Header logo is


2016


no image
Probabilistic Decomposition of Sequential Force Interaction Tasks into Movement Primitives

Manschitz, S., Gienger, M., Kober, J., Peters, J.

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 3920-3927, IEEE, October 2016 (conference)

ei

DOI Project Page [BibTex]

2016


DOI Project Page [BibTex]


Thumb xl thumb
Barrista - Caffe Well-Served

Lassner, C., Kappler, D., Kiefel, M., Gehler, P.

In ACM Multimedia Open Source Software Competition, ACM OSSC16, October 2016 (inproceedings)

Abstract
The caffe framework is one of the leading deep learning toolboxes in the machine learning and computer vision community. While it offers efficiency and configurability, it falls short of a full interface to Python. With increasingly involved procedures for training deep networks and reaching depths of hundreds of layers, creating configuration files and keeping them consistent becomes an error prone process. We introduce the barrista framework, offering full, pythonic control over caffe. It separates responsibilities and offers code to solve frequently occurring tasks for pre-processing, training and model inspection. It is compatible to all caffe versions since mid 2015 and can import and export .prototxt files. Examples are included, e.g., a deep residual network implemented in only 172 lines (for arbitrary depths), comparing to 2320 lines in the official implementation for the equivalent model.

am ps

pdf link (url) DOI Project Page [BibTex]

pdf link (url) DOI Project Page [BibTex]


no image
Multi-task logistic regression in brain-computer interfaces

Fiebig, K., Jayaram, V., Peters, J., Grosse-Wentrup, M.

6th Workshop on Brain-Machine Interface Systems at IEEE International Conference on Systems, Man, and Cybernetics (SMC 2016), pages: 002307-002312, IEEE, October 2016 (conference)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Active Tactile Object Exploration with Gaussian Processes

Yi, Z., Calandra, R., Veiga, F., van Hoof, H., Hermans, T., Zhang, Y., Peters, J.

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 4925-4930, IEEE, October 2016 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
On Version Space Compression

Ben-David, S., Urner, R.

Algorithmic Learning Theory - 27th International Conference (ALT), 9925, pages: 50-64, Lecture Notes in Computer Science, (Editors: Ortner, R., Simon, H. U., and Zilles, S.), September 2016 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Contextual Policy Search for Linear and Nonlinear Generalization of a Humanoid Walking Controller

Abdolmaleki, A., Lau, N., Reis, L., Peters, J., Neumann, G.

Journal of Intelligent & Robotic Systems, 83(3-4):393-408, (Editors: Luis Almeida, Lino Marques ), September 2016, Special Issue: Autonomous Robot Systems (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Learning Probabilistic Features from EMG Data for Predicting Knee Abnormalities

Kohlschuetter, J., Peters, J., Rueckert, E.

XIV Mediterranean Conference on Medical and Biological Engineering and Computing (MEDICON), pages: 668-672, (Editors: Kyriacou, E., Christofides, S., and Pattichis, C. S.), September 2016 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Planning with Information-Processing Constraints and Model Uncertainty in Markov Decision Processes

Grau-Moya, J, Leibfried, F, Genewein, T, Braun, DA

Machine Learning and Knowledge Discovery in Databases, pages: 475-491, Lecture Notes in Computer Science; 9852, Springer, Cham, Switzerland, European Conference on Machine Learning and Principles and Practice of Knowledge Discovery (ECML PKDD), September 2016 (conference)

Abstract
Information-theoretic principles for learning and acting have been proposed to solve particular classes of Markov Decision Problems. Mathematically, such approaches are governed by a variational free energy principle and allow solving MDP planning problems with information-processing constraints expressed in terms of a Kullback-Leibler divergence with respect to a reference distribution. Here we consider a generalization of such MDP planners by taking model uncertainty into account. As model uncertainty can also be formalized as an information-processing constraint, we can derive a unified solution from a single generalized variational principle. We provide a generalized value iteration scheme together with a convergence proof. As limit cases, this generalized scheme includes standard value iteration with a known model, Bayesian MDP planning, and robust planning. We demonstrate the benefits of this approach in a grid world simulation.

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl 2016 lightfield depth
Depth Estimation Through a Generative Model of Light Field Synthesis

Sajjadi, M. S. M., Köhler, R., Schölkopf, B., Hirsch, M.

Pattern Recognition - 38th German Conference (GCPR), 9796, pages: 426-438, Lecture Notes in Computer Science, (Editors: Rosenhahn, B. and Andres, B.), Springer International Publishing, September 2016 (conference)

ei

Arxiv Project link (url) DOI [BibTex]

Arxiv Project link (url) DOI [BibTex]


no image
Bidirektionale Interaktion zwischen Mensch und Roboter beim Bewegungslernen (BIMROB)

Kollegger, G., Ewerton, M., Peters, J., Wiemeyer, J.

11. Symposium der DVS Sportinformatik, September 2016 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
A Low-cost Sensor Glove with Vibrotactile Feedback and Multiple Finger Joint and Hand Motion Sensing for Human-Robot Interaction

Weber, P., Rueckert, E., Calandra, R., Peters, J., Beckerle, P.

25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pages: 99-104, August 2016 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Experimental and causal view on information integration in autonomous agents

Geiger, P., Hofmann, K., Schölkopf, B.

Proceedings of the 6th International Workshop on Combinations of Intelligent Methods and Applications (CIMA), pages: 21-28, (Editors: Hatzilygeroudis, I. and Palade, V.), August 2016 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Manifold Gaussian Processes for Regression

Calandra, R., Peters, J., Rasmussen, C. E., Deisenroth, M. P.

International Joint Conference on Neural Networks (IJCNN), pages: 3338-3345, IEEE, July 2016 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Acquiring and Generalizing the Embodiment Mapping from Human Observations to Robot Skills

Maeda, G., Ewerton, M., Koert, D., Peters, J.

IEEE Robotics and Automation Letters, 1(2):784-791, July 2016 (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl webteaser
Body Talk: Crowdshaping Realistic 3D Avatars with Words

Streuber, S., Quiros-Ramirez, M. A., Hill, M. Q., Hahn, C. A., Zuffi, S., O’Toole, A., Black, M. J.

ACM Trans. Graph. (Proc. SIGGRAPH), 35(4):54:1-54:14, July 2016 (article)

Abstract
Realistic, metrically accurate, 3D human avatars are useful for games, shopping, virtual reality, and health applications. Such avatars are not in wide use because solutions for creating them from high-end scanners, low-cost range cameras, and tailoring measurements all have limitations. Here we propose a simple solution and show that it is surprisingly accurate. We use crowdsourcing to generate attribute ratings of 3D body shapes corresponding to standard linguistic descriptions of 3D shape. We then learn a linear function relating these ratings to 3D human shape parameters. Given an image of a new body, we again turn to the crowd for ratings of the body shape. The collection of linguistic ratings of a photograph provides remarkably strong constraints on the metric 3D shape. We call the process crowdshaping and show that our Body Talk system produces shapes that are perceptually indistinguishable from bodies created from high-resolution scans and that the metric accuracy is sufficient for many tasks. This makes body “scanning” practical without a scanner, opening up new applications including database search, visualization, and extracting avatars from books.

ps

pdf web tool video talk (ppt) [BibTex]

pdf web tool video talk (ppt) [BibTex]


Thumb xl teaser
DeepCut: Joint Subset Partition and Labeling for Multi Person Pose Estimation

Pishchulin, L., Insafutdinov, E., Tang, S., Andres, B., Andriluka, M., Gehler, P., Schiele, B.

In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages: 4929-4937, IEEE, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2016 (inproceedings)

Abstract
This paper considers the task of articulated human pose estimation of multiple people in real-world images. We propose an approach that jointly solves the tasks of detection and pose estimation: it infers the number of persons in a scene, identifies occluded body parts, and disambiguates body parts between people in close proximity of each other. This joint formulation is in contrast to previous strategies, that address the problem by first detecting people and subsequently estimating their body pose. We propose a partitioning and labeling formulation of a set of body-part hypotheses generated with CNN-based part detectors. Our formulation, an instance of an integer linear program, implicitly performs non-maximum suppression on the set of part candidates and groups them to form configurations of body parts respecting geometric and appearance constraints. Experiments on four different datasets demonstrate state-of-the-art results for both single person and multi person pose estimation.

ps

code pdf supplementary DOI Project Page [BibTex]

code pdf supplementary DOI Project Page [BibTex]


Thumb xl tsaiteaser
Video segmentation via object flow

Tsai, Y., Yang, M., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2016 (inproceedings)

Abstract
Video object segmentation is challenging due to fast moving objects, deforming shapes, and cluttered backgrounds. Optical flow can be used to propagate an object segmentation over time but, unfortunately, flow is often inaccurate, particularly around object boundaries. Such boundaries are precisely where we want our segmentation to be accurate. To obtain accurate segmentation across time, we propose an efficient algorithm that considers video segmentation and optical flow estimation simultaneously. For video segmentation, we formulate a principled, multiscale, spatio-temporal objective function that uses optical flow to propagate information between frames. For optical flow estimation, particularly at object boundaries, we compute the flow independently in the segmented regions and recompose the results. We call the process object flow and demonstrate the effectiveness of jointly optimizing optical flow and video segmentation using an iterative scheme. Experiments on the SegTrack v2 and Youtube-Objects datasets show that the proposed algorithm performs favorably against the other state-of-the-art methods.

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl capital
Patches, Planes and Probabilities: A Non-local Prior for Volumetric 3D Reconstruction

Ulusoy, A. O., Black, M. J., Geiger, A.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2016 (inproceedings)

Abstract
In this paper, we propose a non-local structured prior for volumetric multi-view 3D reconstruction. Towards this goal, we present a novel Markov random field model based on ray potentials in which assumptions about large 3D surface patches such as planarity or Manhattan world constraints can be efficiently encoded as probabilistic priors. We further derive an inference algorithm that reasons jointly about voxels, pixels and image segments, and estimates marginal distributions of appearance, occupancy, depth, normals and planarity. Key to tractable inference is a novel hybrid representation that spans both voxel and pixel space and that integrates non-local information from 2D image segmentations in a principled way. We compare our non-local prior to commonly employed local smoothness assumptions and a variety of state-of-the-art volumetric reconstruction baselines on challenging outdoor scenes with textureless and reflective surfaces. Our experiments indicate that regularizing over larger distances has the potential to resolve ambiguities where local regularizers fail.

avg ps

YouTube pdf poster suppmat Project Page [BibTex]

YouTube pdf poster suppmat Project Page [BibTex]


no image
The Mondrian Kernel

Balog, M., Lakshminarayanan, B., Ghahramani, Z., Roy, D. M., Teh, Y. W.

Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence (UAI), (Editors: Ihler, Alexander T. and Janzing, Dominik), June 2016 (conference)

ei

Arxiv link (url) Project Page [BibTex]

Arxiv link (url) Project Page [BibTex]


Thumb xl ijcv tumb
Capturing Hands in Action using Discriminative Salient Points and Physics Simulation

Tzionas, D., Ballan, L., Srikantha, A., Aponte, P., Pollefeys, M., Gall, J.

International Journal of Computer Vision (IJCV), 118(2):172-193, June 2016 (article)

Abstract
Hand motion capture is a popular research field, recently gaining more attention due to the ubiquity of RGB-D sensors. However, even most recent approaches focus on the case of a single isolated hand. In this work, we focus on hands that interact with other hands or objects and present a framework that successfully captures motion in such interaction scenarios for both rigid and articulated objects. Our framework combines a generative model with discriminatively trained salient points to achieve a low tracking error and with collision detection and physics simulation to achieve physically plausible estimates even in case of occlusions and missing visual data. Since all components are unified in a single objective function which is almost everywhere differentiable, it can be optimized with standard optimization techniques. Our approach works for monocular RGB-D sequences as well as setups with multiple synchronized RGB cameras. For a qualitative and quantitative evaluation, we captured 29 sequences with a large variety of interactions and up to 150 degrees of freedom.

ps

Website pdf link (url) DOI Project Page [BibTex]

Website pdf link (url) DOI Project Page [BibTex]


Thumb xl header
Optical Flow with Semantic Segmentation and Localized Layers

Sevilla-Lara, L., Sun, D., Jampani, V., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 3889-3898, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2016 (inproceedings)

Abstract
Existing optical flow methods make generic, spatially homogeneous, assumptions about the spatial structure of the flow. In reality, optical flow varies across an image depending on object class. Simply put, different objects move differently. Here we exploit recent advances in static semantic scene segmentation to segment the image into objects of different types. We define different models of image motion in these regions depending on the type of object. For example, we model the motion on roads with homographies, vegetation with spatially smooth flow, and independently moving objects like cars and planes with affine motion plus deviations. We then pose the flow estimation problem using a novel formulation of localized layers, which addresses limitations of traditional layered models for dealing with complex scene motion. Our semantic flow method achieves the lowest error of any published monocular method in the KITTI-2015 flow benchmark and produces qualitatively better flow and segmentation than recent top methods on a wide range of natural videos.

ps

video Kitti Precomputed Data (1.6GB) pdf YouTube Sequences Code Project Page Project Page [BibTex]

video Kitti Precomputed Data (1.6GB) pdf YouTube Sequences Code Project Page Project Page [BibTex]


Thumb xl tes cvpr16 bilateral
Learning Sparse High Dimensional Filters: Image Filtering, Dense CRFs and Bilateral Neural Networks

Jampani, V., Kiefel, M., Gehler, P. V.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 4452-4461, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2016 (inproceedings)

Abstract
Bilateral filters have wide spread use due to their edge-preserving properties. The common use case is to manually choose a parametric filter type, usually a Gaussian filter. In this paper, we will generalize the parametrization and in particular derive a gradient descent algorithm so the filter parameters can be learned from data. This derivation allows to learn high dimensional linear filters that operate in sparsely populated feature spaces. We build on the permutohedral lattice construction for efficient filtering. The ability to learn more general forms of high-dimensional filters can be used in several diverse applications. First, we demonstrate the use in applications where single filter applications are desired for runtime reasons. Further, we show how this algorithm can be used to learn the pairwise potentials in densely connected conditional random fields and apply these to different image segmentation tasks. Finally, we introduce layers of bilateral filters in CNNs and propose bilateral neural networks for the use of high-dimensional sparse data. This view provides new ways to encode model structure into network architectures. A diverse set of experiments empirically validates the usage of general forms of filters.

ps

project page code CVF open-access pdf supplementary poster Project Page Project Page [BibTex]

project page code CVF open-access pdf supplementary poster Project Page Project Page [BibTex]


no image
Recovery of non-linear cause-effect relationships from linearly mixed neuroimaging data

Weichwald, S., Gretton, A., Schölkopf, B., Grosse-Wentrup, M.

Proceedings of the 6th International Workshop on Pattern Recognition in NeuroImaging (PRNI 2016), June 2016 (conference)

ei

PDF Arxiv Code DOI Project Page [BibTex]

PDF Arxiv Code DOI Project Page [BibTex]


no image
Domain Adaptation with Conditional Transferable Components

Gong, M., Zhang, K., Liu, T., Tao, D., Glymour, C., Schölkopf, B.

Proceedings of the 33nd International Conference on Machine Learning (ICML), 48, pages: 2839-2848, JMLR Workshop and Conference Proceedings, (Editors: Balcan, M.-F. and Weinberger, K. Q.), June 2016 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Learning Causal Interaction Network of Multivariate Hawkes Processes

Etesami, S., Kiyavash, N., Zhang, K., Singhal, K.

Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI), June 2016, poster presentation (conference)

ei

[BibTex]

[BibTex]


no image
Efficient Large-scale Approximate Nearest Neighbor Search on the GPU

Wieschollek, P., Wang, O., Sorkine-Hornung, A., Lensch, H. P. A.

29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages: 2027 - 2035, IEEE, June 2016 (conference)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl futeaser
Occlusion boundary detection via deep exploration of context

Fu, H., Wang, C., Tao, D., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2016 (inproceedings)

Abstract
Occlusion boundaries contain rich perceptual information about the underlying scene structure. They also provide important cues in many visual perception tasks such as scene understanding, object recognition, and segmentation. In this paper, we improve occlusion boundary detection via enhanced exploration of contextual information (e.g., local structural boundary patterns, observations from surrounding regions, and temporal context), and in doing so develop a novel approach based on convolutional neural networks (CNNs) and conditional random fields (CRFs). Experimental results demonstrate that our detector significantly outperforms the state-of-the-art (e.g., improving the F-measure from 0.62 to 0.71 on the commonly used CMU benchmark). Last but not least, we empirically assess the roles of several important components of the proposed detector, so as to validate the rationale behind this approach.

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl jun teaser
Semantic Instance Annotation of Street Scenes by 3D to 2D Label Transfer

Xie, J., Kiefel, M., Sun, M., Geiger, A.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2016 (inproceedings)

Abstract
Semantic annotations are vital for training models for object recognition, semantic segmentation or scene understanding. Unfortunately, pixelwise annotation of images at very large scale is labor-intensive and only little labeled data is available, particularly at instance level and for street scenes. In this paper, we propose to tackle this problem by lifting the semantic instance labeling task from 2D into 3D. Given reconstructions from stereo or laser data, we annotate static 3D scene elements with rough bounding primitives and develop a probabilistic model which transfers this information into the image domain. We leverage our method to obtain 2D labels for a novel suburban video dataset which we have collected, resulting in 400k semantic and instance image annotations. A comparison of our method to state-of-the-art label transfer baselines reveals that 3D information enables more efficient annotation while at the same time resulting in improved accuracy and time-coherent labels.

avg ps

pdf suppmat Project Page Project Page [BibTex]

pdf suppmat Project Page Project Page [BibTex]


no image
On the Identifiability and Estimation of Functional Causal Models in the Presence of Outcome-Dependent Selection

Zhang, K., Zhang, J., Huang, B., Schölkopf, B., Glymour, C.

Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI), pages: 825-834, (Editors: Ihler, A. and Janzing, D.), AUAI Press, June 2016 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl screen shot 2018 10 09 at 11.42.49
Active Uncertainty Calibration in Bayesian ODE Solvers

Kersting, H., Hennig, P.

Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI), pages: 309-318, (Editors: Ihler, A. and Janzing, D.), AUAI Press, June 2016 (conference)

Abstract
There is resurging interest, in statistics and machine learning, in solvers for ordinary differential equations (ODEs) that return probability measures instead of point estimates. Recently, Conrad et al.~introduced a sampling-based class of methods that are `well-calibrated' in a specific sense. But the computational cost of these methods is significantly above that of classic methods. On the other hand, Schober et al.~pointed out a precise connection between classic Runge-Kutta ODE solvers and Gaussian filters, which gives only a rough probabilistic calibration, but at negligible cost overhead. By formulating the solution of ODEs as approximate inference in linear Gaussian SDEs, we investigate a range of probabilistic ODE solvers, that bridge the trade-off between computational cost and probabilistic calibration, and identify the inaccurate gradient measurement as the crucial source of uncertainty. We propose the novel filtering-based method Bayesian Quadrature filtering (BQF) which uses Bayesian quadrature to actively learn the imprecision in the gradient measurement by collecting multiple gradient evaluations.

ei pn

link (url) Project Page Project Page [BibTex]

link (url) Project Page Project Page [BibTex]


no image
The Arrow of Time in Multivariate Time Serie

Bauer, S., Schölkopf, B., Peters, J.

Proceedings of the 33rd International Conference on Machine Learning (ICML), 48, pages: 2043-2051, JMLR Workshop and Conference Proceedings, (Editors: Balcan, M. F. and Weinberger, K. Q.), JMLR, June 2016 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
A Kernel Test for Three-Variable Interactions with Random Processes

Rubenstein, P. K., Chwialkowski, K. P., Gretton, A.

Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence (UAI), (Editors: Ihler, Alexander T. and Janzing, Dominik), June 2016 (conference)

ei

PDF Supplement Arxiv [BibTex]

PDF Supplement Arxiv [BibTex]


no image
Continuous Deep Q-Learning with Model-based Acceleration

Gu, S., Lillicrap, T., Sutskever, I., Levine, S.

Proceedings of the 33nd International Conference on Machine Learning (ICML), 48, pages: 2829-2838, JMLR Workshop and Conference Proceedings, (Editors: Maria-Florina Balcan and Kilian Q. Weinberger), JMLR.org, June 2016 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Bounded Rational Decision-Making in Feedforward Neural Networks

Leibfried, F, Braun, D

Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI), pages: 407-416, June 2016 (conference)

Abstract
Bounded rational decision-makers transform sensory input into motor output under limited computational resources. Mathematically, such decision-makers can be modeled as information-theoretic channels with limited transmission rate. Here, we apply this formalism for the first time to multilayer feedforward neural networks. We derive synaptic weight update rules for two scenarios, where either each neuron is considered as a bounded rational decision-maker or the network as a whole. In the update rules, bounded rationality translates into information-theoretically motivated types of regularization in weight space. In experiments on the MNIST benchmark classification task for handwritten digits, we show that such information-theoretic regularization successfully prevents overfitting across different architectures and attains results that are competitive with other recent techniques like dropout, dropconnect and Bayes by backprop, for both ordinary and convolutional neural networks.

ei

[BibTex]

[BibTex]


no image
Batch Bayesian Optimization via Local Penalization

González, J., Dai, Z., Hennig, P., Lawrence, N.

Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS), 51, pages: 648-657, JMLR Workshop and Conference Proceedings, (Editors: Gretton, A. and Robert, C. C.), May 2016 (conference)

ei pn

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
MuProp: Unbiased Backpropagation for Stochastic Neural Networks

Gu, S., Levine, S., Sutskever, I., Mnih, A.

4th International Conference on Learning Representations (ICLR), May 2016 (conference)

ei

Arxiv [BibTex]

Arxiv [BibTex]


no image
An Improved Cognitive Brain-Computer Interface for Patients with Amyotrophic Lateral Sclerosis

Hohmann, M. R., Fomina, T., Jayaram, V., Förster, C., Just, J., M., S., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.

Proceedings of the Sixth International BCI Meeting, pages: 44, (Editors: Müller-Putz, G. R. and Huggins, J. E. and Steyrl, D.), BCI, May 2016 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Movement Primitives with Multiple Phase Parameters

Ewerton, M., Maeda, G., Neumann, G., Kisner, V., Kollegger, G., Wiemeyer, J., Peters, J.

IEEE International Conference on Robotics and Automation (ICRA), pages: 201-206, IEEE, May 2016 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
TerseSVM : A Scalable Approach for Learning Compact Models in Large-scale Classification

Babbar, R., Muandet, K., Schölkopf, B.

Proceedings of the 2016 SIAM International Conference on Data Mining (SDM), pages: 234-242, (Editors: Sanjay Chawla Venkatasubramanian and Wagner Meira), May 2016 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl 2pamcompressed
A Lightweight Robotic Arm with Pneumatic Muscles for Robot Learning

Büchler, D., Ott, H., Peters, J.

Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 4086-4092, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (conference)

am ei

ICRA16final DOI Project Page [BibTex]

ICRA16final DOI Project Page [BibTex]


Thumb xl untitled
Probabilistic Approximate Least-Squares

Bartels, S., Hennig, P.

Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS), 51, pages: 676-684, JMLR Workshop and Conference Proceedings, (Editors: Gretton, A. and Robert, C. C. ), May 2016 (conference)

Abstract
Least-squares and kernel-ridge / Gaussian process regression are among the foundational algorithms of statistics and machine learning. Famously, the worst-case cost of exact nonparametric regression grows cubically with the data-set size; but a growing number of approximations have been developed that estimate good solutions at lower cost. These algorithms typically return point estimators, without measures of uncertainty. Leveraging recent results casting elementary linear algebra operations as probabilistic inference, we propose a new approximate method for nonparametric least-squares that affords a probabilistic uncertainty estimate over the error between the approximate and exact least-squares solution (this is not the same as the posterior variance of the associated Gaussian process regressor). This allows estimating the error of the least-squares solution on a subset of the data relative to the full-data solution. The uncertainty can be used to control the computational effort invested in the approximation. Our algorithm has linear cost in the data-set size, and a simple formal form, so that it can be implemented with a few lines of code in programming languages with linear algebra functionality.

ei pn

link (url) Project Page Project Page [BibTex]

link (url) Project Page Project Page [BibTex]


no image
Learning soft task priorities for control of redundant robots

Modugno, V., Neumann, G., Rueckert, E., Oriolo, G., Peters, J., Ivaldi, S.

IEEE International Conference on Robotics and Automation (ICRA), pages: 221-226, IEEE, May 2016 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
On the Reliability of Information and Trustworthiness of Web Sources in Wikipedia

Tabibian, B., Farajtabar, M., Valera, I., Song, L., Schölkopf, B., Gomez Rodriguez, M.

Wikipedia workshop at the 10th International AAAI Conference on Web and Social Media (ICWSM), May 2016 (conference)

ei

[BibTex]

[BibTex]


Thumb xl 2016 peer grading
Peer Grading in a Course on Algorithms and Data Structures: Machine Learning Algorithms do not Improve over Simple Baselines

Sajjadi, M. S. M., Alamgir, M., von Luxburg, U.

Proceedings of the 3rd ACM conference on Learning @ Scale, pages: 369-378, (Editors: Haywood, J. and Aleven, V. and Kay, J. and Roll, I.), ACM, L@S, April 2016, (An earlier version of this paper had been presented at the ICML 2015 workshop for Machine Learning for Education.) (conference)

ei

Arxiv Peer-Grading dataset request [BibTex]

Arxiv Peer-Grading dataset request [BibTex]


Thumb xl appealingavatarsbig
Appealing female avatars from 3D body scans: Perceptual effects of stylization

Fleming, R., Mohler, B., Romero, J., Black, M. J., Breidt, M.

In 11th Int. Conf. on Computer Graphics Theory and Applications (GRAPP), Febuary 2016 (inproceedings)

Abstract
Advances in 3D scanning technology allow us to create realistic virtual avatars from full body 3D scan data. However, negative reactions to some realistic computer generated humans suggest that this approach might not always provide the most appealing results. Using styles derived from existing popular character designs, we present a novel automatic stylization technique for body shape and colour information based on a statistical 3D model of human bodies. We investigate whether such stylized body shapes result in increased perceived appeal with two different experiments: One focuses on body shape alone, the other investigates the additional role of surface colour and lighting. Our results consistently show that the most appealing avatar is a partially stylized one. Importantly, avatars with high stylization or no stylization at all were rated to have the least appeal. The inclusion of colour information and improvements to render quality had no significant effect on the overall perceived appeal of the avatars, and we observe that the body shape primarily drives the change in appeal ratings. For body scans with colour information, we found that a partially stylized avatar was most effective, increasing average appeal ratings by approximately 34%.

ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]


no image
On estimation of functional causal models: General results and application to post-nonlinear causal model

Zhang, K., Wang, Z., Zhang, J., Schölkopf, B.

ACM Transactions on Intelligent Systems and Technologies, 7(2):article no. 13, January 2016 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Fabular: Regression Formulas As Probabilistic Programming

Borgström, J., Gordon, A. D., Ouyang, L., Russo, C., Ścibior, A., Szymczak, M.

Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pages: 271-283, POPL ’16, ACM, January 2016 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl teaser web
Human Pose Estimation from Video and IMUs

Marcard, T. V., Pons-Moll, G., Rosenhahn, B.

Transactions on Pattern Analysis and Machine Intelligence PAMI, 38(8):1533-1547, January 2016 (article)

ps

data pdf dataset_documentation [BibTex]

data pdf dataset_documentation [BibTex]