Header logo is


2011


no image
Robust Control of Teleoperation Systems Interacting with Viscoelastic Soft Tissues

Cho, JH., Son, HI., Bhattacharjee, T., Lee, DG., Lee, DY.

IEEE Transactions on Control Systems Technology, January 2011 (article) In revision

ei

[BibTex]

2011


[BibTex]


no image
Towards Motor Skill Learning for Robotics

Peters, J., Mülling, K., Kober, J., Nguyen-Tuong, D., Kroemer, O.

In Robotics Research, pages: 469-482, (Editors: Pradalier, C. , R. Siegwart, G. Hirzinger), Springer, Berlin, Germany, 14th International Symposium on Robotics Research (ISRR), January 2011 (inproceedings)

Abstract
Learning robots that can acquire new motor skills and refine existing one has been a long standing vision of robotics, artificial intelligence, and the cognitive sciences. Early steps towards this goal in the 1980s made clear that reasoning and human insights will not suffice. Instead, new hope has been offered by the rise of modern machine learning approaches. However, to date, it becomes increasingly clear that off-the-shelf machine learning approaches will not suffice for motor skill learning as these methods often do not scale into the high-dimensional domains of manipulator and humanoid robotics nor do they fulfill the real-time requirement of our domain. As an alternative, we propose to break the generic skill learning problem into parts that we can understand well from a robotics point of view. After designing appropriate learning approaches for these basic components, these will serve as the ingredients of a general approach to motor skill learning. In this paper, we discuss our recent and current progress in this direction. For doing so, we present our work on learning to control, on learning elementary movements as well as our steps towards learning of complex tasks. We show several evaluations both using real robots as well as physically realistic simulations.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Effect of Control Parameters and Haptic Cues on Human Perception for Remote Operations

Son, HI., Bhattacharjee, T., Jung, H., Lee, DY.

Experimental Brain Research, January 2011 (article) Submitted

ei

[BibTex]

[BibTex]


no image
Learning Visual Representations for Interactive Systems

Piater, J., Jodogne, S., Detry, R., Kraft, D., Krüger, N., Kroemer, O., Peters, J.

In Robotics Research, pages: 399-416, (Editors: Pradalier, C. , R. Siegwart, G. Hirzinger), Springer, Berlin, Germany, 14th International Symposium on Robotics Research (ISRR), January 2011 (inproceedings)

Abstract
We describe two quite different methods for associating action parameters to visual percepts. Our RLVC algorithm performs reinforcement learning directly on the visual input space. To make this very large space manageable, RLVC interleaves the reinforcement learner with a supervised classification algorithm that seeks to split perceptual states so as to reduce perceptual aliasing. This results in an adaptive discretization of the perceptual space based on the presence or absence of visual features. Its extension RLJC also handles continuous action spaces. In contrast to the minimalistic visual representations produced by RLVC and RLJC, our second method learns structural object models for robust object detection and pose estimation by probabilistic inference. To these models, the method associates grasp experiences autonomously learned by trial and error. These experiences form a non-parametric representation of grasp success likelihoods over gripper poses, which we call a gra sp d ensi ty. Thus, object detection in a novel scene simultaneously produces suitable grasping options.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Joint Genetic Analysis of Gene Expression Data with Inferred Cellular Phenotypes

Parts, L., Stegle, O., Winn, J., Durbin, R.

PLoS Genetics, 7(1):1-10, January 2011 (article)

Abstract
Even within a defined cell type, the expression level of a gene differs in individual samples. The effects of genotype, measured factors such as environmental conditions, and their interactions have been explored in recent studies. Methods have also been developed to identify unmeasured intermediate factors that coherently influence transcript levels of multiple genes. Here, we show how to bring these two approaches together and analyse genetic effects in the context of inferred determinants of gene expression. We use a sparse factor analysis model to infer hidden factors, which we treat as intermediate cellular phenotypes that in turn affect gene expression in a yeast dataset. We find that the inferred phenotypes are associated with locus genotypes and environmental conditions and can explain genetic associations to genes in trans. For the first time, we consider and find interactions between genotype and intermediate phenotypes inferred from gene expression levels, complementing and extending established results.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
A Non-Parametric Approach to Dynamic Programming

Kroemer, O., Peters, J.

In Advances in Neural Information Processing Systems 24, pages: 1719-1727, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and F Pereira and KQ Weinberger), Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
In this paper, we consider the problem of policy evaluation for continuousstate systems. We present a non-parametric approach to policy evaluation, which uses kernel density estimation to represent the system. The true form of the value function for this model can be determined, and can be computed using Galerkin’s method. Furthermore, we also present a unified view of several well-known policy evaluation methods. In particular, we show that the same Galerkin method can be used to derive Least-Squares Temporal Difference learning, Kernelized Temporal Difference learning, and a discrete-state Dynamic Programming solution, as well as our proposed method. In a numerical evaluation of these algorithms, the proposed approach performed better than the other methods.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Reinforcement Learning with Bounded Information Loss

Peters, J., Peters, J., Mülling, K., Altun, Y.

AIP Conference Proceedings, 1305(1):365-372, 2011 (article)

Abstract
Policy search is a successful approach to reinforcement learning. However, policy improvements often result in the loss of information. Hence, it has been marred by premature convergence and implausible solutions. As first suggested in the context of covariant or natural policy gradients, many of these problems may be addressed by constraining the information loss. In this paper, we continue this path of reasoning and suggest two reinforcement learning methods, i.e., a model‐based and a model free algorithm that bound the loss in relative entropy while maximizing their return. The resulting methods differ significantly from previous policy gradient approaches and yields an exact update step. It works well on typical reinforcement learning benchmark problems as well as novel evaluations in robotics. We also show a Bayesian bound motivation of this new approach [8].

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Transfer Learning with Copulas

Lopez-Paz, D., Hernandez-Lobato, J.

In pages: 2, NIPS, Workshop on Copulas in Machine Learning, 2011 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
Denoising sparse noise via online dictionary learning

Cherian, A., Sra, S., Papanikolopoulos, N.

In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011, pages: 2060 -2063, IEEE, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2011 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
PILCO: A Model-Based and Data-Efficient Approach to Policy Search

Deisenroth, MP., Rasmussen, CE.

In Proceedings of the 28th International Conference on Machine Learning, ICML 2011, pages: 465-472, (Editors: L Getoor and T Scheffer), Omnipress, 2011 (inproceedings)

Abstract
In this paper, we introduce PILCO, a practical, data-efficient model-based policy search method. PILCO reduces model bias, one of the key problems of model-based reinforcement learning, in a principled way. By learning a probabilistic dynamics model and explicitly incorporating model uncertainty into long-term planning, PILCO can cope with very little data and facilitates learning from scratch in only a few trials. Policy evaluation is performed in closed form using state-of-the-art approximate inference. Furthermore, policy gradients are computed analytically for policy improvement. We report unprecedented learning efficiency on challenging and high-dimensional control tasks.

ei

Web [BibTex]

Web [BibTex]


no image
Kernel Bayes’ Rule

Fukumizu, K., Song, L., Gretton, A.

In Advances in Neural Information Processing Systems 24, pages: 1737-1745, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and F Pereira and KQ Weinberger), Curran Associates, Inc., Red Hook, NY, USA, Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
Optimal Reinforcement Learning for Gaussian Systems

Hennig, P.

In Advances in Neural Information Processing Systems 24, pages: 325-333, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and F Pereira and KQ Weinberger), Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
The exploration-exploitation trade-off is among the central challenges of reinforcement learning. The optimal Bayesian solution is intractable in general. This paper studies to what extent analytic statements about optimal learning are possible if all beliefs are Gaussian processes. A first order approximation of learning of both loss and dynamics, for nonlinear, time-varying systems in continuous time and space, subject to a relatively weak restriction on the dynamics, is described by an infinite-dimensional partial differential equation. An approximate finitedimensional projection gives an impression for how this result may be helpful.

ei pn

PDF Web [BibTex]

PDF Web [BibTex]


no image
Efficient inference in matrix-variate Gaussian models with iid observation noise

Stegle, O., Lippert, C., Mooij, J., Lawrence, N., Borgwardt, K.

In Advances in Neural Information Processing Systems 24, pages: 630-638, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and F Pereira and KQ Weinberger), Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
Inference in matrix-variate Gaussian models has major applications for multioutput prediction and joint learning of row and column covariances from matrixvariate data. Here, we discuss an approach for efficient inference in such models that explicitly account for iid observation noise. Computational tractability can be retained by exploiting the Kronecker product between row and column covariance matrices. Using this framework, we show how to generalize the Graphical Lasso in order to learn a sparse inverse covariance between features while accounting for a low-rank confounding covariance between samples. We show practical utility on applications to biology, where we model covariances with more than 100,000 dimensions. We find greater accuracy in recovering biological network structures and are able to better reconstruct the confounders.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Expectation Propagation for the Estimation of Conditional Bivariate Copulas

Hernandez-Lobato, J., Lopez-Paz, D., Gharhamani, Z.

In pages: 2, NIPS, Workshop on Copulas in Machine Learning, 2011 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
Efficient Similarity Search for Covariance Matrices via the Jensen-Bregman LogDet Divergence

Cherian, A., Sra, S., Banerjee, A., Papanikolopoulos, N.

In IEEE International Conference on Computer Vision, ICCV 2011, pages: 2399-2406, (Editors: DN Metaxas and L Quan and A Sanfeliu and LJ Van Gool), IEEE, 13th International Conference on Computer Vision (ICCV), 2011 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Introducing the detection of auditory error responses based on BCI technology for passive interaction

Zander, TO., Klippel, DM., Scherer, R.

In Proceedings of the 5th International Brain–Computer Interface Conference, pages: 252-255, (Editors: GR Müller-Putz and R Scherer and M Billinger and A Kreilinger and V Kaiser and C Neuper), Graz: Verlag der Technischen Universität, 2011 (inproceedings)

ei

[BibTex]

[BibTex]


no image
Generalized Dictionary Learning for Symmetric Positive Definite Matrices with Application to Nearest Neighbor Retrieval

Sra, S., Cherian, A.

In Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2011, LNCS vol 6913, Part III, pages: 318-332, (Editors: D Gunopulos and T Hofmann and D Malerba and M Vazirgiannis), Springer, 22th European Conference on Machine Learning (ECML), 2011 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Restricted boltzmann machines as useful tool for detecting oscillatory eeg components

Balderas, D., Zander, TO., Bachl, F., Neuper, C., Scherer, R.

In Proceedings of the 5th International Brain–Computer Interface Conference, pages: 68-71, (Editors: GR Müller-Putz and R Scherer and M Billinger and A Kkreilinger and V Kaiser and C Neuper), Graz: Verlag der Technischen Universität, 2011 (inproceedings)

ei

[BibTex]

[BibTex]


no image
Hierarchical Multitask Structured Output Learning for Large-scale Sequence Segmentation

Görnitz, N., Widmer, C., Zeller, G., Kahles, A., Sonnenburg, S., Rätsch, G.

In Advances in Neural Information Processing Systems 24, pages: 2690-2698, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and FCN Pereira and KQ Weinberger), Curran Associates, Inc., Red Hook, NY, USA, Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
Phase transition in the family of p-resistances

Alamgir, M., von Luxburg, U.

In Advances in Neural Information Processing Systems 24, pages: 379-387, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and F Pereira and KQ Weinberger), Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
We study the family of p-resistances on graphs for p ≥ 1. This family generalizes the standard resistance distance. We prove that for any fixed graph, for p=1, the p-resistance coincides with the shortest path distance, for p=2 it coincides with the standard resistance distance, and for p → ∞ it converges to the inverse of the minimal s-t-cut in the graph. Secondly, we consider the special case of random geometric graphs (such as k-nearest neighbor graphs) when the number n of vertices in the graph tends to infinity. We prove that an interesting phase-transition takes place. There exist two critical thresholds p^* and p^** such that if p < p^*, then the p-resistance depends on meaningful global properties of the graph, whereas if p > p^**, it only depends on trivial local quantities and does not convey any useful information. We can explicitly compute the critical values: p^* = 1 + 1/(d-1) and p^** = 1 + 1/(d-2) where d is the dimension of the underlying space (we believe that the fact that there is a small gap between p^* and p^** is an artifact of our proofs. We also relate our findings to Laplacian regularization and suggest to use q-Laplacians as regularizers, where q satisfies 1/p^* + 1/q = 1.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
On Fast Approximate Submodular Minimization

Jegelka, S., Lin, H., Bilmes, J.

In Advances in Neural Information Processing Systems 24, pages: 460-468, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and F Pereira and KQ Weinberger), Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
We are motivated by an application to extract a representative subset of machine learning training data and by the poor empirical performance we observe of the popular minimum norm algorithm. In fact, for our application, minimum norm can have a running time of about O(n7) (O(n5) oracle calls). We therefore propose a fast approximate method to minimize arbitrary submodular functions. For a large sub-class of submodular functions, the algorithm is exact. Other submodular functions are iteratively approximated by tight submodular upper bounds, and then repeatedly optimized. We show theoretical properties, and empirical results suggest significant speedups over minimum norm while retaining higher accuracies.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
PAC-Bayesian Analysis of Contextual Bandits

Seldin, Y., Auer, P., Laviolette, F., Shawe-Taylor, J., Ortner, R.

In Advances in Neural Information Processing Systems 24, pages: 1683-1691, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and F Pereira and KQ Weinberger), Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
We derive an instantaneous (per-round) data-dependent regret bound for stochastic multiarmed bandits with side information (also known as contextual bandits). The scaling of our regret bound with the number of states (contexts) $N$ goes as $\sqrt{N I_{\rho_t}(S;A)}$, where $I_{\rho_t}(S;A)$ is the mutual information between states and actions (the side information) used by the algorithm at round $t$. If the algorithm uses all the side information, the regret bound scales as $\sqrt{N \ln K}$, where $K$ is the number of actions (arms). However, if the side information $I_{\rho_t}(S;A)$ is not fully used, the regret bound is significantly tighter. In the extreme case, when $I_{\rho_t}(S;A) = 0$, the dependence on the number of states reduces from linear to logarithmic. Our analysis allows to provide the algorithm large amount of side information, let the algorithm to decide which side information is relevant for the task, and penalize the algorithm only for the side information that it is using de facto. We also present an algorithm for multiarmed bandits with side information with computational complexity that is a linear in the number of actions.

ei

PDF PDF Web [BibTex]

PDF PDF Web [BibTex]


no image
Fast projections onto L1,q-norm balls for grouped feature selection

Sra, S.

In Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2011, LNCS vol 6913, Part III, pages: 305-317, (Editors: D Gunopulos and T Hofmann and D Malerba and M Vazirgiannis), Springer, 22th European Conference on Machine Learning (ECML), 2011 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Kernel Belief Propagation

Song, L., Gretton, A., Bickson, D., Low, Y., Guestrin, C.

In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, Vol. 15, pages: 707-715, (Editors: G Gordon and D Dunson and M Dudík), JMLR, AISTATS, 2011 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
On Causal Discovery with Cyclic Additive Noise Models

Mooij, J., Janzing, D., Schölkopf, B., Heskes, T.

In Advances in Neural Information Processing Systems 24, pages: 639-647, (Editors: J Shawe-Taylor and RS Zemel and PL Bartlett and FCN Pereira and KQ Weinberger), Curran Associates, Inc., Red Hook, NY, USA, Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
We study a particular class of cyclic causal models, where each variable is a (possibly nonlinear) function of its parents and additive noise. We prove that the causal graph of such models is generically identifiable in the bivariate, Gaussian-noise case. We also propose a method to learn such models from observational data. In the acyclic case, the method reduces to ordinary regression, but in the more challenging cyclic case, an additional term arises in the loss function, which makes it a special case of nonlinear independent component analysis. We illustrate the proposed method on synthetic data.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Additive Gaussian Processes

Duvenaud, D., Nickisch, H., Rasmussen, C.

In Advances in Neural Information Processing Systems 24, pages: 226-234, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and F Pereira and KQ Weinberger), Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
We introduce a Gaussian process model of functions which are additive. An additive function is one which decomposes into a sum of low-dimensional functions, each depending on only a subset of the input variables. Additive GPs generalize both Generalized Additive Models, and the standard GP models which use squared-exponential kernels. Hyperparameter learning in this model can be seen as Bayesian Hierarchical Kernel Learning (HKL). We introduce an expressive but tractable parameterization of the kernel function, which allows efficient evaluation of all input interaction terms, whose number is exponential in the input dimension. The additional structure discoverable by this model results in increased interpretability, as well as state-of-the-art predictive power in regression tasks.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
k-NN Regression Adapts to Local Intrinsic Dimension

Kpotufe, S.

In Advances in Neural Information Processing Systems 24, pages: 729-737, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and F Pereira and KQ Weinberger), Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
Many nonparametric regressors were recently shown to converge at rates that depend only on the intrinsic dimension of data. These regressors thus escape the curse of dimension when high-dimensional data has low intrinsic dimension (e.g. a manifold). We show that k-NN regression is also adaptive to intrinsic dimension. In particular our rates are local to a query x and depend only on the way masses of balls centered at x vary with radius. Furthermore, we show a simple way to choose k = k(x) locally at any x so as to nearly achieve the minimax rate at x in terms of the unknown intrinsic dimension in the vicinity of x. We also establish that the minimax rate does not depend on a particular choice of metric space or distribution, but rather that this minimax rate holds for any metric space and doubling measure.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Fast Newton-type Methods for Total-Variation with Applications

Barbero, A., Sra, S.

In Proceedings of the 28th International Conference on Machine Learning, ICML 2011, pages: 313-320, (Editors: L Getoor and T Scheffer), Omnipress, 28th International Conference on Machine Learning (ICML), 2011 (inproceedings)

ei

[BibTex]

[BibTex]


no image
Parallel Gibbs Sampling: From Colored Fields to Thin Junction Trees

Gonzalez, J., Low, Y., Gretton, A., Guestrin, C.

In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, Vol. 15, pages: 324-332, (Editors: G Gordon and D Dunson and M Dudík), JMLR, AISTATS, 2011 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


Thumb xl problem
Recovering Intrinsic Images with a Global Sparsity Prior on Reflectance

Gehler, P., Rother, C., Kiefel, M., Zhang, L., Schölkopf, B.

In Advances in Neural Information Processing Systems 24, pages: 765-773, (Editors: Shawe-Taylor, John and Zemel, Richard S. and Bartlett, Peter L. and Pereira, Fernando C. N. and Weinberger, Kilian Q.), Curran Associates, Inc., Red Hook, NY, USA, Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
We address the challenging task of decoupling material properties from lighting properties given a single image. In the last two decades virtually all works have concentrated on exploiting edge information to address this problem. We take a different route by introducing a new prior on reflectance, that models reflectance values as being drawn from a sparse set of basis colors. This results in a Random Field model with global, latent variables (basis colors) and pixel-accurate output reflectance values. We show that without edge information high-quality results can be achieved, that are on par with methods exploiting this source of information. Finally, we are able to improve on state-of-the-art results by integrating edge information into our model. We believe that our new approach is an excellent starting point for future developments in this field.

ei ps

website + code pdf poster Project Page Project Page [BibTex]

website + code pdf poster Project Page Project Page [BibTex]

2009


no image
Efficient Subwindow Search: A Branch and Bound Framework for Object Localization

Lampert, C., Blaschko, M., Hofmann, T.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(12):2129-2142, December 2009 (article)

Abstract
Most successful object recognition systems rely on binary classification, deciding only if an object is present or not, but not providing information on the actual object location. To estimate the object‘s location, one can take a sliding window approach, but this strongly increases the computational cost because the classifier or similarity function has to be evaluated over a large set of candidate subwindows. In this paper, we propose a simple yet powerful branch and bound scheme that allows efficient maximization of a large class of quality functions over all possible subimages. It converges to a globally optimal solution typically in linear or even sublinear time, in contrast to the quadratic scaling of exhaustive or sliding window search. We show how our method is applicable to different object detection and image retrieval scenarios. The achieved speedup allows the use of classifiers for localization that formerly were considered too slow for this task, such as SVMs with a spatial pyramid kernel or nearest-neighbor classifiers based on the chi^2 distance. We demonstrate state-of-the-art localization performance of the resulting systems on the UIUC Cars data set, the PASCAL VOC 2006 data set, and in the PASCAL VOC 2007 competition.

ei

PDF Web DOI [BibTex]

2009


PDF Web DOI [BibTex]


no image
A computational model of human table tennis for robot application

Mülling, K., Peters, J.

In AMS 2009, pages: 57-64, (Editors: Dillmann, R. , J. Beyerer, C. Stiller, M. Zöllner, T. Gindele), Springer, Berlin, Germany, Autonome Mobile Systeme, December 2009 (inproceedings)

Abstract
Table tennis is a difficult motor skill which requires all basic components of a general motor skill learning system. In order to get a step closer to such a generic approach to the automatic acquisition and refinement of table tennis, we study table tennis from a human motor control point of view. We make use of the basic models of discrete human movement phases, virtual hitting points, and the operational timing hypothesis. Using these components, we create a computational model which is aimed at reproducing human-like behavior. We verify the functionality of this model in a physically realistic simulation of a BarrettWAM.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Generation of three-dimensional random rotations in fitting and matching problems

Habeck, M.

Computational Statistics, 24(4):719-731, December 2009 (article)

Abstract
An algorithm is developed to generate random rotations in three-dimensional space that follow a probability distribution arising in fitting and matching problems. The rotation matrices are orthogonally transformed into an optimal basis and then parameterized using Euler angles. The conditional distributions of the three Euler angles have a very simple form: the two azimuthal angles can be decoupled by sampling their sum and difference from a von Mises distribution; the cosine of the polar angle is exponentially distributed and thus straighforward to generate. Simulation results are shown and demonstrate the effectiveness of the method. The algorithm is compared to other methods for generating random rotations such as a random walk Metropolis scheme and a Gibbs sampling algorithm recently introduced by Green and Mardia. Finally, the algorithm is applied to a probabilistic version of the Procrustes problem of fitting two point sets and applied in the context of protein structure superposition.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Adaptive Importance Sampling for Value Function Approximation in Off-policy Reinforcement Learning

Hachiya, H., Akiyama, T., Sugiyama, M., Peters, J.

Neural Networks, 22(10):1399-1410, December 2009 (article)

Abstract
Off-policy reinforcement learning is aimed at efficiently using data samples gathered from a policy that is different from the currently optimized policy. A common approach is to use importance sampling techniques for compensating for the bias of value function estimators caused by the difference between the data-sampling policy and the target policy. However, existing off-policy methods often do not take the variance of the value function estimators explicitly into account and therefore their performance tends to be unstable. To cope with this problem, we propose using an adaptive importance sampling technique which allows us to actively control the trade-off between bias and variance. We further provide a method for optimally determining the trade-off parameter based on a variant of cross-validation. We demonstrate the usefulness of the proposed approach through simulations.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A PAC-Bayesian Approach to Formulation of Clustering Objectives

Seldin, Y., Tishby, N.

In Proceedings of the NIPS 2009 Workshop "Clustering: Science or Art? Towards Principled Approaches", pages: 1-4, NIPS Workshop "Clustering: Science or Art? Towards Principled Approaches", December 2009 (inproceedings)

Abstract
Clustering is a widely used tool for exploratory data analysis. However, the theoretical understanding of clustering is very limited. We still do not have a well-founded answer to the seemingly simple question of “how many clusters are present in the data?”, and furthermore a formal comparison of clusterings based on different optimization objectives is far beyond our abilities. The lack of good theoretical support gives rise to multiple heuristics that confuse the practitioners and stall development of the field. We suggest that the ill-posed nature of clustering problems is caused by the fact that clustering is often taken out of its subsequent application context. We argue that one does not cluster the data just for the sake of clustering it, but rather to facilitate the solution of some higher level task. By evaluation of the clustering’s contribution to the solution of the higher level task it is possible to compare different clusterings, even those obtained by different optimization objectives. In the preceding work it was shown that such an approach can be applied to evaluation and design of co-clustering solutions. Here we suggest that this approach can be extended to other settings, where clustering is applied.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Notes on Graph Cuts with Submodular Edge Weights

Jegelka, S., Bilmes, J.

In pages: 1-6, NIPS Workshop on Discrete Optimization in Machine Learning: Submodularity, Sparsity & Polyhedra (DISCML), December 2009 (inproceedings)

Abstract
Generalizing the cost in the standard min-cut problem to a submodular cost function immediately makes the problem harder. Not only do we prove NP hardness even for nonnegative submodular costs, but also show a lower bound of (|V |1/3) on the approximation factor for the (s, t) cut version of the problem. On the positive side, we propose and compare three approximation algorithms with an overall approximation factor of O(min{|V |,p|E| log |V |}) that appear to do well in practice.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Guest editorial: special issue on structured prediction

Parker, C., Altun, Y., Tadepalli, P.

Machine Learning, 77(2-3):161-164, December 2009 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Structured prediction by joint kernel support estimation

Lampert, CH., Blaschko, MB.

Machine Learning, 77(2-3):249-269, December 2009 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Learning new basic Movements for Robotics

Kober, J., Peters, J.

In AMS 2009, pages: 105-112, (Editors: Dillmann, R. , J. Beyerer, C. Stiller, M. Zöllner, T. Gindele), Springer, Berlin, Germany, Autonome Mobile Systeme, December 2009 (inproceedings)

Abstract
Obtaining novel skills is one of the most important problems in robotics. Machine learning techniques may be a promising approach for automatic and autonomous acquisition of movement policies. However, this requires both an appropriate policy representation and suitable learning algorithms. Employing the most recent form of the dynamical systems motor primitives originally introduced by Ijspeert et al. [1], we show how both discrete and rhythmic tasks can be learned using a concerted approach of both imitation and reinforcement learning, and present our current best performing learning algorithms. Finally, we show that it is possible to include a start-up phase in rhythmic primitives. We apply our approach to two elementary movements, i.e., Ball-in-a-Cup and Ball-Paddling, which can be learned on a real Barrett WAM robot arm at a pace similar to human learning.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
From Motor Learning to Interaction Learning in Robots

Sigaud, O., Peters, J.

In Proceedings of 7ème Journées Nationales de la Recherche en Robotique, pages: 189-195, JNRR, November 2009 (inproceedings)

Abstract
The number of advanced robot systems has been increasing in recent years yielding a large variety of versatile designs with many degrees of freedom. These robots have the potential of being applicable in uncertain tasks outside well-structured industrial settings. However, the complexity of both systems and tasks is often beyond the reach of classical robot programming methods. As a result, a more autonomous solution for robot task acquisition is needed where robots adaptively adjust their behaviour to the encountered situations and required tasks. Learning approaches pose one of the most appealing ways to achieve this goal. However, while learning approaches are of high importance for robotics, we cannot simply use off-the-shelf methods from the machine learning community as these usually do not scale into the domains of robotics due to excessive computational cost as well as a lack of scalability. Instead, domain appropriate approaches are needed. We focus here on several core domains of robot learning. For accurate task execution, we need motor learning capabilities. For fast learning of the motor tasks, imitation learning offers the most promising approach. Self improvement requires reinforcement learning approaches that scale into the domain of complex robots. Finally, for efficient interaction of humans with robot systems, we will need a form of interaction learning. This contribution provides a general introduction to these issues and briefly presents the contributions of the related book chapters to the corresponding research topics.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
A note on ethical aspects of BCI

Haselager, P., Vlek, R., Hill, J., Nijboer, F.

Neural Networks, 22(9):1352-1357, November 2009 (article)

Abstract
This paper focuses on ethical aspects of BCI, as a research and a clinical tool, that are challenging for practitioners currently working in the field. Specifically, the difficulties involved in acquiring informed consent from locked-in patients are investigated, in combination with an analysis of the shared moral responsibility in BCI teams, and the complications encountered in establishing effective communication with media.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Model Learning with Local Gaussian Process Regression

Nguyen-Tuong, D., Seeger, M., Peters, J.

Advanced Robotics, 23(15):2015-2034, November 2009 (article)

Abstract
Precise models of robot inverse dynamics allow the design of significantly more accurate, energy-efficient and compliant robot control. However, in some cases the accuracy of rigid-body models does not suffice for sound control performance due to unmodeled nonlinearities arising from hydraulic cable dynamics, complex friction or actuator dynamics. In such cases, estimating the inverse dynamics model from measured data poses an interesting alternative. Nonparametric regression methods, such as Gaussian process regression (GPR) or locally weighted projection regression (LWPR), are not as restrictive as parametric models and, thus, offer a more flexible framework for approximating unknown nonlinearities. In this paper, we propose a local approximation to the standard GPR, called local GPR (LGP), for real-time model online learning by combining the strengths of both regression methods, i.e., the high accuracy of GPR and the fast speed of LWPR. The approach is shown to have competitive learning performance for hig h-dimensional data while being sufficiently fast for real-time learning. The effectiveness of LGP is exhibited by a comparison with the state-of-the-art regression techniques, such as GPR, LWPR and &#957;-support vector regression. The applicability of the proposed LGP method is demonstrated by real-time online learning of the inverse dynamics model for robot model-based control on a Barrett WAM robot arm.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Detecting Objects in Large Image Collections and Videos by Efficient Subimage Retrieval

Lampert, CH.

In ICCV 2009, pages: 987-994, IEEE Computer Society, Piscataway, NJ, USA, Twelfth IEEE International Conference on Computer Vision, October 2009 (inproceedings)

Abstract
We study the task of detecting the occurrence of objects in large image collections or in videos, a problem that combines aspects of content based image retrieval and object localization. While most previous approaches are either limited to special kinds of queries, or do not scale to large image sets, we propose a new method, efficient subimage retrieval (ESR), which is at the same time very flexible and very efficient. Relying on a two-layered branch-and-bound setup, ESR performs object-based image retrieval in sets of 100,000 or more images within seconds. An extensive evaluation on several datasets shows that ESR is not only very fast, but it also achieves detection accuracies that are on par with or superior to previously published methods for object-based image retrieval.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Inferring textual entailment with a probabilistically sound calculus

Harmeling, S.

Natural Language Engineering, 15(4):459-477, October 2009 (article)

Abstract
We introduce a system for textual entailment that is based on a probabilistic model of entailment. The model is defined using a calculus of transformations on dependency trees, which is characterized by the fact that derivations in that calculus preserve the truth only with a certain probability. The calculus is successfully evaluated on the datasets of the PASCAL Challenge on Recognizing Textual Entailment.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Modeling and Visualizing Uncertainty in Gene Expression Clusters using Dirichlet Process Mixtures

Rasmussen, CE., de la Cruz, BJ., Ghahramani, Z., Wild, DL.

IEEE/ACM Transactions on Computational Biology and Bioinformatics, 6(4):615-628, October 2009 (article)

Abstract
Although the use of clustering methods has rapidly become one of the standard computational approaches in the literature of microarray gene expression data, little attention has been paid to uncertainty in the results obtained. Dirichlet process mixture models provide a non-parametric Bayesian alternative to the bootstrap approach to modeling uncertainty in gene expression clustering. Most previously published applications of Bayesian model based clustering methods have been to short time series data. In this paper we present a case study of the application of non-parametric Bayesian clustering methods to the clustering of high-dimensional non-time series gene expression data using full Gaussian covariances. We use the probability that two genes belong to the same cluster in a Dirichlet process mixture model as a measure of the similarity of these gene expression profiles. Conversely, this probability can be used to define a dissimilarity measure, which, for the purposes of visualization, can be input to one of the standard linkage algorithms used for hierarchical clustering. Biologically plausible results are obtained from the Rosetta compendium of expression profiles which extend previously published cluster analyses of this data.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A new non-monotonic algorithm for PET image reconstruction

Sra, S., Kim, D., Dhillon, I., Schölkopf, B.

In IEEE - Nuclear Science Symposium Conference Record (NSS/MIC), 2009, pages: 2500-2502, (Editors: B Yu), IEEE, Piscataway, NJ, USA, IEEE Nuclear Science Symposium and Medical Imaging Conference, October 2009 (inproceedings)

Abstract
Maximizing some form of Poisson likelihood (either with or without penalization) is central to image reconstruction algorithms in emission tomography. In this paper we introduce NMML, a non-monotonic algorithm for maximum likelihood PET image reconstruction. NMML offers a simple and flexible procedure that also easily incorporates standard convex regular-ization for doing penalized likelihood estimation. A vast number image reconstruction algorithms have been developed for PET, and new ones continue to be designed. Among these, methods based on the expectation maximization (EM) and ordered-subsets (OS) framework seem to have enjoyed the greatest popularity. Our method NMML differs fundamentally from methods based on EM: i) it does not depend on the concept of optimization transfer (or surrogate functions); and ii) it is a rapidly converging nonmonotonic descent procedure. The greatest strengths of NMML, however, are its simplicity, efficiency, and scalability, which make it especially attractive for tomograph ic reconstruction. We provide a theoretical analysis NMML, and empirically observe it to outperform standard EM based methods, sometimes by orders of magnitude. NMML seamlessly allows integreation of penalties (regularizers) in the likelihood. This ability can prove to be crucial, especially because with the rapidly rising importance of combined PET/MR scanners, one will want to include more “prior” knowledge into the reconstruction.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Approximation Algorithms for Tensor Clustering

Jegelka, S., Sra, S., Banerjee, A.

In Algorithmic Learning Theory: 20th International Conference, pages: 368-383, (Editors: Gavalda, R. , G. Lugosi, T. Zeugmann, S. Zilles), Springer, Berlin, Germany, ALT, October 2009 (inproceedings)

Abstract
We present the first (to our knowledge) approximation algo- rithm for tensor clustering—a powerful generalization to basic 1D clustering. Tensors are increasingly common in modern applications dealing with complex heterogeneous data and clustering them is a fundamental tool for data analysis and pattern discovery. Akin to their 1D cousins, common tensor clustering formulations are NP-hard to optimize. But, unlike the 1D case no approximation algorithms seem to be known. We address this imbalance and build on recent co-clustering work to derive a tensor clustering algorithm with approximation guarantees, allowing metrics and divergences (e.g., Bregman) as objective functions. Therewith, we answer two open questions by Anagnostopoulos et al. (2008). Our analysis yields a constant approximation factor independent of data size; a worst-case example shows this factor to be tight for Euclidean co-clustering. However, empirically the approximation factor is observed to be conservative, so our method can also be used in practice.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Active learning using mean shift optimization for robot grasping

Kroemer, O., Detry, R., Piater, J., Peters, J.

In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), pages: 2610-2615, IEEE Service Center, Piscataway, NJ, USA, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2009 (inproceedings)

Abstract
When children learn to grasp a new object, they often know several possible grasping points from observing a parent&lsquo;s demonstration and subsequently learn better grasps by trial and error. From a machine learning point of view, this process is an active learning approach. In this paper, we present a new robot learning framework for reproducing this ability in robot grasping. For doing so, we chose a straightforward approach: first, the robot observes a few good grasps by demonstration and learns a value function for these grasps using Gaussian process regression. Subsequently, it chooses grasps which are optimal with respect to this value function using a mean-shift optimization approach, and tries them out on the real system. Upon every completed trial, the value function is updated, and in the following trials it is more likely to choose even better grasping points. This method exhibits fast learning due to the data-efficiency of Gaussian process regression framework and the fact th at t he mean-shift method provides maxima of this cost function. Experiments were repeatedly carried out successfully on a real robot system. After less than sixty trials, our system has adapted its grasping policy to consistently exhibit successful grasps.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Sparse online model learning for robot control with support vector regression

Nguyen-Tuong, D., Schölkopf, B., Peters, J.

In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), pages: 3121-3126, IEEE Service Center, Piscataway, NJ, USA, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2009 (inproceedings)

Abstract
The increasing complexity of modern robots makes it prohibitively hard to accurately model such systems as required by many applications. In such cases, machine learning methods offer a promising alternative for approximating such models using measured data. To date, high computational demands have largely restricted machine learning techniques to mostly offline applications. However, making the robots adaptive to changes in the dynamics and to cope with unexplored areas of the state space requires online learning. In this paper, we propose an approximation of the support vector regression (SVR) by sparsification based on the linear independency of training data. As a result, we obtain a method which is applicable in real-time online learning. It exhibits competitive learning accuracy when compared with standard regression techniques, such as nu-SVR, Gaussian process regression (GPR) and locally weighted projection regression (LWPR).

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Thermodynamic efficiency of information and heat flow

Allahverdyan, A., Janzing, D., Mahler, G.

Journal of Statistical Mechanics: Theory and Experiment, 2009(09):P09011, September 2009 (article)

Abstract
A basic task of information processing is information transfer (flow). P0 Here we study a pair of Brownian particles each coupled to a thermal bath at temperatures T1 and T2 . The information flow in such a system is defined via the time-shifted mutual information. The information flow nullifies at equilibrium, and its efficiency is defined as the ratio of the flow to the total entropy production in the system. For a stationary state the information flows from higher to lower temperatures, and its efficiency is bounded from above by (max[T1 , T2 ])/(|T1 &amp;amp;amp;amp;amp;#8722; T2 |). This upper bound is imposed by the second law and it quantifies the thermodynamic cost for information flow in the present class of systems. It can be reached in the adiabatic situation, where the particles have widely different characteristic times. The efficiency of heat flow—defined as the heat flow over the total amount of dissipated heat—is limited from above by the same factor. There is a complementarity between heat and information flow: the set-up which is most efficient for the former is the least efficient for the latter and vice versa. The above bound for the efficiency can be (transiently) overcome in certain non-stationary situations, but the efficiency is still limited from above. We study yet another measure of information processing (transfer entropy) proposed in the literature. Though this measure does not require any thermodynamic cost, the information flow and transfer entropy are shown to be intimately related for stationary states.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]