Header logo is


2001


no image
The control structure of artificial creatures

Zhou, D., Dai, R.

Artificial Life and Robotics, 5(3), 2001, invited article (article)

ei

Web [BibTex]

2001


Web [BibTex]


no image
Support Vector Regression for Black-Box System Identification

Gretton, A., Doucet, A., Herbrich, R., Rayner, P., Schölkopf, B.

In 11th IEEE Workshop on Statistical Signal Processing, pages: 341-344, IEEE Signal Processing Society, Piscataway, NY, USA, 11th IEEE Workshop on Statistical Signal Processing, 2001 (inproceedings)

Abstract
In this paper, we demonstrate the use of support vector regression (SVR) techniques for black-box system identification. These methods derive from statistical learning theory, and are of great theoretical and practical interest. We briefly describe the theory underpinning SVR, and compare support vector methods with other approaches using radial basis networks. Finally, we apply SVR to modeling the behaviour of a hydraulic robot arm, and show that SVR improves on previously published results.

ei

PostScript [BibTex]

PostScript [BibTex]


no image
Markovian domain fingerprinting: statistical segmentation of protein sequences

Bejerano, G., Seldin, Y., Margalit, H., Tishby, N.

Bioinformatics, 17(10):927-934, 2001 (article)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Unsupervised Sequence Segmentation by a Mixture of Switching Variable Memory Markov Sources

Seldin, Y., Bejerano, G., Tishby, N.

In In the proceeding of the 18th International Conference on Machine Learning (ICML 2001), pages: 513-520, 18th International Conference on Machine Learning (ICML), 2001 (inproceedings)

Abstract
We present a novel information theoretic algorithm for unsupervised segmentation of sequences into alternating Variable Memory Markov sources. The algorithm is based on competitive learning between Markov models, when implemented as Prediction Suffix Trees (Ron et al., 1996) using the MDL principle. By applying a model clustering procedure, based on rate distortion theory combined with deterministic annealing, we obtain a hierarchical segmentation of sequences between alternating Markov sources. The algorithm seems to be self regulated and automatically avoids over segmentation. The method is applied successfully to unsupervised segmentation of multilingual texts into languages where it is able to infer correctly both the number of languages and the language switching points. When applied to protein sequence families, we demonstrate the method‘s ability to identify biologically meaningful sub-sequences within the proteins, which correspond to important functional sub-units called domains.

ei

PDF [BibTex]

PDF [BibTex]


no image
Kernel Machine Based Learning for Multi-View Face Detection and Pose Estimation

Cheng, Y., Fu, Q., Gu, L., Li, S., Schölkopf, B., Zhang, H.

In Proceedings Computer Vision, 2001, Vol. 2, pages: 674-679, IEEE Computer Society, 8th International Conference on Computer Vision (ICCV), 2001 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Support Vector Machines: Theorie und Anwendung auf Prädiktion epileptischer Anfälle auf der Basis von EEG-Daten

Lal, TN.

Biologische Kybernetik, Institut für Angewandte Mathematik, Universität Bonn, 2001, Advised by Prof. Dr. S. Albeverio (diplomathesis)

ei

ZIP [BibTex]

ZIP [BibTex]

2000


no image
Knowledge Discovery in Databases: An Information Retrieval Perspective

Ong, CS.

Malaysian Journal of Computer Science, 13(2):54-63, December 2000 (article)

Abstract
The current trend of increasing capabilities in data generation and collection has resulted in an urgent need for data mining applications, also called knowledge discovery in databases. This paper identifies and examines the issues involved in extracting useful grains of knowledge from large amounts of data. It describes a framework to categorise data mining systems. The author also gives an overview of the issues pertaining to data pre processing, as well as various information gathering methodologies and techniques. The paper covers some popular tools such as classification, clustering, and generalisation. A summary of statistical and machine learning techniques used currently is also provided.

ei

PDF [BibTex]

2000


PDF [BibTex]


no image
A real-time model of the human knee for application in virtual orthopaedic trainer

Peters, J., Riener, R.

In Proceedings of the 10th International Conference on BioMedical Engineering (ICBME 2000), 10, pages: 1-2, 10th International Conference on BioMedical Engineering (ICBME) , December 2000 (inproceedings)

Abstract
In this paper a real-time capable computational model of the human knee is presented. The model describes the passive elastic joint characteristics in six degrees-of-freedom (DOF). A black-box approach was chosen, where experimental data were approximated by piecewise polynomial functions. The knee model has been applied in a the Virtual Orthopaedic Trainer, which can support training of physical knee evaluation required for diagnosis and surgical planning.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
A Simple Iterative Approach to Parameter Optimization

Zien, A., Zimmer, R., Lengauer, T.

Journal of Computational Biology, 7(3,4):483-501, November 2000 (article)

Abstract
Various bioinformatics problems require optimizing several different properties simultaneously. For example, in the protein threading problem, a scoring function combines the values for different parameters of possible sequence-to-structure alignments into a single score to allow for unambiguous optimization. In this context, an essential question is how each property should be weighted. As the native structures are known for some sequences, a partial ordering on optimal alignments to other structures, e.g., derived from structural comparisons, may be used to adjust the weights. To resolve the arising interdependence of weights and computed solutions, we propose a heuristic approach: iterating the computation of solutions (here, threading alignments) given the weights and the estimation of optimal weights of the scoring function given these solutions via systematic calibration methods. For our application (i.e., threading), this iterative approach results in structurally meaningful weights that significantly improve performance on both the training and the test data sets. In addition, the optimized parameters show significant improvements on the recognition rate for a grossly enlarged comprehensive benchmark, a modified recognition protocol as well as modified alignment types (local instead of global and profiles instead of single sequences). These results show the general validity of the optimized weights for the given threading program and the associated scoring contributions.

ei

Web [BibTex]

Web [BibTex]


no image
Identification of Drug Target Proteins

Zien, A., Küffner, R., Mevissen, T., Zimmer, R., Lengauer, T.

ERCIM News, 43, pages: 16-17, October 2000 (article)

ei

Web [BibTex]

Web [BibTex]


no image
On Designing an Automated Malaysian Stemmer for the Malay Language

Tai, SY., Ong, CS., Abullah, NA.

In Fifth International Workshop on Information Retrieval with Asian Languages, pages: 207-208, ACM Press, New York, NY, USA, Fifth International Workshop on Information Retrieval with Asian Languages, October 2000 (inproceedings)

Abstract
Online and interactive information retrieval systems are likely to play an increasing role in the Malay Language community. To facilitate and automate the process of matching morphological term variants, a stemmer focusing on common affix removal algorithms is proposed as part of the design of an information retrieval system for the Malay Language. Stemming is a morphological process of normalizing word tokens down to their essential roots. The proposed stemmer strips prefixes and suffixes off the word. The experiment conducted with web sites selected from the World Wide Web has exhibited substantial improvements in the number of words indexed.

ei

PostScript Web DOI [BibTex]

PostScript Web DOI [BibTex]


no image
Ensemble of Specialized Networks based on Input Space Partition

Shin, H., Lee, H., Cho, S.

In Proc. of the Korean Operations Research and Management Science Conference, pages: 33-36, Korean Operations Research and Management Science Conference, October 2000 (inproceedings)

ei

[BibTex]

[BibTex]


no image
DES Approach Failure Recovery of Pump-valve System

Son, HI., Kim, KW., Lee, S.

In Korean Society of Precision Engineering (KSPE) Conference, pages: 647-650, Annual Meeting of the Korean Society of Precision Engineering (KSPE), October 2000 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
Ensemble Learning Algorithm of Specialized Networks

Shin, H., Lee, H., Cho, S.

In Proc. of the Korea Information Science Conference, pages: 308-310, Korea Information Science Conference, October 2000 (inproceedings)

ei

[BibTex]

[BibTex]


no image
DES Approach Failure Diagnosis of Pump-valve System

Son, HI., Kim, KW., Lee, S.

In Korean Society of Precision Engineering (KSPE) Conference, pages: 643-646, Annual Meeting of the Korean Society of Precision Engineering (KSPE), October 2000 (inproceedings)

Abstract
As many industrial systems become more complex, it becomes extremely difficult to diagnose the cause of failures. This paper presents a failure diagnosis approach based on discrete event system theory. In particular, the approach is a hybrid of event-based and state-based ones leading to a simpler failure diagnoser with supervisory control capability. The design procedure is presented along with a pump-valve system as an example.

ei

PDF [BibTex]

PDF [BibTex]


no image
Engineering Support Vector Machine Kernels That Recognize Translation Initiation Sites

Zien, A., Rätsch, G., Mika, S., Schölkopf, B., Lengauer, T., Müller, K.

Bioinformatics, 16(9):799-807, September 2000 (article)

Abstract
Motivation: In order to extract protein sequences from nucleotide sequences, it is an important step to recognize points at which regions start that code for proteins. These points are called translation initiation sites (TIS). Results: The task of finding TIS can be modeled as a classification problem. We demonstrate the applicability of support vector machines for this task, and show how to incorporate prior biological knowledge by engineering an appropriate kernel function. With the described techniques the recognition performance can be improved by 26% over leading existing approaches. We provide evidence that existing related methods (e.g. ESTScan) could profit from advanced TIS recognition.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Three-dimensional reconstruction of planar scenes

Urbanek, M.

Biologische Kybernetik, INP Grenoble, Warsaw University of Technology, September 2000 (diplomathesis)

Abstract
For a planar scene, we propose an algorithm to estimate its 3D structure. Homographies between corresponding planes are employed in order to recover camera motion parameters - between camera positions from which images of the scene were taken. Cases of one- and multiple- corresponding planes present on the scene are distinguished. Solutions are proposed for both cases.

ei

ZIP [BibTex]

ZIP [BibTex]


no image
Analysis of Gene Expression Data with Pathway Scores

Zien, A., Küffner, R., Zimmer, R., Lengauer, T.

In ISMB 2000, pages: 407-417, AAAI Press, Menlo Park, CA, USA, 8th International Conference on Intelligent Systems for Molecular Biology, August 2000 (inproceedings)

Abstract
We present a new approach for the evaluation of gene expression data. The basic idea is to generate biologically possible pathways and to score them with respect to gene expression measurements. We suggest sample scoring functions for different problem specifications. The significance of the scores for the investigated pathways is assessed by comparison to a number of scores for random pathways. We show that simple scoring functions can assign statistically significant scores to biologically relevant pathways. This suggests that the combination of appropriate scoring functions with the systematic generation of pathways can be used in order to select the most interesting pathways based on gene expression measurements.

ei

PDF [BibTex]

PDF [BibTex]


no image
A Meanfield Approach to the Thermodynamics of a Protein-Solvent System with Application to the Oligomerization of the Tumour Suppressor p53.

Noolandi, J., Davison, TS., Vokel, A., Nie, F., Kay, C., Arrowsmith, C.

Proceedings of the National Academy of Sciences of the United States of America, 97(18):9955-9960, August 2000 (article)

ei

Web [BibTex]

Web [BibTex]


no image
Observational Learning with Modular Networks

Shin, H., Lee, H., Cho, S.

In Lecture Notes in Computer Science (LNCS 1983), LNCS 1983, pages: 126-132, Springer-Verlag, Heidelberg, International Conference on Intelligent Data Engineering and Automated Learning (IDEAL), July 2000 (inproceedings)

Abstract
Observational learning algorithm is an ensemble algorithm where each network is initially trained with a bootstrapped data set and virtual data are generated from the ensemble for training. Here we propose a modular OLA approach where the original training set is partitioned into clusters and then each network is instead trained with one of the clusters. Networks are combined with different weighting factors now that are inversely proportional to the distance from the input vector to the cluster centers. Comparison with bagging and boosting shows that the proposed approach reduces generalization error with a smaller number of networks employed.

ei

PDF [BibTex]

PDF [BibTex]


no image
The Infinite Gaussian Mixture Model

Rasmussen, CE.

In Advances in Neural Information Processing Systems 12, pages: 554-560, (Editors: Solla, S.A. , T.K. Leen, K-R Müller), MIT Press, Cambridge, MA, USA, Thirteenth Annual Neural Information Processing Systems Conference (NIPS), June 2000 (inproceedings)

Abstract
In a Bayesian mixture model it is not necessary a priori to limit the number of components to be finite. In this paper an infinite Gaussian mixture model is presented which neatly sidesteps the difficult problem of finding the ``right'' number of mixture components. Inference in the model is done using an efficient parameter-free Markov Chain that relies entirely on Gibbs sampling.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Generalization Abilities of Ensemble Learning Algorithms

Shin, H., Jang, M., Cho, S.

In Proc. of the Korean Brain Society Conference, pages: 129-133, Korean Brain Society Conference, June 2000 (inproceedings)

ei

[BibTex]

[BibTex]


no image
Support vector method for novelty detection

Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., Platt, J.

In Advances in Neural Information Processing Systems 12, pages: 582-588, (Editors: SA Solla and TK Leen and K-R Müller), MIT Press, Cambridge, MA, USA, 13th Annual Neural Information Processing Systems Conference (NIPS), June 2000 (inproceedings)

Abstract
Suppose you are given some dataset drawn from an underlying probability distribution ¤ and you want to estimate a “simple” subset ¥ of input space such that the probability that a test point drawn from ¤ lies outside of ¥ equals some a priori specified ¦ between § and ¨. We propose a method to approach this problem by trying to estimate a function © which is positive on ¥ and negative on the complement. The functional form of © is given by a kernel expansion in terms of a potentially small subset of the training data; it is regularized by controlling the length of the weight vector in an associated feature space. We provide a theoretical analysis of the statistical performance of our algorithm. The algorithm is a natural extension of the support vector algorithm to the case of unlabelled data.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
v-Arc: Ensemble Learning in the Presence of Outliers

Rätsch, G., Schölkopf, B., Smola, A., Müller, K., Onoda, T., Mika, S.

In Advances in Neural Information Processing Systems 12, pages: 561-567, (Editors: SA Solla and TK Leen and K-R Müller), MIT Press, Cambridge, MA, USA, 13th Annual Neural Information Processing Systems Conference (NIPS), June 2000 (inproceedings)

Abstract
AdaBoost and other ensemble methods have successfully been applied to a number of classification tasks, seemingly defying problems of overfitting. AdaBoost performs gradient descent in an error function with respect to the margin, asymptotically concentrating on the patterns which are hardest to learn. For very noisy problems, however, this can be disadvantageous. Indeed, theoretical analysis has shown that the margin distribution, as opposed to just the minimal margin, plays a crucial role in understanding this phenomenon. Loosely speaking, some outliers should be tolerated if this has the benefit of substantially increasing the margin on the remaining points. We propose a new boosting algorithm which allows for the possibility of a pre-specified fraction of points to lie in the margin area or even on the wrong side of the decision boundary.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Invariant feature extraction and classification in kernel spaces

Mika, S., Rätsch, G., Weston, J., Schölkopf, B., Smola, A., Müller, K.

In Advances in neural information processing systems 12, pages: 526-532, (Editors: SA Solla and TK Leen and K-R Müller), MIT Press, Cambridge, MA, USA, 13th Annual Neural Information Processing Systems Conference (NIPS), June 2000 (inproceedings)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Transductive Inference for Estimating Values of Functions

Chapelle, O., Vapnik, V., Weston, J.

In Advances in Neural Information Processing Systems 12, pages: 421-427, (Editors: Solla, S.A. , T.K. Leen, K-R Müller), MIT Press, Cambridge, MA, USA, Thirteenth Annual Neural Information Processing Systems Conference (NIPS), June 2000 (inproceedings)

Abstract
We introduce an algorithm for estimating the values of a function at a set of test points $x_1^*,dots,x^*_m$ given a set of training points $(x_1,y_1),dots,(x_ell,y_ell)$ without estimating (as an intermediate step) the regression function. We demonstrate that this direct (transductive) way for estimating values of the regression (or classification in pattern recognition) is more accurate than the traditional one based on two steps, first estimating the function and then calculating the values of this function at the points of interest.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
The entropy regularization information criterion

Smola, A., Shawe-Taylor, J., Schölkopf, B., Williamson, R.

In Advances in Neural Information Processing Systems 12, pages: 342-348, (Editors: SA Solla and TK Leen and K-R Müller), MIT Press, Cambridge, MA, USA, 13th Annual Neural Information Processing Systems Conference (NIPS), June 2000 (inproceedings)

Abstract
Effective methods of capacity control via uniform convergence bounds for function expansions have been largely limited to Support Vector machines, where good bounds are obtainable by the entropy number approach. We extend these methods to systems with expansions in terms of arbitrary (parametrized) basis functions and a wide range of regularization methods covering the whole range of general linear additive models. This is achieved by a data dependent analysis of the eigenvalues of the corresponding design matrix.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Model Selection for Support Vector Machines

Chapelle, O., Vapnik, V.

In Advances in Neural Information Processing Systems 12, pages: 230-236, (Editors: Solla, S.A. , T.K. Leen, K-R Müller), MIT Press, Cambridge, MA, USA, Thirteenth Annual Neural Information Processing Systems Conference (NIPS), June 2000 (inproceedings)

Abstract
New functionals for parameter (model) selection of Support Vector Machines are introduced based on the concepts of the span of support vectors and rescaling of the feature space. It is shown that using these functionals, one can both predict the best choice of parameters of the model and the relative quality of performance for any value of parameter.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
New Support Vector Algorithms

Schölkopf, B., Smola, A., Williamson, R., Bartlett, P.

Neural Computation, 12(5):1207-1245, May 2000 (article)

Abstract
We propose a new class of support vector algorithms for regression and classification. In these algorithms, a parameter {nu} lets one effectively control the number of support vectors. While this can be useful in its own right, the parameterization has the additional benefit of enabling us to eliminate one of the other free parameters of the algorithm: the accuracy parameter {epsilon} in the regression case, and the regularization constant C in the classification case. We describe the algorithms, give some theoretical results concerning the meaning and the choice of {nu}, and report experimental results.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Generalization Abilities of Ensemble Learning Algorithms: OLA, Bagging, Boosting

Shin, H., Jang, M., Cho, S., Lee, B., Lim, Y.

In Proc. of the Korea Information Science Conference, pages: 226-228, Conference on Korean Information Science, April 2000 (inproceedings)

ei

[BibTex]

[BibTex]


no image
A simple iterative approach to parameter optimization

Zien, A., Zimmer, R., Lengauer, T.

In RECOMB2000, pages: 318-327, ACM Press, New York, NY, USA, Forth Annual Conference on Research in Computational Molecular Biology, April 2000 (inproceedings)

Abstract
Various bioinformatics problems require optimizing several different properties simultaneously. For example, in the protein threading problem, a linear scoring function combines the values for different properties of possible sequence-to-structure alignments into a single score to allow for unambigous optimization. In this context, an essential question is how each property should be weighted. As the native structures are known for some sequences, the implied partial ordering on optimal alignments may be used to adjust the weights. To resolve the arising interdependence of weights and computed solutions, we propose a novel approach: iterating the computation of solutions (here: threading alignments) given the weights and the estimation of optimal weights of the scoring function given these solutions via a systematic calibration method. We show that this procedure converges to structurally meaningful weights, that also lead to significantly improved performance on comprehensive test data sets as measured in different ways. The latter indicates that the performance of threading can be improved in general.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Bounds on Error Expectation for Support Vector Machines

Vapnik, V., Chapelle, O.

Neural Computation, 12(9):2013-2036, 2000 (article)

Abstract
We introduce the concept of span of support vectors (SV) and show that the generalization ability of support vector machines (SVM) depends on this new geometrical concept. We prove that the value of the span is always smaller (and can be much smaller) than the diameter of the smallest sphere containing th e support vectors, used in previous bounds. We also demonstate experimentally that the prediction of the test error given by the span is very accurate and has direct application in model selection (choice of the optimal parameters of the SVM)

ei

GZIP [BibTex]

GZIP [BibTex]


no image
Intelligence as a Complex System

Zhou, D.

Biologische Kybernetik, 2000 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Neural Networks in Robot Control

Peters, J.

Biologische Kybernetik, Fernuniversität Hagen, Hagen, Germany, 2000 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
Bayesian modelling of fMRI time series

, PADFR., Rasmussen, CE., Hansen, LK.

In pages: 754-760, (Editors: Sara A. Solla, Todd K. Leen and Klaus-Robert Müller), 2000 (inproceedings)

Abstract
We present a Hidden Markov Model (HMM) for inferring the hidden psychological state (or neural activity) during single trial fMRI activation experiments with blocked task paradigms. Inference is based on Bayesian methodology, using a combination of analytical and a variety of Markov Chain Monte Carlo (MCMC) sampling techniques. The advantage of this method is that detection of short time learning effects between repeated trials is possible since inference is based only on single trial experiments.

ei

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Choosing nu in support vector regression with different noise models — theory and experiments

Chalimourda, A., Schölkopf, B., Smola, A.

In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, IJCNN 2000, Neural Computing: New Challenges and Perspectives for the New Millennium, IEEE, International Joint Conference on Neural Networks, 2000 (inproceedings)

ei

[BibTex]

[BibTex]


no image
A High Resolution and Accurate Pentium Based Timer

Ong, CS., Wong, F., Lai, WK.

In 2000 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
Robust Ensemble Learning for Data Mining

Rätsch, G., Schölkopf, B., Smola, A., Mika, S., Onoda, T., Müller, K.

In Fourth Pacific-Asia Conference on Knowledge Discovery and Data Mining, 1805, pages: 341-341, Lecture Notes in Artificial Intelligence, (Editors: H. Terano), Fourth Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2000 (inproceedings)

ei

[BibTex]

[BibTex]


no image
Sparse greedy matrix approximation for machine learning.

Smola, A., Schölkopf, B.

In 17th International Conference on Machine Learning, Stanford, 2000, pages: 911-918, (Editors: P Langley), Morgan Kaufman, San Fransisco, CA, USA, 17th International Conference on Machine Learning (ICML), 2000 (inproceedings)

ei

[BibTex]

[BibTex]


no image
Entropy Numbers of Linear Function Classes.

Williamson, R., Smola, A., Schölkopf, B.

In 13th Annual Conference on Computational Learning Theory, pages: 309-319, (Editors: N Cesa-Bianchi and S Goldman), Morgan Kaufman, San Fransisco, CA, USA, 13th Annual Conference on Computational Learning Theory (COLT), 2000 (inproceedings)

ei

[BibTex]

[BibTex]

1997


no image
Comparing support vector machines with Gaussian kernels to radial basis function classifiers

Schölkopf, B., Sung, K., Burges, C., Girosi, F., Niyogi, P., Poggio, T., Vapnik, V.

IEEE Transactions on Signal Processing, 45(11):2758-2765, November 1997 (article)

Abstract
The support vector (SV) machine is a novel type of learning machine, based on statistical learning theory, which contains polynomial classifiers, neural networks, and radial basis function (RBF) networks as special cases. In the RBF case, the SV algorithm automatically determines centers, weights, and threshold that minimize an upper bound on the expected test error. The present study is devoted to an experimental comparison of these machines with a classical approach, where the centers are determined by X-means clustering, and the weights are computed using error backpropagation. We consider three machines, namely, a classical RBF machine, an SV machine with Gaussian kernel, and a hybrid system with the centers determined by the SV method and the weights trained by error backpropagation. Our results show that on the United States postal service database of handwritten digits, the SV machine achieves the highest recognition accuracy, followed by the hybrid system. The SV approach is thus not only theoretically well-founded but also superior in a practical application.

ei

Web DOI [BibTex]

1997


Web DOI [BibTex]


no image
The view-graph approach to visual navigation and spatial memory

Mallot, H., Franz, M., Schölkopf, B., Bülthoff, H.

In Artificial Neural Networks: ICANN ’97, pages: 751-756, (Editors: W Gerstner and A Germond and M Hasler and J-D Nicoud), Springer, Berlin, Germany, 7th International Conference on Artificial Neural Networks, October 1997 (inproceedings)

Abstract
This paper describes a purely visual navigation scheme based on two elementary mechanisms (piloting and guidance) and a graph structure combining individual navigation steps controlled by these mechanisms. In robot experiments in real environments, both mechanisms have been tested, piloting in an open environment and guidance in a maze with restricted movement opportunities. The results indicate that navigation and path planning can be brought about with these simple mechanisms. We argue that the graph of local views (snapshots) is a general and biologically plausible means of representing space and integrating the various mechanisms of map behaviour.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Predicting time series with support vector machines

Müller, K., Smola, A., Rätsch, G., Schölkopf, B., Kohlmorgen, J., Vapnik, V.

In Artificial Neural Networks: ICANN’97, pages: 999-1004, (Editors: Schölkopf, B. , C.J.C. Burges, A.J. Smola), Springer, Berlin, Germany, 7th International Conference on Artificial Neural Networks , October 1997 (inproceedings)

Abstract
Support Vector Machines are used for time series prediction and compared to radial basis function networks. We make use of two different cost functions for Support Vectors: training with (i) an e insensitive loss and (ii) Huber's robust loss function and discuss how to choose the regularization parameters in these models. Two applications are considered: data from (a) a noisy (normal and uniform noise) Mackey Glass equation and (b) the Santa Fe competition (set D). In both cases Support Vector Machines show an excellent performance. In case (b) the Support Vector approach improves the best known result on the benchmark by a factor of 29%.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Predicting time series with support vectur machines

Müller, K., Smola, A., Rätsch, G., Schölkopf, B., Kohlmorgen, J., Vapnik, V.

In Artificial neural networks: ICANN ’97, pages: 999-1004, (Editors: W Gerstner and A Germond and M Hasler and J-D Nicoud), Springer, Berlin, Germany, 7th International Conference on Artificial Neural Networks , October 1997 (inproceedings)

Abstract
Support Vector Machines are used for time series prediction and compared to radial basis function networks. We make use of two different cost functions for Support Vectors: training with (i) an e insensitive loss and (ii) Huber's robust loss function and discuss how to choose the regularization parameters in these models. Two applications are considered: data from (a) a noisy (normal and uniform noise) Mackey Glass equation and (b) the Santa Fe competition (set D). In both cases Support Vector Machines show an excellent performance. In case (b) the Support Vector approach improves the best known result on the benchmark by a factor of 29%.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Kernel principal component analysis

Schölkopf, B., Smola, A., Müller, K.

In Artificial neural networks: ICANN ’97, LNCS, vol. 1327, pages: 583-588, (Editors: W Gerstner and A Germond and M Hasler and J-D Nicoud), Springer, Berlin, Germany, 7th International Conference on Artificial Neural Networks, October 1997 (inproceedings)

Abstract
A new method for performing a nonlinear form of Principal Component Analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all possible d-pixel products in images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Homing by parameterized scene matching

Franz, M., Schölkopf, B., Bülthoff, H.

In Proceedings of the 4th European Conference on Artificial Life, (Eds.) P. Husbands, I. Harvey. MIT Press, Cambridge 1997, pages: 236-245, (Editors: P Husbands and I Harvey), MIT Press, Cambridge, MA, USA, 4th European Conference on Artificial Life (ECAL97), July 1997 (inproceedings)

Abstract
In visual homing tasks, animals as well as robots can compute their movements from the current view and a snapshot taken at a home position. Solving this problem exactly would require knowledge about the distances to visible landmarks, information, which is not directly available to passive vision systems. We propose a homing scheme that dispenses with accurate distance information by using parameterized disparity fields. These are obtained from an approximation that incorporates prior knowledge about perspective distortions of the visual environment. A mathematical analysis proves that the approximation does not prevent the scheme from approaching the goal with arbitrary accuracy. Mobile robot experiments are used to demonstrate the practical feasibility of the approach.

ei

PDF [BibTex]

PDF [BibTex]


no image
Improving the accuracy and speed of support vector learning machines

Burges, C., Schölkopf, B.

In Advances in Neural Information Processing Systems 9, pages: 375-381, (Editors: M Mozer and MJ Jordan and T Petsche), MIT Press, Cambridge, MA, USA, Tenth Annual Conference on Neural Information Processing Systems (NIPS), May 1997 (inproceedings)

Abstract
Support Vector Learning Machines (SVM) are finding application in pattern recognition, regression estimation, and operator inversion for illposed problems . Against this very general backdrop any methods for improving the generalization performance, or for improving the speed in test phase of SVMs are of increasing interest. In this paper we combine two such techniques on a pattern recognition problem The method for improving generalization performance the "virtual support vector" method does so by incorporating known invariances of the problem This method achieves a drop in the error rate on 10.000 NIST test digit images of 1,4 % to 1 %. The method for improving the speed (the "reduced set" method) does so by approximating the support vector decision surface. We apply this method to achieve a factor of fifty speedup in test phase over the virtual support vector machine The combined approach yields a machine which is both 22 times faster than the original machine, and which has better generalization performance achieving 1,1 % error . The virtual support vector method is applicable to any SVM problem with known invariances The reduced set method is applicable to any support vector machine .

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning view graphs for robot navigation

Franz, M., Schölkopf, B., Georg, P., Mallot, H., Bülthoff, H.

In Proceedings of the 1st Intl. Conf. on Autonomous Agents, pages: 138-147, (Editors: Johnson, W.L.), ACM Press, New York, NY, USA, First International Conference on Autonomous Agents (AGENTS '97), Febuary 1997 (inproceedings)

Abstract
We present a purely vision-based scheme for learning a parsimonious representation of an open environment. Using simple exploration behaviours, our system constructs a graph of appropriately chosen views. To navigate between views connected in the graph, we employ a homing strategy inspired by findings of insect ethology. Simulations and robot experiments demonstrate the feasibility of the proposed approach.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase.

Vaziri, H., MD, .., RC, .., Davison, T., YS, .., CH, .., GG, .., Benchimol, S.

The European Molecular Biology Organization Journal, 16(19):6018-6033, 1997 (article)

ei

Web [BibTex]

Web [BibTex]