Header logo is


1999


no image
p73 and p63 are homotetramers capable of weak heterotypic interactions with each other but not with p53.

Davison, T., Vagner, C., Kaghad, M., Ayed, A., Caput, D., CH, ..

Journal of Biological Chemistry, 274(26):18709-18714, June 1999 (article)

Abstract
Mutations in the p53 tumor suppressor gene are the most frequent genetic alterations found in human cancers. Recent identification of two human homologues of p53 has raised the prospect of functional interactions between family members via a conserved oligomerization domain. Here we report in vitro and in vivo analysis of homo- and hetero-oligomerization of p53 and its homologues, p63 and p73. The oligomerization domains of p63 and p73 can independently fold into stable homotetramers, as previously observed for p53. However, the oligomerization domain of p53 does not associate with that of either p73 or p63, even when p53 is in 15-fold excess. On the other hand, the oligomerization domains of p63 and p73 are able to weakly associate with one another in vitro. In vivo co-transfection assays of the ability of p53 and its homologues to activate reporter genes showed that a DNA-binding mutant of p53 was not able to act in a dominant negative manner over wild-type p73 or p63 but that a p73 mutant could inhibit the activity of wild-type p63. These data suggest that mutant p53 in cancer cells will not interact with endogenous or exogenous p63 or p73 via their respective oligomerization domains. It also establishes that the multiple isoforms of p63 as well as those of p73 are capable of interacting via their common oligomerization domain.

ei

Web [BibTex]

1999


Web [BibTex]


no image
Estimating the support of a high-dimensional distribution

Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., Williamson, R.

(MSR-TR-99-87), Microsoft Research, 1999 (techreport)

ei

Web [BibTex]

Web [BibTex]


no image
Spatial Learning and Localization in Animals: A Computational Model and Its Implications for Mobile Robots

Balakrishnan, K., Bousquet, O., Honavar, V.

Adaptive Behavior, 7(2):173-216, 1999 (article)

ei

[BibTex]

[BibTex]


no image
SVMs for Histogram Based Image Classification

Chapelle, O., Haffner, P., Vapnik, V.

IEEE Transactions on Neural Networks, (9), 1999 (article)

Abstract
Traditional classification approaches generalize poorly on image classification tasks, because of the high dimensionality of the feature space. This paper shows that Support Vector Machines (SVM) can generalize well on difficult image classification problems where the only features are high dimensional histograms. Heavy-tailed RBF kernels of the form $K(mathbf{x},mathbf{y})=e^{-rhosum_i |x_i^a-y_i^a|^{b}}$ with $aleq 1$ and $b leq 2$ are evaluated on the classification of images extracted from the Corel Stock Photo Collection and shown to far outperform traditional polynomial or Gaussian RBF kernels. Moreover, we observed that a simple remapping of the input $x_i rightarrow x_i^a$ improves the performance of linear SVMs to such an extend that it makes them, for this problem, a valid alternative to RBF kernels.

ei

GZIP [BibTex]

GZIP [BibTex]


no image
Generalization Bounds via Eigenvalues of the Gram matrix

Schölkopf, B., Shawe-Taylor, J., Smola, A., Williamson, R.

(99-035), NeuroCOLT, 1999 (techreport)

ei

[BibTex]

[BibTex]


no image
Sparse kernel feature analysis

Smola, A., Mangasarian, O., Schölkopf, B.

(99-04), Data Mining Institute, 1999, 24th Annual Conference of Gesellschaft f{\"u}r Klassifikation, University of Passau (techreport)

ei

PostScript [BibTex]

PostScript [BibTex]