Header logo is


2000


no image
Subliminale Darbietung verkehrsrelevanter Information in Kraftfahrzeugen

Staedtgen, M., Hahn, S., Franz, MO., Spitzer, M.

pages: 98, (Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot), 3. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2000 (poster)

Abstract
Durch moderne Bildverarbeitungstechnologien ist es m{\"o}glich, in Kraftfahrzeugen bestimmte kritische Verkehrssituationen automatisch zu erkennen und den Fahrer zu warnen bzw. zu informieren. Ein Problem ist dabei die Darbietung der Ergebnisse, die den Fahrer m{\"o}glichst wenig belasten und seine Aufmerksamkeit nicht durch zus{\"a}tzliche Warnleuchten oder akustische Signale vom Verkehrsgeschehen ablenken soll. In einer Reihe von Experimenten wurde deshalb untersucht, ob subliminal dargebotene, das heißt nicht bewußt wahrgenommene, verkehrsrelevante Informationen verhaltenswirksam werden und zur Informations{\"u}bermittlung an den Fahrer genutzt werden k{\"o}nnen. In einem Experiment zur semantischen Bahnung konnte mit Hilfe einer lexikalischen Entscheidungsaufgabe gezeigt werden, daß auf den Straßenverkehr bezogene Worte schneller verarbeitet werden, wenn vorher ein damit in Zusammenhang stehendes Bild eines Verkehrsschildes subliminal pr{\"a}sentiert wurde. Auch bei parafovealer Darbietung der subliminalen Stimuli wurde eine Beschleunigung erzielt. In einer visuellen Suchaufgabe wurden in Bildern realer Verkehrssituationen Verkehrszeichen schneller entdeckt, wenn das Bild des Verkehrszeichens vorher subliminal dargeboten wurde. In beiden Experimenten betrug die Pr{\"a}sentationszeit f{\"u}r die Hinweisreize 17 ms, zus{\"a}tzlich wurde durch Vorw{\"a}rts- und R{\"u}ckw{\"a}rtsmaskierung die bewußteWahrnehmung verhindert. Diese Laboruntersuchungen zeigten, daß sich auch im Kontext des Straßenverkehrs Beschleunigungen der Informationsverarbeitung durch subliminal dargebotene Stimuli erreichen lassen. In einem dritten Experiment wurde die Darbietung eines subliminalen Hinweisreizes auf die Reaktionszeit beim Bremsen in einem realen Fahrversuch untersucht. Die Versuchspersonen (n=17) sollten so schnell wie m{\"o}glich bremsen, wenn die Bremsleuchten eines im Abstand von 12-15 m voran fahrenden Fahrzeuges aufleuchteten. In 50 von insgesamt 100 Durchg{\"a}ngen wurde ein subliminaler Stimulus (zwei rote Punkte mit einem Zentimeter Durchmesser und zehn Zentimeter Abstand) 150 ms vor Aufleuchten der Bremslichter pr{\"a}sentiert. Die Darbietung erfolgte durch ein im Auto an Stelle des Tachometers integriertes TFT-LCD Display. Im Vergleich zur Reaktion ohne subliminalen Stimulus verk{\"u}rzte sich die Reaktionszeit dadurch signifikant um 51 ms. In den beschriebenen Experimenten konnte gezeigt werden, daß die subliminale Darbietung verkehrsrelevanter Information auch in Kraftfahrzeugen verhaltenswirksam werden kann. In Zukunft k{\"o}nnte durch die Kombination der online-Bildverarbeitung im Kraftfahrzeug mit subliminaler Darbietung der Ergebnisse eine Erh{\"o}hung der Verkehrssicherheit und des Komforts erreicht werden.

ei

Web [BibTex]

2000


Web [BibTex]


no image
Statistical Learning and Kernel Methods

Schölkopf, B.

In CISM Courses and Lectures, International Centre for Mechanical Sciences Vol.431, CISM Courses and Lectures, International Centre for Mechanical Sciences, 431(23):3-24, (Editors: G Della Riccia and H-J Lenz and R Kruse), Springer, Vienna, Data Fusion and Perception, 2000 (inbook)

ei

[BibTex]

[BibTex]


no image
Bounds on Error Expectation for Support Vector Machines

Vapnik, V., Chapelle, O.

Neural Computation, 12(9):2013-2036, 2000 (article)

Abstract
We introduce the concept of span of support vectors (SV) and show that the generalization ability of support vector machines (SVM) depends on this new geometrical concept. We prove that the value of the span is always smaller (and can be much smaller) than the diameter of the smallest sphere containing th e support vectors, used in previous bounds. We also demonstate experimentally that the prediction of the test error given by the span is very accurate and has direct application in model selection (choice of the optimal parameters of the SVM)

ei

GZIP [BibTex]

GZIP [BibTex]


no image
An Introduction to Kernel-Based Learning Algorithms

Müller, K., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.

In Handbook of Neural Network Signal Processing, 4, (Editors: Yu Hen Hu and Jang-Neng Hwang), CRC Press, 2000 (inbook)

ei

[BibTex]

[BibTex]

1999


no image
Unexpected and anticipated pain: identification of specific brain activations by correlation with reference functions derived form conditioning theory

Ploghaus, A., Clare, S., Wichmann, F., Tracey, I.

29, 29th Annual Meeting of the Society for Neuroscience (Neuroscience), October 1999 (poster)

ei

[BibTex]

1999


[BibTex]


no image
Lernen mit Kernen: Support-Vektor-Methoden zur Analyse hochdimensionaler Daten

Schölkopf, B., Müller, K., Smola, A.

Informatik - Forschung und Entwicklung, 14(3):154-163, September 1999 (article)

Abstract
We describe recent developments and results of statistical learning theory. In the framework of learning from examples, two factors control generalization ability: explaining the training data by a learning machine of a suitable complexity. We describe kernel algorithms in feature spaces as elegant and efficient methods of realizing such machines. Examples thereof are Support Vector Machines (SVM) and Kernel PCA (Principal Component Analysis). More important than any individual example of a kernel algorithm, however, is the insight that any algorithm that can be cast in terms of dot products can be generalized to a nonlinear setting using kernels. Finally, we illustrate the significance of kernel algorithms by briefly describing industrial and academic applications, including ones where we obtained benchmark record results.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Input space versus feature space in kernel-based methods

Schölkopf, B., Mika, S., Burges, C., Knirsch, P., Müller, K., Rätsch, G., Smola, A.

IEEE Transactions On Neural Networks, 10(5):1000-1017, September 1999 (article)

Abstract
This paper collects some ideas targeted at advancing our understanding of the feature spaces associated with support vector (SV) kernel functions. We first discuss the geometry of feature space. In particular, we review what is known about the shape of the image of input space under the feature space map, and how this influences the capacity of SV methods. Following this, we describe how the metric governing the intrinsic geometry of the mapped surface can be computed in terms of the kernel, using the example of the class of inhomogeneous polynomial kernels, which are often used in SV pattern recognition. We then discuss the connection between feature space and input space by dealing with the question of how one can, given some vector in feature space, find a preimage (exact or approximate) in input space. We describe algorithms to tackle this issue, and show their utility in two applications of kernel methods. First, we use it to reduce the computational complexity of SV decision functions; second, we combine it with the kernel PCA algorithm, thereby constructing a nonlinear statistical denoising technique which is shown to perform well on real-world data.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
p73 and p63 are homotetramers capable of weak heterotypic interactions with each other but not with p53.

Davison, T., Vagner, C., Kaghad, M., Ayed, A., Caput, D., CH, ..

Journal of Biological Chemistry, 274(26):18709-18714, June 1999 (article)

Abstract
Mutations in the p53 tumor suppressor gene are the most frequent genetic alterations found in human cancers. Recent identification of two human homologues of p53 has raised the prospect of functional interactions between family members via a conserved oligomerization domain. Here we report in vitro and in vivo analysis of homo- and hetero-oligomerization of p53 and its homologues, p63 and p73. The oligomerization domains of p63 and p73 can independently fold into stable homotetramers, as previously observed for p53. However, the oligomerization domain of p53 does not associate with that of either p73 or p63, even when p53 is in 15-fold excess. On the other hand, the oligomerization domains of p63 and p73 are able to weakly associate with one another in vitro. In vivo co-transfection assays of the ability of p53 and its homologues to activate reporter genes showed that a DNA-binding mutant of p53 was not able to act in a dominant negative manner over wild-type p73 or p63 but that a p73 mutant could inhibit the activity of wild-type p63. These data suggest that mutant p53 in cancer cells will not interact with endogenous or exogenous p63 or p73 via their respective oligomerization domains. It also establishes that the multiple isoforms of p63 as well as those of p73 are capable of interacting via their common oligomerization domain.

ei

Web [BibTex]

Web [BibTex]


no image
Kernel principal component analysis.

Schölkopf, B., Smola, A., Müller, K.

In Advances in Kernel Methods—Support Vector Learning, pages: 327-352, (Editors: B Schölkopf and CJC Burges and AJ Smola), MIT Press, Cambridge, MA, 1999 (inbook)

ei

[BibTex]

[BibTex]


no image
Single-class Support Vector Machines

Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J.

Dagstuhl-Seminar on Unsupervised Learning, pages: 19-20, (Editors: J. Buhmann, W. Maass, H. Ritter and N. Tishby), 1999 (poster)

ei

[BibTex]

[BibTex]


no image
Spatial Learning and Localization in Animals: A Computational Model and Its Implications for Mobile Robots

Balakrishnan, K., Bousquet, O., Honavar, V.

Adaptive Behavior, 7(2):173-216, 1999 (article)

ei

[BibTex]

[BibTex]


no image
SVMs for Histogram Based Image Classification

Chapelle, O., Haffner, P., Vapnik, V.

IEEE Transactions on Neural Networks, (9), 1999 (article)

Abstract
Traditional classification approaches generalize poorly on image classification tasks, because of the high dimensionality of the feature space. This paper shows that Support Vector Machines (SVM) can generalize well on difficult image classification problems where the only features are high dimensional histograms. Heavy-tailed RBF kernels of the form $K(mathbf{x},mathbf{y})=e^{-rhosum_i |x_i^a-y_i^a|^{b}}$ with $aleq 1$ and $b leq 2$ are evaluated on the classification of images extracted from the Corel Stock Photo Collection and shown to far outperform traditional polynomial or Gaussian RBF kernels. Moreover, we observed that a simple remapping of the input $x_i rightarrow x_i^a$ improves the performance of linear SVMs to such an extend that it makes them, for this problem, a valid alternative to RBF kernels.

ei

GZIP [BibTex]

GZIP [BibTex]


no image
Pedestal effects with periodic pulse trains

Henning, G., Wichmann, F.

Perception, 28, pages: S137, 1999 (poster)

Abstract
It is important to know for theoretical reasons how performance varies with stimulus contrast. But, for objects on CRT displays, retinal contrast is limited by the linear range of the display and the modulation transfer function of the eye. For example, with an 8 c/deg sinusoidal grating at 90% contrast, the contrast of the retinal image is barely 45%; more retinal contrast is required, however, to discriminate among theories of contrast discrimination (Wichmann, Henning and Ploghaus, 1998). The stimulus with the greatest contrast at any spatial-frequency component is a periodic pulse train which has 200% contrast at every harmonic. Such a waveform cannot, of course, be produced; the best we can do with our Mitsubishi display provides a contrast of 150% at an 8-c/deg fundamental thus producing a retinal image with about 75% contrast. The penalty of using this stimulus is that the 2nd harmonic of the retinal image also has high contrast (with an emmetropic eye, more than 60% of the contrast of the 8-c/deg fundamental ) and the mean luminance is not large (24.5 cd/m2 on our display). We have used standard 2-AFC experiments to measure the detectability of an 8-c/deg pulse train against the background of an identical pulse train of different contrasts. An unusually large improvement in detetectability was measured, the pedestal effect or "dipper," and the dipper was unusually broad. The implications of these results will be discussed.

ei

[BibTex]

[BibTex]


no image
Implications of the pedestal effect for models of contrast-processing and gain-control

Wichmann, F., Henning, G.

OSA Conference Program, pages: 62, 1999 (poster)

Abstract
Understanding contrast processing is essential for understanding spatial vision. Pedestal contrast systematically affects slopes of functions relating 2-AFC contrast discrimination performance to pedestal contrast. The slopes provide crucial information because only full sets of data allow discrimination among contrast-processing and gain-control models. Issues surrounding Weber's law will also be discussed.

ei

[BibTex]


no image
Entropy numbers, operators and support vector kernels.

Williamson, R., Smola, A., Schölkopf, B.

In Advances in Kernel Methods - Support Vector Learning, pages: 127-144, (Editors: B Schölkopf and CJC Burges and AJ Smola), MIT Press, Cambridge, MA, 1999 (inbook)

ei

[BibTex]

[BibTex]