitioners currently working in the field. Specifically, the difficulties involved in acquiring informed consent from locked-in patients are investigated, in combination with an analysis of the shared moral responsibility in BCI teams, and the complications encountered in establishing effective communication with media.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Model Learning with Local Gaussian Process Regression

Nguyen-Tuong, D., Seeger, M., Peters, J.

Advanced Robotics, 23(15):2015-2034, November 2009 (article)

Abstract
Precise models of robot inverse dynamics allow the design of significantly more accurate, energy-efficient and compliant robot control. However, in some cases the accuracy of rigid-body models does not suffice for sound control performance due to unmodeled nonlinearities arising from hydraulic cable dynamics, complex friction or actuator dynamics. In such cases, estimating the inverse dynamics model from measured data poses an interesting alternative. Nonparametric regression methods, such as Gaussian process regression (GPR) or locally weighted projection regression (LWPR), are not as restrictive as parametric models and, thus, offer a more flexible framework for approximating unknown nonlinearities. In this paper, we propose a local approximation to the standard GPR, called local GPR (LGP), for real-time model online learning by combining the strengths of both regression methods, i.e., the high accuracy of GPR and the fast speed of LWPR. The approach is shown to have competitive learning performance for hig h-dimensional data while being sufficiently fast for real-time learning. The effectiveness of LGP is exhibited by a comparison with the state-of-the-art regression techniques, such as GPR, LWPR and ν-support vector regression. The applicability of the proposed LGP method is demonstrated by real-time online learning of the inverse dynamics model for robot model-based control on a Barrett WAM robot arm.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
An Incremental GEM Framework for Multiframe Blind Deconvolution, Super-Resolution, and Saturation Correction

Harmeling, S., Sra, S., Hirsch, M., Schölkopf, B.

(187), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2009 (techreport)

Abstract
We develop an incremental generalized expectation maximization (GEM) framework to model the multiframe blind deconvolution problem. A simplistic version of this problem was recently studied by Harmeling etal~cite{harmeling09}. We solve a more realistic version of this problem which includes the following major features: (i) super-resolution ability emph{despite} noise and unknown blurring; (ii) saturation-correction, i.e., handling of overexposed pixels that can otherwise confound the image processing; and (iii) simultaneous handling of color channels. These features are seamlessly integrated into our incremental GEM framework to yield simple but efficient multiframe blind deconvolution algorithms. We present technical details concerning critical steps of our algorithms, especially to highlight how all operations can be written using matrix-vector multiplications. We apply our algorithm to real-world images from astronomy and super resolution tasks. Our experimental results show that our methods yield improve d resolution and deconvolution at the same time.

ei

PDF [BibTex]

PDF [BibTex]


no image
Efficient Filter Flow for Space-Variant Multiframe Blind Deconvolution

Hirsch, M., Sra, S., Schölkopf, B., Harmeling, S.

(188), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2009 (techreport)

Abstract
Ultimately being motivated by facilitating space-variant blind deconvolution, we present a class of linear transformations, that are expressive enough for space-variant filters, but at the same time especially designed for efficient matrix-vector-multiplications. Successful results on astronomical imaging through atmospheric turbulences and on noisy magnetic resonance images of constantly moving objects demonstrate the practical significance of our approach.

ei

PDF [BibTex]

PDF [BibTex]