Header logo is


2007


no image

no image
Feature Selection for Trouble Shooting in Complex Assembly Lines

Pfingsten, T., Herrmann, D., Schnitzler, T., Feustel, A., Schölkopf, B.

IEEE Transactions on Automation Science and Engineering, 4(3):465-469, July 2007 (article)

Abstract
The final properties of sophisticated products can be affected by many unapparent dependencies within the manufacturing process, and the products’ integrity can often only be checked in a final measurement. Troubleshooting can therefore be very tedious if not impossible in large assembly lines. In this paper we show that Feature Selection is an efficient tool for serial-grouped lines to reveal causes for irregularities in product attributes. We compare the performance of several methods for Feature Selection on real-world problems in mass-production of semiconductor devices. Note to Practitioners— We present a data based procedure to localize flaws in large production lines: using the results of final quality inspections and information about which machines processed which batches, we are able to identify machines which cause low yield.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Gene selection via the BAHSIC family of algorithms

Song, L., Bedo, J., Borgwardt, K., Gretton, A., Smola, A.

Bioinformatics, 23(13: ISMB/ECCB 2007 Conference Proceedings):i490-i498, July 2007 (article)

Abstract
Motivation: Identifying significant genes among thousands of sequences on a microarray is a central challenge for cancer research in bioinformatics. The ultimate goal is to detect the genes that are involved in disease outbreak and progression. A multitude of methods have been proposed for this task of feature selection, yet the selected gene lists differ greatly between different methods. To accomplish biologically meaningful gene selection from microarray data, we have to understand the theoretical connections and the differences between these methods. In this article, we define a kernel-based framework for feature selection based on the Hilbert–Schmidt independence criterion and backward elimination, called BAHSIC. We show that several well-known feature selectors are instances of BAHSIC, thereby clarifying their relationship. Furthermore, by choosing a different kernel, BAHSIC allows us to easily define novel feature selection algorithms. As a further advantage, feature selection via BAHSIC works directly on multiclass problems. Results: In a broad experimental evaluation, the members of the BAHSIC family reach high levels of accuracy and robustness when compared to other feature selection techniques. Experiments show that features selected with a linear kernel provide the best classification performance in general, but if strong non-linearities are present in the data then non-linear kernels can be more suitable.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Phenotyping of Chondrocytes In Vivo and In Vitro Using cDNA Array Technology

Zien, A., Gebhard, P., Fundel, K., Aigner, T.

Clinical Orthopaedics and Related Research, 460, pages: 226-233, July 2007 (article)

Abstract
The cDNA array technology is a powerful tool to analyze a high number of genes in parallel. We investigated whether large-scale gene expression analysis allows clustering and identification of cellular phenotypes of chondrocytes in different in vivo and in vitro conditions. In 100% of cases, clustering analysis distinguished between in vivo and in vitro samples, suggesting fundamental differences in chondrocytes in situ and in vitro regardless of the culture conditions or disease status. It also allowed us to differentiate between healthy and osteoarthritic cartilage. The clustering also revealed the relative importance of the investigated culturing conditions (stimulation agent, stimulation time, bead/monolayer). We augmented the cluster analysis with a statistical search for genes showing differential expression. The identified genes provided hints to the molecular basis of the differences between the sample classes. Our approach shows the power of modern bioinformatic algorithms for understanding and class ifying chondrocytic phenotypes in vivo and in vitro. Although it does not generate new experimental data per se, it provides valuable information regarding the biology of chondrocytes and may provide tools for diagnosing and staging the osteoarthritic disease process.

ei

DOI [BibTex]

DOI [BibTex]


no image
Common Sequence Polymorphisms Shaping Genetic Diversity in Arabidopsis thaliana

Clark, R., Schweikert, G., Toomajian, C., Ossowski, S., Zeller, G., Shinn, P., Warthmann, N., Hu, T., Fu, G., Hinds, D., Chen, H., Frazer, K., Huson, D., Schölkopf, B., Nordborg, M., Rätsch, G., Ecker, J., Weigel, D.

Science, 317(5836):338-342, July 2007 (article)

Abstract
The genomes of individuals from the same species vary in sequence as a result of different evolutionary processes. To examine the patterns of, and the forces shaping, sequence variation in Arabidopsis thaliana, we performed high-density array resequencing of 20 diverse strains (accessions). More than 1 million nonredundant single-nucleotide polymorphisms (SNPs) were identified at moderate false discovery rates (FDRs), and ~4% of the genome was identified as being highly dissimilar or deleted relative to the reference genome sequence. Patterns of polymorphism are highly nonrandom among gene families, with genes mediating interaction with the biotic environment having exceptional polymorphism levels. At the chromosomal scale, regional variation in polymorphism was readily apparent. A scan for recent selective sweeps revealed several candidate regions, including a notable example in which almost all variation was removed in a 500-kilobase window. Analyzing the polymorphisms we describe in larger sets of accessions will enable a detailed understanding of forces shaping population-wide sequence variation in A. thaliana.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Graph Laplacians and their Convergence on Random Neighborhood Graphs

Hein, M., Audibert, J., von Luxburg, U.

Journal of Machine Learning Research, 8, pages: 1325-1370, June 2007 (article)

Abstract
Given a sample from a probability measure with support on a submanifold in Euclidean space one can construct a neighborhood graph which can be seen as an approximation of the submanifold. The graph Laplacian of such a graph is used in several machine learning methods like semi-supervised learning, dimensionality reduction and clustering. In this paper we determine the pointwise limit of three different graph Laplacians used in the literature as the sample size increases and the neighborhood size approaches zero. We show that for a uniform measure on the submanifold all graph Laplacians have the same limit up to constants. However in the case of a non-uniform measure on the submanifold only the so called random walk graph Laplacian converges to the weighted Laplace-Beltrami operator.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Bayesian Reconstruction of the Density of States

Habeck, M.

Physical Review Letters, 98(20, 200601):1-4, May 2007 (article)

Abstract
A Bayesian framework is developed to reconstruct the density of states from multiple canonical simulations. The framework encompasses the histogram reweighting method of Ferrenberg and Swendsen. The new approach applies to nonparametric as well as parametric models and does not require simulation data to be discretized. It offers a means to assess the precision of the reconstructed density of states and of derived thermodynamic quantities.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
PALMA: mRNA to Genome Alignments using Large Margin Algorithms

Schulze, U., Hepp, B., Ong, C., Rätsch, G.

Bioinformatics, 23(15):1892-1900, May 2007 (article)

Abstract
Motivation: Despite many years of research on how to properly align sequences in the presence of sequencing errors, alternative splicing and micro-exons, the correct alignment of mRNA sequences to genomic DNA is still a challenging task. Results: We present a novel approach based on large margin learning that combines accurate plice site predictions with common sequence alignment techniques. By solving a convex optimization problem, our algorithm – called PALMA – tunes the parameters of the model such that true alignments score higher than other alignments. We study the accuracy of alignments of mRNAs containing artificially generated micro-exons to genomic DNA. In a carefully designed experiment, we show that our algorithm accurately identifies the intron boundaries as well as boundaries of the optimal local alignment. It outperforms all other methods: for 5702 artificially shortened EST sequences from C. elegans and human it correctly identifies the intron boundaries in all except two cases. The best other method is a recently proposed method called exalin which misaligns 37 of the sequences. Our method also demonstrates robustness to mutations, insertions and deletions, retaining accuracy even at high noise levels. Availability: Datasets for training, evaluation and testing, additional results and a stand-alone alignment tool implemented in C++ and python are available at http://www.fml.mpg.de/raetsch/projects/palma.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Training a Support Vector Machine in the Primal

Chapelle, O.

Neural Computation, 19(5):1155-1178, March 2007 (article)

Abstract
Most literature on Support Vector Machines (SVMs) concentrate on the dual optimization problem. In this paper, we would like to point out that the primal problem can also be solved efficiently, both for linear and non-linear SVMs, and that there is no reason for ignoring this possibilty. On the contrary, from the primal point of view new families of algorithms for large scale SVM training can be investigated.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Improving the Caenorhabditis elegans Genome Annotation Using Machine Learning

Rätsch, G., Sonnenburg, S., Srinivasan, J., Witte, H., Müller, K., Sommer, R., Schölkopf, B.

PLoS Computational Biology, 3(2, e20):0313-0322, February 2007 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Statistical Consistency of Kernel Canonical Correlation Analysis

Fukumizu, K., Bach, F., Gretton, A.

Journal of Machine Learning Research, 8, pages: 361-383, February 2007 (article)

Abstract
While kernel canonical correlation analysis (CCA) has been applied in many contexts, the convergence of finite sample estimates of the associated functions to their population counterparts has not yet been established. This paper gives a mathematical proof of the statistical convergence of kernel CCA, providing a theoretical justification for the method. The proof uses covariance operators defined on reproducing kernel Hilbert spaces, and analyzes the convergence of their empirical estimates of finite rank to their population counterparts, which can have infinite rank. The result also gives a sufficient condition for convergence on the regularization coefficient involved in kernel CCA: this should decrease as n^{-1/3}, where n is the number of data.

ei

PDF [BibTex]

PDF [BibTex]


no image
Some observations on the pedestal effect

Henning, G., Wichmann, F.

Journal of Vision, 7(1:3):1-15, January 2007 (article)

Abstract
The pedestal or dipper effect is the large improvement in the detectability of a sinusoidal grating observed when it is added to a masking or pedestal grating of the same spatial frequency, orientation, and phase. We measured the pedestal effect in both broadband and notched noiseVnoise from which a 1.5-octave band centered on the signal frequency had been removed. Although the pedestal effect persists in broadband noise, it almost disappears in the notched noise. Furthermore, the pedestal effect is substantial when either high- or low-pass masking noise is used. We conclude that the pedestal effect in the absence of notched noise results principally from the use of information derived from channels with peak sensitivities at spatial frequencies different from that of the signal and the pedestal. We speculate that the spatial-frequency components of the notched noise above and below the spatial frequency of the signal and the pedestal prevent ‘‘off-frequency looking,’’ that is, prevent the use of information about changes in contrast carried in channels tuned to spatial frequencies that are very much different from that of the signal and the pedestal. Thus, the pedestal or dipper effect measured without notched noise appears not to be a characteristic of individual spatial-frequency-tuned channels.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Cue Combination and the Effect of Horizontal Disparity and Perspective on Stereoacuity

Zalevski, AM., Henning, GB., Hill, NJ.

Spatial Vision, 20(1):107-138, January 2007 (article)

Abstract
Relative depth judgments of vertical lines based on horizontal disparity deteriorate enormously when the lines form part of closed configurations (Westheimer, 1979). In studies showing this effect, perspective was not manipulated and thus produced inconsistency between horizontal disparity and perspective. We show that stereoacuity improves dramatically when perspective and horizontal disparity are made consistent. Observers appear to use unhelpful perspective cues in judging the relative depth of the vertical sides of rectangles in a way not incompatible with a form of cue weighting. However, 95% confidence intervals for the weights derived for cues usually exceed the a-priori [0-1] range.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Mathematik der Wahrnehmung: Wendepunkte

Wichman, F., Ernst, MO.

Akademische Mitteilungen zw{\"o}lf: F{\"u}nf Sinne, pages: 32-37, 2007 (misc)

ei

[BibTex]

[BibTex]


no image
iCub - The Design and Realization of an Open Humanoid Platform for Cognitive and Neuroscience Research

Tsagarakis, N., Metta, G., Sandini, G., Vernon, D., Beira, R., Becchi, F., Righetti, L., Santos-Victor, J., Ijspeert, A., Carrozza, M., Caldwell, D.

Advanced Robotics, 21(10):1151-1175, 2007 (article)

Abstract
The development of robotic cognition and the advancement of understanding of human cognition form two of the current greatest challenges in robotics and neuroscience, respectively. The RobotCub project aims to develop an embodied robotic child (iCub) with the physical (height 90 cm and mass less than 23 kg) and ultimately cognitive abilities of a 2.5-year-old human child. The iCub will be a freely available open system which can be used by scientists in all cognate disciplines from developmental psychology to epigenetic robotics to enhance understanding of cognitive systems through the study of cognitive development. The iCub will be open both in software, but more importantly in all aspects of the hardware and mechanical design. In this paper the design of the mechanisms and structures forming the basic 'body' of the iCub are described. The papers considers kinematic structures dynamic design criteria, actuator specification and selection, and detailed mechanical and electronic design. The paper concludes with tests of the performance of sample joints, and comparison of these results with the design requirements and simulation projects.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2004


no image
On the representation, learning and transfer of spatio-temporal movement characteristics

Ilg, W., Bakir, GH., Mezger, J., Giese, M.

International Journal of Humanoid Robotics, 1(4):613-636, December 2004 (article)

ei

[BibTex]

2004


[BibTex]


no image
Insect-inspired estimation of egomotion

Franz, MO., Chahl, JS., Krapp, HG.

Neural Computation, 16(11):2245-2260, November 2004 (article)

Abstract
Tangential neurons in the fly brain are sensitive to the typical optic flow patterns generated during egomotion. In this study, we examine whether a simplified linear model based on the organization principles in tangential neurons can be used to estimate egomotion from the optic flow. We present a theory for the construction of an estimator consisting of a linear combination of optic flow vectors that incorporates prior knowledge both about the distance distribution of the environment, and about the noise and egomotion statistics of the sensor. The estimator is tested on a gantry carrying an omnidirectional vision sensor. The experiments show that the proposed approach leads to accurate and robust estimates of rotation rates, whereas translation estimates are of reasonable quality, albeit less reliable.

ei

PDF PostScript Web DOI [BibTex]

PDF PostScript Web DOI [BibTex]


no image
Efficient face detection by a cascaded support-vector machine expansion

Romdhani, S., Torr, P., Schölkopf, B., Blake, A.

Proceedings of The Royal Society of London A, 460(2501):3283-3297, A, November 2004 (article)

Abstract
We describe a fast system for the detection and localization of human faces in images using a nonlinear ‘support-vector machine‘. We approximate the decision surface in terms of a reduced set of expansion vectors and propose a cascaded evaluation which has the property that the full support-vector expansion is only evaluated on the face-like parts of the image, while the largest part of typical images is classified using a single expansion vector (a simpler and more efficient classifier). As a result, only three reduced-set vectors are used, on average, to classify an image patch. Hence, the cascaded evaluation, presented in this paper, offers a thirtyfold speed-up over an evaluation using the full set of reduced-set vectors, which is itself already thirty times faster than classification using all the support vectors.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Learning kernels from biological networks by maximizing entropy

Tsuda, K., Noble, W.

Bioinformatics, 20(Suppl. 1):i326-i333, August 2004 (article)

Abstract
Motivation: The diffusion kernel is a general method for computing pairwise distances among all nodes in a graph, based on the sum of weighted paths between each pair of nodes. This technique has been used successfully, in conjunction with kernel-based learning methods, to draw inferences from several types of biological networks. Results: We show that computing the diffusion kernel is equivalent to maximizing the von Neumann entropy, subject to a global constraint on the sum of the Euclidean distances between nodes. This global constraint allows for high variance in the pairwise distances. Accordingly, we propose an alternative, locally constrained diffusion kernel, and we demonstrate that the resulting kernel allows for more accurate support vector machine prediction of protein functional classifications from metabolic and protein–protein interaction networks.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Masking effect produced by Mach bands on the detection of narrow bars of random polarity

Henning, GB., Hoddinott, KT., Wilson-Smith, ZJ., Hill, NJ.

Journal of the Optical Society of America, 21(8):1379-1387, A, August 2004 (article)

ei

[BibTex]

[BibTex]


no image
Support Vector Channel Selection in BCI

Lal, T., Schröder, M., Hinterberger, T., Weston, J., Bogdan, M., Birbaumer, N., Schölkopf, B.

IEEE Transactions on Biomedical Engineering, 51(6):1003-1010, June 2004 (article)

Abstract
Designing a Brain Computer Interface (BCI) system one can choose from a variety of features that may be useful for classifying brain activity during a mental task. For the special case of classifying EEG signals we propose the usage of the state of the art feature selection algorithms Recursive Feature Elimination and Zero-Norm Optimization which are based on the training of Support Vector Machines (SVM). These algorithms can provide more accurate solutions than standard filter methods for feature selection. We adapt the methods for the purpose of selecting EEG channels. For a motor imagery paradigm we show that the number of used channels can be reduced significantly without increasing the classification error. The resulting best channels agree well with the expected underlying cortical activity patterns during the mental tasks. Furthermore we show how time dependent task specific information can be visualized.

ei

DOI [BibTex]

DOI [BibTex]


no image
Distance-Based Classification with Lipschitz Functions

von Luxburg, U., Bousquet, O.

Journal of Machine Learning Research, 5, pages: 669-695, June 2004 (article)

Abstract
The goal of this article is to develop a framework for large margin classification in metric spaces. We want to find a generalization of linear decision functions for metric spaces and define a corresponding notion of margin such that the decision function separates the training points with a large margin. It will turn out that using Lipschitz functions as decision functions, the inverse of the Lipschitz constant can be interpreted as the size of a margin. In order to construct a clean mathematical setup we isometrically embed the given metric space into a Banach space and the space of Lipschitz functions into its dual space. To analyze the resulting algorithm, we prove several representer theorems. They state that there always exist solutions of the Lipschitz classifier which can be expressed in terms of distance functions to training points. We provide generalization bounds for Lipschitz classifiers in terms of the Rademacher complexities of some Lipschitz function classes. The generality of our approach can be seen from the fact that several well-known algorithms are special cases of the Lipschitz classifier, among them the support vector machine, the linear programming machine, and the 1-nearest neighbor classifier.

ei

PDF PostScript PDF [BibTex]

PDF PostScript PDF [BibTex]


no image
cDNA-Microarray Technology in Cartilage Research - Functional Genomics of Osteoarthritis [in German]

Aigner, T., Finger, F., Zien, A., Bartnik, E.

Zeitschrift f{\"u}r Orthop{\"a}die und ihre Grenzgebiete, 142(2):241-247, April 2004 (article)

Abstract
Functional genomics represents a new challenging approach in order to analyze complex diseases such as osteoarthritis on a molecular level. The characterization of the molecular changes of the cartilage cells, the chondrocytes, enables a better understanding of the pathomechanisms of the disease. In particular, the identification and characterization of new target molecules for therapeutic intervention is of interest. Also, potential molecular markers for diagnosis and monitoring of osteoarthritis contribute to a more appropriate patient management. The DNA-microarray technology complements (but does not replace) biochemical and biological research in new disease-relevant genes. Large-scale functional genomics will identify molecular networks such as yet identified players in the anabolic-catabolic balance of articular cartilage as well as disease-relevant intracellular signaling cascades so far rather unknown in articular chondrocytes. However, at the moment it is also important to recognize the limitations of the microarray technology in order to avoid over-interpretation of the results. This might lead to misleading results and prevent to a significant extent a proper use of the potential of this technology in the field of osteoarthritis.

ei

[BibTex]

[BibTex]


no image
A Compression Approach to Support Vector Model Selection

von Luxburg, U., Bousquet, O., Schölkopf, B.

Journal of Machine Learning Research, 5, pages: 293-323, April 2004 (article)

Abstract
In this paper we investigate connections between statistical learning theory and data compression on the basis of support vector machine (SVM) model selection. Inspired by several generalization bounds we construct "compression coefficients" for SVMs which measure the amount by which the training labels can be compressed by a code built from the separating hyperplane. The main idea is to relate the coding precision to geometrical concepts such as the width of the margin or the shape of the data in the feature space. The so derived compression coefficients combine well known quantities such as the radius-margin term R^2/rho^2, the eigenvalues of the kernel matrix, and the number of support vectors. To test whether they are useful in practice we ran model selection experiments on benchmark data sets. As a result we found that compression coefficients can fairly accurately predict the parameters for which the test error is minimized.

ei

PDF [BibTex]

PDF [BibTex]


no image
Experimentally optimal v in support vector regression for different noise models and parameter settings

Chalimourda, A., Schölkopf, B., Smola, A.

Neural Networks, 17(1):127-141, January 2004 (article)

Abstract
In Support Vector (SV) regression, a parameter ν controls the number of Support Vectors and the number of points that come to lie outside of the so-called var epsilon-insensitive tube. For various noise models and SV parameter settings, we experimentally determine the values of ν that lead to the lowest generalization error. We find good agreement with the values that had previously been predicted by a theoretical argument based on the asymptotic efficiency of a simplified model of SV regression. As a side effect of the experiments, valuable information about the generalization behavior of the remaining SVM parameters and their dependencies is gained. The experimental findings are valid even for complex ‘real-world’ data sets. Based on our results on the role of the ν-SVM parameters, we discuss various model selection methods.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Protein ranking: from local to global structure in the protein similarity network

Weston, J., Elisseeff, A., Zhou, D., Leslie, C., Noble, W.

Proceedings of the National Academy of Science, 101(17):6559-6563, 2004 (article)

Abstract
Biologists regularly search databases of DNA or protein sequences for evolutionary or functional relationships to a given query sequence. We describe a ranking algorithm that exploits the entire network structure of similarity relationships among proteins in a sequence database by performing a diffusion operation on a pre-computed, weighted network. The resulting ranking algorithm, evaluated using a human-curated database of protein structures, is efficient and provides significantly better rankings than a local network search algorithm such as PSI-BLAST.

ei

Web [BibTex]

Web [BibTex]


no image
Statistical Performance of Support Vector Machines

Blanchard, G., Bousquet, O., Massart, P.

2004 (article)

ei

PostScript [BibTex]


no image
Asymptotic Properties of the Fisher Kernel

Tsuda, K., Akaho, S., Kawanabe, M., Müller, K.

Neural Computation, 16(1):115-137, 2004 (article)

ei

PDF [BibTex]

PDF [BibTex]


no image
Some observations on the effects of slant and texture type on slant-from-texture

Rosas, P., Wichmann, F., Wagemans, J.

Vision Research, 44(13):1511-1535, 2004 (article)

Abstract
We measure the performance of five subjects in a slant-discrimination task for differently textured planes. As textures we used uniform lattices, randomly displaced lattices, circles (polka dots), Voronoi tessellations, plaids, 1/f noise, “coherent” noise and a leopard skin-like texture. Our results show: (1) Improving performance with larger slants for all textures. (2) Thus, following from (1), cases of “non-symmetrical” performance around a particular orientation. (3) For orientations sufficiently slanted, the different textures do not elicit major differences in performance, (4) while for orientations closer to the vertical plane there are marked differences between them. (5) These differences allow a rank-order of textures to be formed according to their “helpfulness”– that is, how easy the discrimination task is when a particular texture is mapped on the plane. Polka dots tend to allow the best slant discrimination performance, noise patterns the worst. Two additional experiments were conducted to test the generality of the obtained rank-order. First, the tilt of the planes was rotated to break the axis of gravity present in the original discrimination experiment. Second, the task was changed to a slant report task via probe adjustment. The results of both control experiments confirmed the texture-based rank-order previously obtained. We comment on the importance of these results for depth perception research in general, and in particular the implications our results have for studies of cue combination (sensor fusion) using texture as one of the cues involved.

ei

PDF [BibTex]

PDF [BibTex]


no image
Minimizing the Cross Validation Error to Mix Kernel Matrices of Heterogeneous Biological Data

Tsuda, K., Uda, S., Kin, T., Asai, K.

Neural Processing Letters, 19, pages: 63-72, 2004 (article)

ei

PDF [BibTex]

PDF [BibTex]


no image
A Tutorial on Support Vector Regression

Smola, A., Schölkopf, B.

Statistics and Computing, 14(3):199-222, 2004 (article)

ei

Web [BibTex]

Web [BibTex]


no image
Statistische Lerntheorie und Empirische Inferenz

Schölkopf, B.

Jahrbuch der Max-Planck-Gesellschaft, 2004, pages: 377-382, 2004 (misc)

Abstract
Statistical learning theory studies the process of inferring regularities from empirical data. The fundamental problem is what is called generalization: how it is possible to infer a law which will be valid for an infinite number of future observations, given only a finite amount of data? This problem hinges upon fundamental issues of statistics and science in general, such as the problems of complexity of explanations, a priori knowledge, and representation of data.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Bayesian analysis of the Scatterometer Wind Retrieval Inverse Problem: Some New Approaches

Cornford, D., Csato, L., Evans, D., Opper, M.

Journal of the Royal Statistical Society B, 66, pages: 1-17, 3, 2004 (article)

Abstract
The retrieval of wind vectors from satellite scatterometer observations is a non-linear inverse problem.A common approach to solving inverse problems is to adopt a Bayesian framework and to infer the posterior distribution of the parameters of interest given the observations by using a likelihood model relating the observations to the parameters, and a prior distribution over the parameters.We show how Gaussian process priors can be used efficiently with a variety of likelihood models, using local forward (observation) models and direct inverse models for the scatterometer.We present an enhanced Markov chain Monte Carlo method to sample from the resulting multimodal posterior distribution.We go on to show how the computational complexity of the inference can be controlled by using a sparse, sequential Bayes algorithm for estimation with Gaussian processes.This helps to overcome the most serious barrier to the use of probabilistic, Gaussian process methods in remote sensing inverse problems, which is the prohibitively large size of the data sets.We contrast the sampling results with the approximations that are found by using the sparse, sequential Bayes algorithm.

ei

PDF [BibTex]

PDF [BibTex]


no image
Feature Selection for Support Vector Machines Using Genetic Algorithms

Fröhlich, H., Chapelle, O., Schölkopf, B.

International Journal on Artificial Intelligence Tools (Special Issue on Selected Papers from the 15th IEEE International Conference on Tools with Artificial Intelligence 2003), 13(4):791-800, 2004 (article)

ei

Web [BibTex]

Web [BibTex]


no image
Phenotypic Characterization of Human Chondrocyte Cell Line C-20/A4: A Comparison between Monolayer and Alginate Suspension Culture

Finger, F., Schorle, C., Söder, S., Zien, A., Goldring, M., Aigner, T.

Cells Tissues Organs, 178(2):65-77, 2004 (article)

Abstract
DNA microarray analysis was used to investigate the molecular phenotype of one of the first human chondrocyte cell lines, C-20/A4, derived from juvenile costal chondrocytes by immortalization with origin-defective simian virus 40 large T antigen. Clontech Human Cancer Arrays 1.2 and quantitative PCR were used to examine gene expression profiles of C-20/A4 cells cultured in the presence of serum in monolayer and alginate beads. In monolayer cultures, genes involved in cell proliferation were strongly upregulated compared to those expressed by human adult articular chondrocytes in primary culture. Of the cell cycle-regulated genes, only two, the CDK regulatory subunit and histone H4, were downregulated after culture in alginate beads, consistent with the ability of these cells to proliferate in suspension culture. In contrast, the expression of several genes that are involved in pericellular matrix formation, including MMP-14, COL6A1, fibronectin, biglycan and decorin, was upregulated when the C-20/A4 cells were transferred to suspension culture in alginate. Also, nexin-1, vimentin, and IGFBP-3, which are known to be expressed by primary chondrocytes, were differentially expressed in our study. Consistent with the proliferative phenotype of this cell line, few genes involved in matrix synthesis and turnover were highly expressed in the presence of serum. These results indicate that immortalized chondrocyte cell lines, rather than substituting for primary chondrocytes, may serve as models for extending findings on chondrocyte function not achievable by the use of primary chondrocytes.

ei

[BibTex]

[BibTex]


no image
Kernel Methods and their Potential Use in Signal Processing

Perez-Cruz, F., Bousquet, O.

IEEE Signal Processing Magazine, (Special issue on Signal Processing for Mining), 2004 (article) Accepted

ei

PostScript [BibTex]

PostScript [BibTex]