Header logo is


2014


no image
Epidural electrocorticography for monitoring of arousal in locked-in state

Martens, S., Bensch, M., Halder, S., Hill, J., Nijboer, F., Ramos-Murguialday, A., Schölkopf, B., Birbaumer, N., Gharabaghi, A.

Frontiers in Human Neuroscience, 8(861), 2014 (article)

ei

DOI [BibTex]

2014


DOI [BibTex]


no image
Learning Economic Parameters from Revealed Preferences

Balcan, M., Daniely, A., Mehta, R., Urner, R., Vazirani, V. V.

In Web and Internet Economics - 10th International Conference, 8877, pages: 338-353, Lecture Notes in Computer Science, (Editors: Liu, T.-Y. and Qi, Q. and Ye, Y.), WINE, 2014 (inproceedings)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Fast Newton methods for the group fused lasso

Wytock, M., Sra, S., Kolter, J. Z.

In Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence, pages: 888-897, (Editors: Zhang, N. L. and Tian, J.), AUAI Press, UAI, 2014 (inproceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Simultaneous Whole-Body PET/MR Imaging in Comparison to PET/CT in Pediatric Oncology: Initial Results

Schäfer, J. F., Gatidis, S., Schmidt, H., Gückel, B., Bezrukov, I., Pfannenberg, C. A., Reimold, M., M., E., Fuchs, J., Claussen, C. D., Schwenzer, N. F.

Radiology, 273(1):220-231, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Mind the Gap: Subspace based Hierarchical Domain Adaptation

Raj, A., Namboodiri, V., Tuytelaars, T.

Transfer and Multi-task learning Workshop in Advances in Neural Information System Conference 27, 2014 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Shape control in wafer-based aperiodic 3D nanostructures
Shape control in wafer-based aperiodic 3D nanostructures

Hyeon-Ho, J., Mark, A. G., Gibbs, J. G., Reindl, T., Waizmann, U., Weis, J., Fischer, P.

NANOTECHNOLOGY, 25(23), 2014, Cover article. (article)

Abstract
Controlled local fabrication of three-dimensional (3D) nanostructures is important to explore and enhance the function of single nanodevices, but is experimentally challenging. We present a scheme based on e-beam lithography (EBL) written seeds, and glancing angle deposition (GLAD) grown structures to create nanoscale objects with defined shapes but in aperiodic arrangements. By using a continuous sacrificial corral surrounding the features of interest we grow isolated 3D nanostructures that have complex cross-sections and sidewall morphology that are surrounded by zones of clean substrate.

Cover article.

pf

DOI [BibTex]

DOI [BibTex]


no image
Cost-Sensitive Active Learning With Lookahead: Optimizing Field Surveys for Remote Sensing Data Classification

Persello, C., Boularias, A., Dalponte, M., Gobakken, T., Naesset, E., Schölkopf, B.

IEEE Transactions on Geoscience and Remote Sensing, 10(52):6652 - 6664, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Localized Complexities for Transductive Learning

Tolstikhin, I., Blanchard, G., Kloft, M.

In Proceedings of the 27th Conference on Learning Theory, 35, pages: 857-884, (Editors: Balcan, M.-F. and Feldman, V. and Szepesvári, C.), JMLR, COLT, 2014 (inproceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Principles of PET/MR Imaging

Disselhorst, J. A., Bezrukov, I., Kolb, A., Parl, C., Pichler, B. J.

Journal of Nuclear Medicine, 55(6, Supplement 2):2S-10S, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
IM3SHAPE: Maximum likelihood galaxy shear measurement code for cosmic gravitational lensing

Zuntz, J., Kacprzak, T., Voigt, L., Hirsch, M., Rowe, B., Bridle, S.

Astrophysics Source Code Library, 1, pages: 09013, 2014 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Efficient nearest neighbors via robust sparse hashing

Cherian, A., Sra, S., Morellas, V., Papanikolopoulos, N.

IEEE Transactions on Image Processing, 23(8):3646-3655, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Efficient Structured Matrix Rank Minimization

Yu, A. W., Ma, W., Yu, Y., Carbonell, J., Sra, S.

Advances in Neural Information Processing Systems 27, pages: 1350-1358, (Editors: Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence and K.Q. Weinberger), Curran Associates, Inc., 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Towards building a Crowd-Sourced Sky Map

Lang, D., Hogg, D., Schölkopf, B.

In Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, JMLR W\&CP 33, pages: 549–557, (Editors: S. Kaski and J. Corander), JMLR.org, AISTATS, 2014 (inproceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


Active Microrheology of the Vitreous of the Eye applied to Nanorobot Propulsion
Active Microrheology of the Vitreous of the Eye applied to Nanorobot Propulsion

Qiu, T., Schamel, D., Mark, A. G., Fischer, P.

In 2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), pages: 3801-3806, IEEE International Conference on Robotics and Automation ICRA, 2014, Best Automation Paper Award – Finalist. (inproceedings)

Abstract
Biomedical applications of micro or nanorobots require active movement through complex biological fluids. These are generally non-Newtonian (viscoelastic) fluids that are characterized by complicated networks of macromolecules that have size-dependent rheological properties. It has been suggested that an untethered microrobot could assist in retinal surgical procedures. To do this it must navigate the vitreous humor, a hydrated double network of collagen fibrils and high molecular-weight, polyanionic hyaluronan macromolecules. Here, we examine the characteristic size that potential robots must have to traverse vitreous relatively unhindered. We have constructed magnetic tweezers that provide a large gradient of up to 320 T/m to pull sub-micron paramagnetic beads through biological fluids. A novel two-step electrical discharge machining (EDM) approach is used to construct the tips of the magnetic tweezers with a resolution of 30 mu m and high aspect ratio of similar to 17:1 that restricts the magnetic field gradient to the plane of observation. We report measurements on porcine vitreous. In agreement with structural data and passive Brownian diffusion studies we find that the unhindered active propulsion through the eye calls for nanorobots with cross-sections of less than 500 nm.

Best Automation Paper Award – Finalist.

pf

[BibTex]

[BibTex]


no image
Incremental Local Gaussian Regression

Meier, F., Hennig, P., Schaal, S.

In Advances in Neural Information Processing Systems 27, pages: 972-980, (Editors: Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence and K.Q. Weinberger), 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014, clmc (inproceedings)

am ei pn

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Domain adaptation-can quantity compensate for quality?

Ben-David, S., Urner, R.

Annals of Mathematics and Artificial Intelligence, 70(3):185-202, 2014 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Sérsic galaxy models in weak lensing shape measurement: model bias, noise bias and their interaction

Kacprzak, T., Bridle, S., Rowe, B., Voigt, L., Zuntz, J., Hirsch, M., MacCrann, N.

Monthly Notices of the Royal Astronomical Society, 441(3):2528-2538, Oxford University Press, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Learning to Deblur

Schuler, C. J., Hirsch, M., Harmeling, S., Schölkopf, B.

In NIPS 2014 Deep Learning and Representation Learning Workshop, 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014 (inproceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


Swimming by reciprocal motion at low Reynolds number
Swimming by reciprocal motion at low Reynolds number

Qiu, T., Lee, T., Mark, A. G., Morozov, K. I., Muenster, R., Mierka, O., Turek, S., Leshansky, A. M., Fischer, P.

NATURE COMMUNICATIONS, 5, 2014, Max Planck Press Release. (article)

Abstract
Biological microorganisms swim with flagella and cilia that execute nonreciprocal motions for low Reynolds number (Re) propulsion in viscous fluids. This symmetry requirement is a consequence of Purcell's scallop theorem, which complicates the actuation scheme needed by microswimmers. However, most biomedically important fluids are non-Newtonian where the scallop theorem no longer holds. It should therefore be possible to realize a microswimmer that moves with reciprocal periodic body-shape changes in non-Newtonian fluids. Here we report a symmetric `micro-scallop', a single-hinge microswimmer that can propel in shear thickening and shear thinning (non-Newtonian) fluids by reciprocal motion at low Re. Excellent agreement between our measurements and both numerical and analytical theoretical predictions indicates that the net propulsion is caused by modulation of the fluid viscosity upon varying the shear rate. This reciprocal swimming mechanism opens new possibilities in designing biomedical microdevices that can propel by a simple actuation scheme in non-Newtonian biological fluids.

Max Planck Press Release.

pf

Video - A Swimming Micro-Scallop Video - Winner of the Micro-robotic Design Challenge in Hamlyn Symposium on Medical Robotics DOI [BibTex]

Video - A Swimming Micro-Scallop Video - Winner of the Micro-robotic Design Challenge in Hamlyn Symposium on Medical Robotics DOI [BibTex]


Nanohelices by shadow growth
Nanohelices by shadow growth

Gibbs, J. G., Mark, A. G., Lee, T., Eslami, S., Schamel, D., Fischer, P.

NANOSCALE, 6(16):9457-9466, 2014 (article)

Abstract
The helix has remarkable qualities and is prevalent in many fields including mathematics, physics, chemistry, and biology. This shape, which is chiral by nature, is ubiquitous in biology with perhaps the most famous example being DNA. Other naturally occurring helices are common at the nanoscale in the form of protein secondary structures and in various macromolecules. Nanoscale helices exhibit a wide range of interesting mechanical, optical, and electrical properties which can be intentionally engineered into the structure by choosing the correct morphology and material. As technology advances, these fabrication parameters can be fine-tuned and matched to the application of interest. Herein, we focus on the fabrication and properties of nanohelices grown by a dynamic shadowing growth method combined with fast wafer-scale substrate patterning which has a number of distinct advantages. We review the fabrication methodology and provide several examples that illustrate the generality and utility of nanohelices shadow-grown on nanopatterns.

pf

Video - Fabrication of Designer Nanostructures DOI [BibTex]


no image
Efficient Bayesian Local Model Learning for Control

Meier, F., Hennig, P., Schaal, S.

In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, pages: 2244 - 2249, IROS, 2014, clmc (inproceedings)

Abstract
Model-based control is essential for compliant controland force control in many modern complex robots, like humanoidor disaster robots. Due to many unknown and hard tomodel nonlinearities, analytical models of such robots are oftenonly very rough approximations. However, modern optimizationcontrollers frequently depend on reasonably accurate models,and degrade greatly in robustness and performance if modelerrors are too large. For a long time, machine learning hasbeen expected to provide automatic empirical model synthesis,yet so far, research has only generated feasibility studies butno learning algorithms that run reliably on complex robots.In this paper, we combine two promising worlds of regressiontechniques to generate a more powerful regression learningsystem. On the one hand, locally weighted regression techniquesare computationally efficient, but hard to tune due to avariety of data dependent meta-parameters. On the other hand,Bayesian regression has rather automatic and robust methods toset learning parameters, but becomes quickly computationallyinfeasible for big and high-dimensional data sets. By reducingthe complexity of Bayesian regression in the spirit of local modellearning through variational approximations, we arrive at anovel algorithm that is computationally efficient and easy toinitialize for robust learning. Evaluations on several datasetsdemonstrate very good learning performance and the potentialfor a general regression learning tool for robotics.

am ei pn

PDF link (url) DOI [BibTex]

PDF link (url) DOI [BibTex]


no image
The sample complexity of agnostic learning under deterministic labels

Ben-David, S., Urner, R.

In Proceedings of the 27th Conference on Learning Theory, 35, pages: 527-542, (Editors: Balcan, M.-F. and Feldman, V. and Szepesvári, C.), JMLR, COLT, 2014 (inproceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Towards an optimal stochastic alternating direction method of multipliers

Azadi, S., Sra, S.

Proceedings of the 31st International Conference on Machine Learning, 32, pages: 620-628, (Editors: Xing, E. P. and Jebara, T.), JMLR, ICML, 2014 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Diminished White Matter Integrity in Patients with Systemic Lupus Erythematosus

Schmidt-Wilcke, T., Cagnoli, P., Wang, P., Schultz, T., Lotz, A., Mccune, W. J., Sundgren, P. C.

NeuroImage: Clinical, 5, pages: 291-297, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Open Problem: Finding Good Cascade Sampling Processes for the Network Inference Problem

Gomez Rodriguez, M., Song, L., Schölkopf, B.

Proceedings of the 27th Conference on Learning Theory, 35, pages: 1276-1279, (Editors: Balcan, M.-F. and Szepesvári, C.), JMLR.org, COLT, 2014 (conference)

ei

PDF [BibTex]

PDF [BibTex]


Chiral Nanomagnets
Chiral Nanomagnets

Eslami, S., Gibbs, J. G., Rechkemmer, Y., van Slageren, J., Alarcon-Correa, M., Lee, T., Mark, A. G., Rikken, G. L. J. A., Fischer, P.

ACS PHOTONICS, 1(11):1231-1236, 2014 (article)

Abstract
We report on the enhanced optical properties of chiral magnetic nanohelices with critical dimensions comparable to the ferromagnetic domain size. They are shown to be ferromagnetic at room temperature, have defined chirality, and exhibit large optical activity in the visible as verified by electron microscopy, superconducting quantum interference device (SQUID) magnetometry, natural circular dichroism (NCD), and magnetic circular dichroism (MCD) measurements. The structures exhibit magneto-chiral dichroism (MChD), which directly demonstrates coupling between their structural chirality and magnetism. A chiral nickel (Ni) film consisting of an array of nanohelices similar to 100 nm in length exhibits an MChD anisotropy factor g(MChD) approximate to 10(-4) T-1 at room temperature in a saturation field of similar to 0.2 T, permitting polarization-independent control of the film's absorption properties through magnetic field modulation. This is also the first report of MChD in a material with structural chirality on the order of the wavelength of light, and therefore the Ni nanohelix array is a metamaterial with magnetochiral properties that can be tailored through a dynamic deposition process.

pf

DOI [BibTex]

DOI [BibTex]


Wireless powering of e-swimmers
Wireless powering of e-swimmers

Roche, J., Carrara, S., Sanchez, J., Lannelongue, J., Loget, G., Bouffier, L., Fischer, P., Kuhn, A.

SCIENTIFIC REPORTS, 4, 2014 (article)

Abstract
Miniaturized structures that can move in a controlled way in solution and integrate various functionalities are attracting considerable attention due to the potential applications in fields ranging from autonomous micromotors to roving sensors. Here we introduce a concept which allows, depending on their specific design, the controlled directional motion of objects in water, combined with electronic functionalities such as the emission of light, sensing, signal conversion, treatment and transmission. The approach is based on electric field-induced polarization, which triggers different chemical reactions at the surface of the object and thereby its propulsion. This results in a localized electric current that can power in a wireless way electronic devices in water, leading to a new class of electronic swimmers (e-swimmers).

pf

DOI [BibTex]

DOI [BibTex]


Swelling and shrinking behaviour of photoresponsive phosphonium-based ionogel microstructures
Swelling and shrinking behaviour of photoresponsive phosphonium-based ionogel microstructures

Czugala, M., O’Connell, C., Blin, C., Fischer, P., Fraser, K. J., Benito-Lopez, F., Diamond, D.

SENSORS AND ACTUATORS B-CHEMICAL, 194, pages: 105-113, 2014 (article)

Abstract
Photoresponsive N-isopropylacrylamide ionogel microstructures are presented in this study. These ionogels are synthesised using phosphonium based room temperature ionic liquids, together with the photochromic compound benzospiropyran. The microstructures can be actuated using light irradiation, facilitating non-contact and non-invasive operation. For the first time, the characterisation of the swelling and shrinking behaviour of several photopatterned ionogel microstructures is presented and the influence of surface-area-to-volume ratio on the swelling kinetics is evaluated. It was found that the swelling and shrinking behaviour of the ionogels is strongly dependent on the nature of the ionic liquid. In particular, the {[}P-6,P-6,P-6,P-14]{[}NTf2] ionogel exhibits the greatest degree of swelling, reaching up to 180\% of its initial size, and the fastest shrinkage rate (k(sh) = 29 +/- 4 x 10(-2) s(-1)). (C) 2014 Elsevier B. V. All rights reserved.

pf

DOI [BibTex]

DOI [BibTex]


no image
Information-Theoretic Bounded Rationality and ϵ-Optimality

Braun, DA, Ortega, PA

Entropy, 16(8):4662-4676, August 2014 (article)

Abstract
Bounded rationality concerns the study of decision makers with limited information processing resources. Previously, the free energy difference functional has been suggested to model bounded rational decision making, as it provides a natural trade-off between an energy or utility function that is to be optimized and information processing costs that are measured by entropic search costs. The main question of this article is how the information-theoretic free energy model relates to simple \(\epsilon\)-optimality models of bounded rational decision making, where the decision maker is satisfied with any action in an \(\epsilon\)-neighborhood of the optimal utility. We find that the stochastic policies that optimize the free energy trade-off comply with the notion of \(\epsilon\)-optimality. Moreover, this optimality criterion even holds when the environment is adversarial. We conclude that the study of bounded rationality based on \(\epsilon\)-optimality criteria that abstract away from the particulars of the information processing constraints is compatible with the information-theoretic free energy model of bounded rationality.

ei

DOI [BibTex]

DOI [BibTex]


no image
Occam’s Razor in sensorimotor learning

Genewein, T, Braun, D

Proceedings of the Royal Society of London B, 281(1783):1-7, May 2014 (article)

Abstract
A large number of recent studies suggest that the sensorimotor system uses probabilistic models to predict its environment and makes inferences about unobserved variables in line with Bayesian statistics. One of the important features of Bayesian statistics is Occam's Razor—an inbuilt preference for simpler models when comparing competing models that explain some observed data equally well. Here, we test directly for Occam's Razor in sensorimotor control. We designed a sensorimotor task in which participants had to draw lines through clouds of noisy samples of an unobserved curve generated by one of two possible probabilistic models—a simple model with a large length scale, leading to smooth curves, and a complex model with a short length scale, leading to more wiggly curves. In training trials, participants were informed about the model that generated the stimulus so that they could learn the statistics of each model. In probe trials, participants were then exposed to ambiguous stimuli. In probe trials where the ambiguous stimulus could be fitted equally well by both models, we found that participants showed a clear preference for the simpler model. Moreover, we found that participants’ choice behaviour was quantitatively consistent with Bayesian Occam's Razor. We also show that participants’ drawn trajectories were similar to samples from the Bayesian predictive distribution over trajectories and significantly different from two non-probabilistic heuristics. In two control experiments, we show that the preference of the simpler model cannot be simply explained by a difference in physical effort or by a preference for curve smoothness. Our results suggest that Occam's Razor is a general behavioural principle already present during sensorimotor processing.

ei

DOI [BibTex]

DOI [BibTex]


no image
Generalized Thompson sampling for sequential decision-making and causal inference

Ortega, PA, Braun, DA

Complex Adaptive Systems Modeling, 2(2):1-23, March 2014 (article)

Abstract
Purpose Sampling an action according to the probability that the action is believed to be the optimal one is sometimes called Thompson sampling. Methods Although mostly applied to bandit problems, Thompson sampling can also be used to solve sequential adaptive control problems, when the optimal policy is known for each possible environment. The predictive distribution over actions can then be constructed by a Bayesian superposition of the policies weighted by their posterior probability of being optimal. Results Here we discuss two important features of this approach. First, we show in how far such generalized Thompson sampling can be regarded as an optimal strategy under limited information processing capabilities that constrain the sampling complexity of the decision-making process. Second, we show how such Thompson sampling can be extended to solve causal inference problems when interacting with an environment in a sequential fashion. Conclusion In summary, our results suggest that Thompson sampling might not merely be a useful heuristic, but a principled method to address problems of adaptive sequential decision-making and causal inference.

ei

DOI [BibTex]

DOI [BibTex]


no image
Assessing randomness and complexity in human motion trajectories through analysis of symbolic sequences

Peng, Z, Genewein, T, Braun, DA

Frontiers in Human Neuroscience, 8(168):1-13, March 2014 (article)

Abstract
Complexity is a hallmark of intelligent behavior consisting both of regular patterns and random variation. To quantitatively assess the complexity and randomness of human motion, we designed a motor task in which we translated subjects' motion trajectories into strings of symbol sequences. In the first part of the experiment participants were asked to perform self-paced movements to create repetitive patterns, copy pre-specified letter sequences, and generate random movements. To investigate whether the degree of randomness can be manipulated, in the second part of the experiment participants were asked to perform unpredictable movements in the context of a pursuit game, where they received feedback from an online Bayesian predictor guessing their next move. We analyzed symbol sequences representing subjects' motion trajectories with five common complexity measures: predictability, compressibility, approximate entropy, Lempel-Ziv complexity, as well as effective measure complexity. We found that subjects’ self-created patterns were the most complex, followed by drawing movements of letters and self-paced random motion. We also found that participants could change the randomness of their behavior depending on context and feedback. Our results suggest that humans can adjust both complexity and regularity in different movement types and contexts and that this can be assessed with information-theoretic measures of the symbolic sequences generated from movement trajectories.

ei

DOI [BibTex]

DOI [BibTex]


no image
Curiosity-driven learning with Context Tree Weighting

Peng, Z, Braun, DA

pages: 366-367, IEEE, Piscataway, NJ, USA, 4th Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics (IEEE ICDL-EPIROB), October 2014 (conference)

Abstract
In the first simulation, the intrinsic motivation of the agent was given by measuring learning progress through reduction in informational surprise (Figure 1 A-C). This way the agent should first learn the action that is easiest to learn (a1), and then switch to other actions that still allow for learning (a2) and ignore actions that cannot be learned at all (a3). This is exactly what we found in our simple environment. Compared to the original developmental learning algorithm based on learning progress proposed by Oudeyer [2], our Context Tree Weighting approach does not require local experts to do prediction, rather it learns the conditional probability distribution over observations given action in one structure. In the second simulation, the intrinsic motivation of the agent was given by measuring compression progress through improvement in compressibility (Figure 1 D-F). The agent behaves similarly: the agent first concentrates on the action with the most predictable consequence and then switches over to the regular action where the consequence is more difficult to predict, but still learnable. Unlike the previous simulation, random actions are also interesting to some extent because the compressed symbol strings use 8-bit representations, while only 2 bits are required for our observation space. Our preliminary results suggest that Context Tree Weighting might provide a useful representation to study problems of development.

ei

DOI [BibTex]

DOI [BibTex]


no image
Monte Carlo methods for exact & efficient solution of the generalized optimality equations

Ortega, PA, Braun, DA, Tishby, N

pages: 4322-4327, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), June 2014 (conference)

Abstract
Previous work has shown that classical sequential decision making rules, including expectimax and minimax, are limit cases of a more general class of bounded rational planning problems that trade off the value and the complexity of the solution, as measured by its information divergence from a given reference. This allows modeling a range of novel planning problems having varying degrees of control due to resource constraints, risk-sensitivity, trust and model uncertainty. However, so far it has been unclear in what sense information constraints relate to the complexity of planning. In this paper, we introduce Monte Carlo methods to solve the generalized optimality equations in an efficient \& exact way when the inverse temperatures in a generalized decision tree are of the same sign. These methods highlight a fundamental relation between inverse temperatures and the number of Monte Carlo proposals. In particular, it is seen that the number of proposals is essentially independent of the size of the decision tree.

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2006


no image
Global Biclustering of Microarray Data

Wolf, T., Brors, B., Hofmann, T., Georgii, E.

In ICDMW 2006, pages: 125-129, (Editors: Tsumoto, S. , C. W. Clifton, N. Zhong, X. Wu, J. Liu, B. W. Wah, Y.-M. Cheung), IEEE Computer Society, Los Alamitos, CA, USA, Sixth IEEE International Conference on Data Mining, December 2006 (inproceedings)

Abstract
We consider the problem of simultaneously clustering genes and conditions of a gene expression data matrix. A bicluster is defined as a subset of genes that show similar behavior within a subset of conditions. Finding biclusters can be useful for revealing groups of genes involved in the same molecular process as well as groups of conditions where this process takes place. Previous work either deals with local, bicluster-based criteria or assumes a very specific structure of the data matrix (e.g. checkerboard or block-diagonal) [11]. In contrast, our goal is to find a set of flexibly arranged biclusters which is optimal in regard to a global objective function. As this is a NP-hard combinatorial problem, we describe several techniques to obtain approximate solutions. We benchmarked our approach successfully on the Alizadeh B-cell lymphoma data set [1].

ei

Web DOI [BibTex]

2006


Web DOI [BibTex]


no image
Conformal Multi-Instance Kernels

Blaschko, M., Hofmann, T.

In NIPS 2006 Workshop on Learning to Compare Examples, pages: 1-6, NIPS Workshop on Learning to Compare Examples, December 2006 (inproceedings)

Abstract
In the multiple instance learning setting, each observation is a bag of feature vectors of which one or more vectors indicates membership in a class. The primary task is to identify if any vectors in the bag indicate class membership while ignoring vectors that do not. We describe here a kernel-based technique that defines a parametric family of kernels via conformal transformations and jointly learns a discriminant function over bags together with the optimal parameter settings of the kernel. Learning a conformal transformation effectively amounts to weighting regions in the feature space according to their contribution to classification accuracy; regions that are discriminative will be weighted higher than regions that are not. This allows the classifier to focus on regions contributing to classification accuracy while ignoring regions that correspond to vectors found both in positive and in negative bags. We show how parameters of this transformation can be learned for support vector machines by posing the problem as a multiple kernel learning problem. The resulting multiple instance classifier gives competitive accuracy for several multi-instance benchmark datasets from different domains.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Information-theoretic Metric Learning

Davis, J., Kulis, B., Sra, S., Dhillon, I.

In NIPS 2006 Workshop on Learning to Compare Examples, pages: 1-5, NIPS Workshop on Learning to Compare Examples, December 2006 (inproceedings)

Abstract
We formulate the metric learning problem as that of minimizing the differential relative entropy between two multivariate Gaussians under constraints on the Mahalanobis distance function. Via a surprising equivalence, we show that this problem can be solved as a low-rank kernel learning problem. Specifically, we minimize the Burg divergence of a low-rank kernel to an input kernel, subject to pairwise distance constraints. Our approach has several advantages over existing methods. First, we present a natural information-theoretic formulation for the problem. Second, the algorithm utilizes the methods developed by Kulis et al. [6], which do not involve any eigenvector computation; in particular, the running time of our method is faster than most existing techniques. Third, the formulation offers insights into connections between metric learning and kernel learning.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Pattern Mining in Frequent Dynamic Subgraphs

Borgwardt, KM., Kriegel, H-P., Wackersreuther, P.

In pages: 818-822, (Editors: Clifton, C.W.), IEEE Computer Society, Los Alamitos, CA, USA, Sixth International Conference on Data Mining (ICDM), December 2006 (inproceedings)

Abstract
Graph-structured data is becoming increasingly abundant in many application domains. Graph mining aims at finding interesting patterns within this data that represent novel knowledge. While current data mining deals with static graphs that do not change over time, coming years will see the advent of an increasing number of time series of graphs. In this article, we investigate how pattern mining on static graphs can be extended to time series of graphs. In particular, we are considering dynamic graphs with edge insertions and edge deletions over time. We define frequency in this setting and provide algorithmic solutions for finding frequent dynamic subgraph patterns. Existing subgraph mining algorithms can be easily integrated into our framework to make them handle dynamic graphs. Experimental results on real-world data confirm the practical feasibility of our approach.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Structure validation of the Josephin domain of ataxin-3: Conclusive evidence for an open conformation

Nicastro, G., Habeck, M., Masino, L., Svergun, DI., Pastore, A.

Journal of Biomolecular NMR, 36(4):267-277, December 2006 (article)

Abstract
The availability of new and fast tools in structure determination has led to a more than exponential growth of the number of structures solved per year. It is therefore increasingly essential to assess the accuracy of the new structures by reliable approaches able to assist validation. Here, we discuss a specific example in which the use of different complementary techniques, which include Bayesian methods and small angle scattering, resulted essential for validating the two currently available structures of the Josephin domain of ataxin-3, a protein involved in the ubiquitin/proteasome pathway and responsible for neurodegenerative spinocerebellar ataxia of type 3. Taken together, our results demonstrate that only one of the two structures is compatible with the experimental information. Based on the high precision of our refined structure, we show that Josephin contains an open cleft which could be directly implicated in the interaction with polyubiquitin chains and other partners.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
A Unifying View of Wiener and Volterra Theory and Polynomial Kernel Regression

Franz, M., Schölkopf, B.

Neural Computation, 18(12):3097-3118, December 2006 (article)

Abstract
Volterra and Wiener series are perhaps the best understood nonlinear system representations in signal processing. Although both approaches have enjoyed a certain popularity in the past, their application has been limited to rather low-dimensional and weakly nonlinear systems due to the exponential growth of the number of terms that have to be estimated. We show that Volterra and Wiener series can be represented implicitly as elements of a reproducing kernel Hilbert space by utilizing polynomial kernels. The estimation complexity of the implicit representation is linear in the input dimensionality and independent of the degree of nonlinearity. Experiments show performance advantages in terms of convergence, interpretability, and system sizes that can be handled.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
3DString: a feature string kernel for 3D object classification on voxelized data

Assfalg, J., Borgwardt, KM., Kriegel, H-P.

In pages: 198-207, (Editors: Yu, P.S. , V.J. Tsotras, E.A. Fox, B. Liu), ACM Press, New York, NY, USA, 15th ACM International Conference on Information and Knowledge Management (CIKM), November 2006 (inproceedings)

Abstract
Classification of 3D objects remains an important task in many areas of data management such as engineering, medicine or biology. As a common preprocessing step in current approaches to classification of voxelized 3D objects, voxel representations are transformed into a feature vector description.In this article, we introduce an approach of transforming 3D objects into feature strings which represent the distribution of voxels over the voxel grid. Attractively, this feature string extraction can be performed in linear runtime with respect to the number of voxels. We define a similarity measure on these feature strings that counts common k-mers in two input strings, which is referred to as the spectrum kernel in the field of kernel methods. We prove that on our feature strings, this similarity measure can be computed in time linear to the number of different characters in these strings. This linear runtime behavior makes our kernel attractive even for large datasets that occur in many application domains. Furthermore, we explain that our similarity measure induces a metric which allows to combine it with an M-tree for handling of large volumes of data. Classification experiments on two published benchmark datasets show that our novel approach is competitive with the best state-of-the-art methods for 3D object classification.

ei

DOI [BibTex]

DOI [BibTex]


no image
Adapting Spatial Filter Methods for Nonstationary BCIs

Tomioka, R., Hill, J., Blankertz, B., Aihara, K.

In IBIS 2006, pages: 65-70, 2006 Workshop on Information-Based Induction Sciences, November 2006 (inproceedings)

Abstract
A major challenge in applying machine learning methods to Brain-Computer Interfaces (BCIs) is to overcome the possible nonstationarity in the data from the datablock the method is trained on and that the method is applied to. Assuming the joint distributions of the whitened signal and the class label to be identical in two blocks, where the whitening is done in each block independently, we propose a simple adaptation formula that is applicable to a broad class of spatial filtering methods including ICA, CSP, and logistic regression classifiers. We characterize the class of linear transformations for which the above assumption holds. Experimental results on 60 BCI datasets show improved classification accuracy compared to (a) fixed spatial filter approach (no adaptation) and (b) fixed spatial pattern approach (proposed by Hill et al., 2006 [1]).

ei

PDF [BibTex]

PDF [BibTex]


no image
Statistical Analysis of Slow Crack Growth Experiments

Pfingsten, T., Glien, K.

Journal of the European Ceramic Society, 26(15):3061-3065, November 2006 (article)

Abstract
A common approach for the determination of Slow Crack Growth (SCG) parameters are the static and dynamic loading method. Since materials with small Weibull module show a large variability in strength, a correct statistical analysis of the data is indispensable. In this work we propose the use of the Maximum Likelihood method and a Baysian analysis, which, in contrast to the standard procedures, take into account that failure strengths are Weibull distributed. The analysis provides estimates for the SCG parameters, the Weibull module, and the corresponding confidence intervals and overcomes the necessity of manual differentiation between inert and fatigue strength data. We compare the methods to a Least Squares approach, which can be considered the standard procedure. The results for dynamic loading data from the glass sealing of MEMS devices show that the assumptions inherent to the standard approach lead to significantly different estimates.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
An Improved Adaptive Power Line Interference Canceller for Electrocardiography

Martens, SMM., Mischi, M., Oei, SG., Bergmans, JWM.

IEEE Transactions on Biomedical Engineering, 53(11):2220-2231, November 2006 (article)

Abstract
Power line interference may severely corrupt a biomedical recording. Notch filters and adaptive cancellers have been suggested to suppress this interference. We propose an improved adaptive canceller for the reduction of the fundamental power line interference component and harmonics in electrocardiogram (ECG) recordings. The method tracks the amplitude, phase, and frequency of all the interference components for power line frequency deviations up to about 4 Hz. A comparison is made between the performance of our method, former adaptive cancellers, and a narrow and a wide notch filter in suppressing the fundamental power line interference component. For this purpose a real ECG signal is corrupted by an artificial power line interference signal. The cleaned signal after applying all methods is compared with the original ECG signal. Our improved adaptive canceller shows a signal-to-power-line-interference ratio for the fundamental component up to 30 dB higher than that produced by the other methods. Moreover, our method is also effective for the suppression of the harmonics of the power line interference.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Donagi-Markman cubic for Hitchin systems

Balduzzi, D.

Mathematical Research Letters, 13(6):923-933, November 2006 (article)

Abstract
The Donagi-Markman cubic is the differential of the period map for algebraic completely integrable systems. Here we prove a formula for the cubic in the case of Hitchin’s system for arbitrary semisimple g. This was originally stated (without proof) by Pantev for sln.

ei

Web [BibTex]

Web [BibTex]


no image
Mining frequent stem patterns from unaligned RNA sequences

Hamada, M., Tsuda, K., Kudo, T., Kin, T., Asai, K.

Bioinformatics, 22(20):2480-2487, October 2006 (article)

Abstract
Motivation: In detection of non-coding RNAs, it is often necessary to identify the secondary structure motifs from a set of putative RNA sequences. Most of the existing algorithms aim to provide the best motif or few good motifs, but biologists often need to inspect all the possible motifs thoroughly. Results: Our method RNAmine employs a graph theoretic representation of RNA sequences, and detects all the possible motifs exhaustively using a graph mining algorithm. The motif detection problem boils down to finding frequently appearing patterns in a set of directed and labeled graphs. In the tasks of common secondary structure prediction and local motif detection from long sequences, our method performed favorably both in accuracy and in efficiency with the state-of-the-art methods such as CMFinder.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Large-Scale Gene Expression Profiling Reveals Major Pathogenetic Pathways of Cartilage Degeneration in Osteoarthritis

Aigner, T., Fundel, K., Saas, J., Gebhard, P., Haag, J., Weiss, T., Zien, A., Obermayr, F., Zimmer, R., Bartnik, E.

Arthritis and Rheumatism, 54(11):3533-3544, October 2006 (article)

Abstract
Objective. Despite many research efforts in recent decades, the major pathogenetic mechanisms of osteo- arthritis (OA), including gene alterations occurring during OA cartilage degeneration, are poorly under- stood, and there is no disease-modifying treatment approach. The present study was therefore initiated in order to identify differentially expressed disease-related genes and potential therapeutic targets. Methods. This investigation consisted of a large gene expression profiling study performed based on 78 normal and disease samples, using a custom-made complementar y DNA array covering >4,000 genes. Results. Many differentially expressed genes were identified, including the expected up-regulation of ana- bolic and catabolic matrix genes. In particular, the down-regulation of important oxidative defense genes, i.e., the genes for superoxide dismutases 2 and 3 and glutathione peroxidase 3, was prominent. This indicates that continuous oxidative stress to the cells and the matrix is one major underlying pathogenetic mecha- nism in OA. Also, genes that are involved in the phenot ypic stabilit y of cells, a feature that is greatly reduced in OA cartilage, appeared to be suppressed. Conclusion. Our findings provide a reference data set on gene alterations in OA cartilage and, importantly, indicate major mechanisms underlying central cell bio- logic alterations that occur during the OA disease process. These results identify molecular targets that can be further investigated in the search for therapeutic interventions.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
A Linear Programming Approach for Molecular QSAR analysis

Saigo, H., Kadowaki, T., Tsuda, K.

In MLG 2006, pages: 85-96, (Editors: Gärtner, T. , G. C. Garriga, T. Meinl), International Workshop on Mining and Learning with Graphs, September 2006, Best Paper Award (inproceedings)

Abstract
Small molecules in chemistry can be represented as graphs. In a quantitative structure-activity relationship (QSAR) analysis, the central task is to find a regression function that predicts the activity of the molecule in high accuracy. Setting a QSAR as a primal target, we propose a new linear programming approach to the graph-based regression problem. Our method extends the graph classification algorithm by Kudo et al. (NIPS 2004), which is a combination of boosting and graph mining. Instead of sequential multiplicative updates, we employ the linear programming boosting (LP) for regression. The LP approach allows to include inequality constraints for the parameter vector, which turns out to be particularly useful in QSAR tasks where activity values are sometimes unavailable. Furthermore, the efficiency is improved significantly by employing multiple pricing.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]