Header logo is


2017


Thumb xl camposeco2017cvpr
Toroidal Constraints for Two Point Localization Under High Outlier Ratios

Camposeco, F., Sattler, T., Cohen, A., Geiger, A., Pollefeys, M.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, IEEE, Piscataway, NJ, USA, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 (inproceedings)

Abstract
Localizing a query image against a 3D model at large scale is a hard problem, since 2D-3D matches become more and more ambiguous as the model size increases. This creates a need for pose estimation strategies that can handle very low inlier ratios. In this paper, we draw new insights on the geometric information available from the 2D-3D matching process. As modern descriptors are not invariant against large variations in viewpoint, we are able to find the rays in space used to triangulate a given point that are closest to a query descriptor. It is well known that two correspondences constrain the camera to lie on the surface of a torus. Adding the knowledge of direction of triangulation, we are able to approximate the position of the camera from \emphtwo matches alone. We derive a geometric solver that can compute this position in under 1 microsecond. Using this solver, we propose a simple yet powerful outlier filter which scales quadratically in the number of matches. We validate the accuracy of our solver and demonstrate the usefulness of our method in real world settings.

avg

pdf suppmat Project Page Project Page [BibTex]

2017


pdf suppmat Project Page pdf Project Page [BibTex]


Thumb xl cvpr2017 landpsace
Semantic Multi-view Stereo: Jointly Estimating Objects and Voxels

Ulusoy, A. O., Black, M. J., Geiger, A.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, IEEE, Piscataway, NJ, USA, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 (inproceedings)

Abstract
Dense 3D reconstruction from RGB images is a highly ill-posed problem due to occlusions, textureless or reflective surfaces, as well as other challenges. We propose object-level shape priors to address these ambiguities. Towards this goal, we formulate a probabilistic model that integrates multi-view image evidence with 3D shape information from multiple objects. Inference in this model yields a dense 3D reconstruction of the scene as well as the existence and precise 3D pose of the objects in it. Our approach is able to recover fine details not captured in the input shapes while defaulting to the input models in occluded regions where image evidence is weak. Due to its probabilistic nature, the approach is able to cope with the approximate geometry of the 3D models as well as input shapes that are not present in the scene. We evaluate the approach quantitatively on several challenging indoor and outdoor datasets.

avg ps

YouTube pdf suppmat Project Page [BibTex]

YouTube pdf suppmat Project Page [BibTex]


Thumb xl surfacenet
SurfaceNet: An End-to-End 3D Neural Network for Multiview Stereopsis

Ji, M., Gall, J., Zheng, H., Liu, Y., Fang, L.

In IEEE International Conference on Computer Vision (ICCV), 2017, IEEE Computer Society, 2017 IEEE International Conference on Computer Vision (ICCV), 2017 (inproceedings)

Abstract
This paper proposes an end-to-end learning framework for multiview stereopsis. We term the network SurfaceNet. It takes a set of images and their corresponding camera parameters as input and directly infers the 3D model. The key advantage of the framework is that both photo-consistency as well geometric relations of the surface structure can be directly learned for the purpose of multiview stereopsis in an end-to-end fashion. SurfaceNet is a fully 3D convolutional network which is achieved by encoding the camera parameters together with the images in a 3D voxel representation. We evaluate SurfaceNet on the large-scale DTU benchmark. Code is available in https://github.com/mjiUST/SurfaceNet

avg

link (url) [BibTex]

link (url) [BibTex]


no image
Multi-View Deep Learning for Consistent Semantic Mapping with RGB-D Cameras

Ma, L., Stueckler, J., Kerl, C., Cremers, D.

In IEEE International Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada, 2017 (inproceedings)

ev

[BibTex]

[BibTex]


no image
Accurate depth and normal maps from occlusion-aware focal stack symmetry

Strecke, M., Alperovich, A., Goldluecke, B.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


Thumb xl passat small
Computer Vision for Autonomous Vehicles: Problems, Datasets and State-of-the-Art

Janai, J., Güney, F., Behl, A., Geiger, A.

Arxiv, 2017 (article)

Abstract
Recent years have witnessed amazing progress in AI related fields such as computer vision, machine learning and autonomous vehicles. As with any rapidly growing field, however, it becomes increasingly difficult to stay up-to-date or enter the field as a beginner. While several topic specific survey papers have been written, to date no general survey on problems, datasets and methods in computer vision for autonomous vehicles exists. This paper attempts to narrow this gap by providing a state-of-the-art survey on this topic. Our survey includes both the historically most relevant literature as well as the current state-of-the-art on several specific topics, including recognition, reconstruction, motion estimation, tracking, scene understanding and end-to-end learning. Towards this goal, we first provide a taxonomy to classify each approach and then analyze the performance of the state-of-the-art on several challenging benchmarking datasets including KITTI, ISPRS, MOT and Cityscapes. Besides, we discuss open problems and current research challenges. To ease accessibility and accommodate missing references, we will also provide an interactive platform which allows to navigate topics and methods, and provides additional information and project links for each paper.

avg

pdf Project Page Project Page [BibTex]


no image
Semi-Supervised Deep Learning for Monocular Depth Map Prediction

Kuznietsov, Y., Stueckler, J., Leibe, B.

In IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2017 (inproceedings)

ev

[BibTex]

[BibTex]


no image
Shadow and Specularity Priors for Intrinsic Light Field Decomposition

Alperovich, A., Johannsen, O., Strecke, M., Goldluecke, B.

In Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR), 2017 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Keyframe-Based Visual-Inertial Online SLAM with Relocalization

Kasyanov, A., Engelmann, F., Stueckler, J., Leibe, B.

In IEEE/RSJ Int. Conference on Intelligent Robots and Systems, IROS, 2017 (inproceedings)

ev

[BibTex]

[BibTex]


no image
SAMP: Shape and Motion Priors for 4D Vehicle Reconstruction

Engelmann, F., Stueckler, J., Leibe, B.

In IEEE Winter Conference on Applications of Computer Vision, WACV, 2017 (inproceedings)

ev

[BibTex]

[BibTex]

2016


Thumb xl capital
Patches, Planes and Probabilities: A Non-local Prior for Volumetric 3D Reconstruction

Ulusoy, A. O., Black, M. J., Geiger, A.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2016 (inproceedings)

Abstract
In this paper, we propose a non-local structured prior for volumetric multi-view 3D reconstruction. Towards this goal, we present a novel Markov random field model based on ray potentials in which assumptions about large 3D surface patches such as planarity or Manhattan world constraints can be efficiently encoded as probabilistic priors. We further derive an inference algorithm that reasons jointly about voxels, pixels and image segments, and estimates marginal distributions of appearance, occupancy, depth, normals and planarity. Key to tractable inference is a novel hybrid representation that spans both voxel and pixel space and that integrates non-local information from 2D image segmentations in a principled way. We compare our non-local prior to commonly employed local smoothness assumptions and a variety of state-of-the-art volumetric reconstruction baselines on challenging outdoor scenes with textureless and reflective surfaces. Our experiments indicate that regularizing over larger distances has the potential to resolve ambiguities where local regularizers fail.

avg ps

YouTube pdf poster suppmat Project Page [BibTex]

2016


YouTube pdf poster suppmat Project Page [BibTex]


Thumb xl jun teaser
Semantic Instance Annotation of Street Scenes by 3D to 2D Label Transfer

Xie, J., Kiefel, M., Sun, M., Geiger, A.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2016 (inproceedings)

Abstract
Semantic annotations are vital for training models for object recognition, semantic segmentation or scene understanding. Unfortunately, pixelwise annotation of images at very large scale is labor-intensive and only little labeled data is available, particularly at instance level and for street scenes. In this paper, we propose to tackle this problem by lifting the semantic instance labeling task from 2D into 3D. Given reconstructions from stereo or laser data, we annotate static 3D scene elements with rough bounding primitives and develop a probabilistic model which transfers this information into the image domain. We leverage our method to obtain 2D labels for a novel suburban video dataset which we have collected, resulting in 400k semantic and instance image annotations. A comparison of our method to state-of-the-art label transfer baselines reveals that 3D information enables more efficient annotation while at the same time resulting in improved accuracy and time-coherent labels.

avg ps

pdf suppmat Project Page Project Page [BibTex]

pdf suppmat Project Page Project Page [BibTex]


no image
Robust calibration marker detection in powder bed images from laser beam melting processes

zur Jacobsmühlen, J., Achterhold, J., Kleszczynski, S., Witt, G., Merhof, D.

In 2016 IEEE International Conference on Industrial Technology (ICIT), pages: 910-915, March 2016 (inproceedings)

ev

DOI [BibTex]

DOI [BibTex]


Thumb xl teaser
Deep Discrete Flow

Güney, F., Geiger, A.

Asian Conference on Computer Vision (ACCV), 2016 (conference) Accepted

avg ps

pdf suppmat Project Page [BibTex]

pdf suppmat Project Page [BibTex]


Thumb xl img02
Probabilistic Duality for Parallel Gibbs Sampling without Graph Coloring

Mescheder, L., Nowozin, S., Geiger, A.

Arxiv, 2016 (article)

Abstract
We present a new notion of probabilistic duality for random variables involving mixture distributions. Using this notion, we show how to implement a highly-parallelizable Gibbs sampler for weakly coupled discrete pairwise graphical models with strictly positive factors that requires almost no preprocessing and is easy to implement. Moreover, we show how our method can be combined with blocking to improve mixing. Even though our method leads to inferior mixing times compared to a sequential Gibbs sampler, we argue that our method is still very useful for large dynamic networks, where factors are added and removed on a continuous basis, as it is hard to maintain a graph coloring in this setup. Similarly, our method is useful for parallelizing Gibbs sampling in graphical models that do not allow for graph colorings with a small number of colors such as densely connected graphs.

avg

pdf [BibTex]


no image
NimbRo Explorer: Semi-Autonomous Exploration and Mobile Manipulation in Rough Terrain

Stueckler, J., Schwarz, M., Schadler, M., Topalidou-Kyniazopoulou, A., Behnke, S.

Journal of Field Robotics (JFR), 33(4):411-430, Wiley, 2016 (article)

ev

[BibTex]

[BibTex]


no image
Multi-Layered Mapping and Navigation for Autonomous Micro Aerial Vehicles

Droeschel, D., Nieuwenhuisen, M., Beul, M., Stueckler, J., Holz, D., Behnke, S.

Journal of Field Robotics (JFR), 33(4):451-475, 2016 (article)

ev

[BibTex]

[BibTex]


no image
Direct Visual-Inertial Odometry with Stereo Cameras

Usenko, V., Engel, J., Stueckler, J., Cremers, D.

In IEEE International Conference on Robotics and Automation (ICRA), 2016 (inproceedings)

ev

[BibTex]

[BibTex]


no image
CPA-SLAM: Consistent Plane-Model Alignment for Direct RGB-D SLAM

Ma, L., Kerl, C., Stueckler, J., Cremers, D.

In IEEE International Conference on Robotics and Automation (ICRA), 2016 (inproceedings)

ev

[BibTex]

[BibTex]


Thumb xl pami
Map-Based Probabilistic Visual Self-Localization

Brubaker, M. A., Geiger, A., Urtasun, R.

IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI), 2016 (article)

Abstract
Accurate and efficient self-localization is a critical problem for autonomous systems. This paper describes an affordable solution to vehicle self-localization which uses odometry computed from two video cameras and road maps as the sole inputs. The core of the method is a probabilistic model for which an efficient approximate inference algorithm is derived. The inference algorithm is able to utilize distributed computation in order to meet the real-time requirements of autonomous systems in some instances. Because of the probabilistic nature of the model the method is capable of coping with various sources of uncertainty including noise in the visual odometry and inherent ambiguities in the map (e.g., in a Manhattan world). By exploiting freely available, community developed maps and visual odometry measurements, the proposed method is able to localize a vehicle to 4m on average after 52 seconds of driving on maps which contain more than 2,150km of drivable roads.

avg ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]


no image
Unsupervised Learning of Shape-Motion Patterns for Objects in Urban Street Scenes

Klostermann, D., Osep, A., Stueckler, J., Leibe, B.

In British Machine Vision Conference (BMVC), 2016 (inproceedings)

ev

[BibTex]

[BibTex]


no image
Scene Flow Propagation for Semantic Mapping and Object Discovery in Dynamic Street Scenes

Kochanov, D., Osep, A., Stueckler, J., Leibe, B.

In IEEE/RSJ Int. Conference on Intelligent Robots and Systems, IROS, 2016 (inproceedings)

ev

[BibTex]

[BibTex]


no image
Joint Object Pose Estimation and Shape Reconstruction in Urban Street Scenes Using 3D Shape Priors

Engelmann, F., Stueckler, J., Leibe, B.

In Proc. of the German Conference on Pattern Recognition (GCPR), 2016 (inproceedings)

ev

[BibTex]

[BibTex]

2015


Thumb xl zhou
Exploiting Object Similarity in 3D Reconstruction

Zhou, C., Güney, F., Wang, Y., Geiger, A.

In International Conference on Computer Vision (ICCV), December 2015 (inproceedings)

Abstract
Despite recent progress, reconstructing outdoor scenes in 3D from movable platforms remains a highly difficult endeavor. Challenges include low frame rates, occlusions, large distortions and difficult lighting conditions. In this paper, we leverage the fact that the larger the reconstructed area, the more likely objects of similar type and shape will occur in the scene. This is particularly true for outdoor scenes where buildings and vehicles often suffer from missing texture or reflections, but share similarity in 3D shape. We take advantage of this shape similarity by locating objects using detectors and jointly reconstructing them while learning a volumetric model of their shape. This allows us to reduce noise while completing missing surfaces as objects of similar shape benefit from all observations for the respective category. We evaluate our approach with respect to LIDAR ground truth on a novel challenging suburban dataset and show its advantages over the state-of-the-art.

avg ps

pdf suppmat [BibTex]

2015


pdf suppmat [BibTex]


Thumb xl philip
FollowMe: Efficient Online Min-Cost Flow Tracking with Bounded Memory and Computation

Lenz, P., Geiger, A., Urtasun, R.

In International Conference on Computer Vision (ICCV), International Conference on Computer Vision (ICCV), December 2015 (inproceedings)

Abstract
One of the most popular approaches to multi-target tracking is tracking-by-detection. Current min-cost flow algorithms which solve the data association problem optimally have three main drawbacks: they are computationally expensive, they assume that the whole video is given as a batch, and they scale badly in memory and computation with the length of the video sequence. In this paper, we address each of these issues, resulting in a computationally and memory-bounded solution. First, we introduce a dynamic version of the successive shortest-path algorithm which solves the data association problem optimally while reusing computation, resulting in faster inference than standard solvers. Second, we address the optimal solution to the data association problem when dealing with an incoming stream of data (i.e., online setting). Finally, we present our main contribution which is an approximate online solution with bounded memory and computation which is capable of handling videos of arbitrary length while performing tracking in real time. We demonstrate the effectiveness of our algorithms on the KITTI and PETS2009 benchmarks and show state-of-the-art performance, while being significantly faster than existing solvers.

avg ps

pdf suppmat video project [BibTex]

pdf suppmat video project [BibTex]


Thumb xl teaser
Towards Probabilistic Volumetric Reconstruction using Ray Potentials

(Best Paper Award)

Ulusoy, A. O., Geiger, A., Black, M. J.

In 3D Vision (3DV), 2015 3rd International Conference on, pages: 10-18, Lyon, October 2015 (inproceedings)

Abstract
This paper presents a novel probabilistic foundation for volumetric 3-d reconstruction. We formulate the problem as inference in a Markov random field, which accurately captures the dependencies between the occupancy and appearance of each voxel, given all input images. Our main contribution is an approximate highly parallelized discrete-continuous inference algorithm to compute the marginal distributions of each voxel's occupancy and appearance. In contrast to the MAP solution, marginals encode the underlying uncertainty and ambiguity in the reconstruction. Moreover, the proposed algorithm allows for a Bayes optimal prediction with respect to a natural reconstruction loss. We compare our method to two state-of-the-art volumetric reconstruction algorithms on three challenging aerial datasets with LIDAR ground truth. Our experiments demonstrate that the proposed algorithm compares favorably in terms of reconstruction accuracy and the ability to expose reconstruction uncertainty.

avg ps

code YouTube pdf suppmat DOI Project Page [BibTex]

code YouTube pdf suppmat DOI Project Page [BibTex]


Thumb xl img displet
Displets: Resolving Stereo Ambiguities using Object Knowledge

Güney, F., Geiger, A.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 2015, pages: 4165-4175, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2015 (inproceedings)

Abstract
Stereo techniques have witnessed tremendous progress over the last decades, yet some aspects of the problem still remain challenging today. Striking examples are reflecting and textureless surfaces which cannot easily be recovered using traditional local regularizers. In this paper, we therefore propose to regularize over larger distances using object-category specific disparity proposals (displets) which we sample using inverse graphics techniques based on a sparse disparity estimate and a semantic segmentation of the image. The proposed displets encode the fact that objects of certain categories are not arbitrarily shaped but typically exhibit regular structures. We integrate them as non-local regularizer for the challenging object class 'car' into a superpixel based CRF framework and demonstrate its benefits on the KITTI stereo evaluation.

avg ps

pdf abstract suppmat [BibTex]

pdf abstract suppmat [BibTex]


Thumb xl img sceneflow
Object Scene Flow for Autonomous Vehicles

Menze, M., Geiger, A.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 2015, pages: 3061-3070, IEEE, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2015 (inproceedings)

Abstract
This paper proposes a novel model and dataset for 3D scene flow estimation with an application to autonomous driving. Taking advantage of the fact that outdoor scenes often decompose into a small number of independently moving objects, we represent each element in the scene by its rigid motion parameters and each superpixel by a 3D plane as well as an index to the corresponding object. This minimal representation increases robustness and leads to a discrete-continuous CRF where the data term decomposes into pairwise potentials between superpixels and objects. Moreover, our model intrinsically segments the scene into its constituting dynamic components. We demonstrate the performance of our model on existing benchmarks as well as a novel realistic dataset with scene flow ground truth. We obtain this dataset by annotating 400 dynamic scenes from the KITTI raw data collection using detailed 3D CAD models for all vehicles in motion. Our experiments also reveal novel challenges which can't be handled by existing methods.

avg ps

pdf abstract suppmat DOI [BibTex]

pdf abstract suppmat DOI [BibTex]


Thumb xl action crossval
Optimizing Average Precision using Weakly Supervised Data

Behl, A., Mohapatra, P., Jawahar, C. V., Kumar, M. P.

IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI), 2015 (article)

avg

[BibTex]

[BibTex]


no image
Real-Time Object Detection, Localization and Verification for Fast Robotic Depalletizing

Holz, D., Topalidou-Kyniazopoulou, A., Stueckler, J., Behnke, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS), 2015 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Dense Continuous-Time Tracking and Mapping with Rolling Shutter RGB-D Cameras

Kerl, C., Stueckler, J., Cremers, D.

In IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015, {[video][supplementary][datasets]} (inproceedings)

ev

[BibTex]

[BibTex]


Thumb xl geiger
Joint 3D Object and Layout Inference from a single RGB-D Image

(Best Paper Award)

Geiger, A., Wang, C.

In German Conference on Pattern Recognition (GCPR), 9358, pages: 183-195, Lecture Notes in Computer Science, Springer International Publishing, 2015 (inproceedings)

Abstract
Inferring 3D objects and the layout of indoor scenes from a single RGB-D image captured with a Kinect camera is a challenging task. Towards this goal, we propose a high-order graphical model and jointly reason about the layout, objects and superpixels in the image. In contrast to existing holistic approaches, our model leverages detailed 3D geometry using inverse graphics and explicitly enforces occlusion and visibility constraints for respecting scene properties and projective geometry. We cast the task as MAP inference in a factor graph and solve it efficiently using message passing. We evaluate our method with respect to several baselines on the challenging NYUv2 indoor dataset using 21 object categories. Our experiments demonstrate that the proposed method is able to infer scenes with a large degree of clutter and occlusions.

avg ps

pdf suppmat video project DOI [BibTex]

pdf suppmat video project DOI [BibTex]


no image
Perception of Deformable Objects and Compliant Manipulation for Service Robots

Stueckler, J., Behnke, S.

In Soft Robotics: From Theory to Applications, Springer, 2015 (inbook)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Large-Scale Direct SLAM with Stereo Cameras

Engel, J., Stueckler, J., Cremers, D.

In IEEE International Conference on Intelligent Robots and Systems (IROS), 2015 (inproceedings)

ev

[BibTex]

[BibTex]


Thumb xl menze
Discrete Optimization for Optical Flow

Menze, M., Heipke, C., Geiger, A.

In German Conference on Pattern Recognition (GCPR), 9358, pages: 16-28, Springer International Publishing, 2015 (inproceedings)

Abstract
We propose to look at large-displacement optical flow from a discrete point of view. Motivated by the observation that sub-pixel accuracy is easily obtained given pixel-accurate optical flow, we conjecture that computing the integral part is the hardest piece of the problem. Consequently, we formulate optical flow estimation as a discrete inference problem in a conditional random field, followed by sub-pixel refinement. Naive discretization of the 2D flow space, however, is intractable due to the resulting size of the label set. In this paper, we therefore investigate three different strategies, each able to reduce computation and memory demands by several orders of magnitude. Their combination allows us to estimate large-displacement optical flow both accurately and efficiently and demonstrates the potential of discrete optimization for optical flow. We obtain state-of-the-art performance on MPI Sintel and KITTI.

avg ps

pdf suppmat project DOI [BibTex]

pdf suppmat project DOI [BibTex]


Thumb xl isa
Joint 3D Estimation of Vehicles and Scene Flow

Menze, M., Heipke, C., Geiger, A.

In Proc. of the ISPRS Workshop on Image Sequence Analysis (ISA), 2015 (inproceedings)

Abstract
Three-dimensional reconstruction of dynamic scenes is an important prerequisite for applications like mobile robotics or autonomous driving. While much progress has been made in recent years, imaging conditions in natural outdoor environments are still very challenging for current reconstruction and recognition methods. In this paper, we propose a novel unified approach which reasons jointly about 3D scene flow as well as the pose, shape and motion of vehicles in the scene. Towards this goal, we incorporate a deformable CAD model into a slanted-plane conditional random field for scene flow estimation and enforce shape consistency between the rendered 3D models and the parameters of all superpixels in the image. The association of superpixels to objects is established by an index variable which implicitly enables model selection. We evaluate our approach on the challenging KITTI scene flow dataset in terms of object and scene flow estimation. Our results provide a prove of concept and demonstrate the usefulness of our method.

avg ps

PDF [BibTex]

PDF [BibTex]


no image
Efficient Dense Rigid-Body Motion Segmentation and Estimation in RGB-D Video

Stueckler, J., Behnke, S.

International Journal of Computer Vision (IJCV), 113(3):233-245, 2015 (article)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Motion Cooperation: Smooth Piece-Wise Rigid Scene Flow from RGB-D Images

Jaimez, M., Souiai, M., Stueckler, J., Gonzalez-Jimenez, J., Cremers, D.

In Proc. of the Int. Conference on 3D Vision (3DV), October 2015, {[video]} (inproceedings)

ev

[BibTex]

[BibTex]


no image
Super-Resolution Keyframe Fusion for 3D Modeling with High-Quality Textures

Maier, R., Stueckler, J., Cremers, D.

In International Conference on 3D Vision (3DV), October 2015, {[slides] [poster]} (inproceedings)

ev

[BibTex]

[BibTex]


no image
Reconstructing Street-Scenes in Real-Time From a Driving Car

Usenko, V., Engel, J., Stueckler, J., Cremers, D.

In Proc. of the Int. Conference on 3D Vision (3DV), October 2015 (inproceedings)

ev

[BibTex]

[BibTex]

2014


Thumb xl thumb schoenbein2014iros
Omnidirectional 3D Reconstruction in Augmented Manhattan Worlds

Schoenbein, M., Geiger, A.

International Conference on Intelligent Robots and Systems, pages: 716 - 723, IEEE, Chicago, IL, USA, IEEE/RSJ International Conference on Intelligent Robots and System, October 2014 (conference)

Abstract
This paper proposes a method for high-quality omnidirectional 3D reconstruction of augmented Manhattan worlds from catadioptric stereo video sequences. In contrast to existing works we do not rely on constructing virtual perspective views, but instead propose to optimize depth jointly in a unified omnidirectional space. Furthermore, we show that plane-based prior models can be applied even though planes in 3D do not project to planes in the omnidirectional domain. Towards this goal, we propose an omnidirectional slanted-plane Markov random field model which relies on plane hypotheses extracted using a novel voting scheme for 3D planes in omnidirectional space. To quantitatively evaluate our method we introduce a dataset which we have captured using our autonomous driving platform AnnieWAY which we equipped with two horizontally aligned catadioptric cameras and a Velodyne HDL-64E laser scanner for precise ground truth depth measurements. As evidenced by our experiments, the proposed method clearly benefits from the unified view and significantly outperforms existing stereo matching techniques both quantitatively and qualitatively. Furthermore, our method is able to reduce noise and the obtained depth maps can be represented very compactly by a small number of image segments and plane parameters.

avg ps

pdf DOI [BibTex]

2014


pdf DOI [BibTex]


Thumb xl action ex
Optimizing Average Precision using Weakly Supervised Data

Behl, A., Jawahar, C. V., Kumar, M. P.

IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 2014, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2014 (conference)

avg

[BibTex]

[BibTex]


Thumb xl roser
Simultaneous Underwater Visibility Assessment, Enhancement and Improved Stereo

Roser, M., Dunbabin, M., Geiger, A.

IEEE International Conference on Robotics and Automation, pages: 3840 - 3847 , Hong Kong, China, IEEE International Conference on Robotics and Automation, June 2014 (conference)

Abstract
Vision-based underwater navigation and obstacle avoidance demands robust computer vision algorithms, particularly for operation in turbid water with reduced visibility. This paper describes a novel method for the simultaneous underwater image quality assessment, visibility enhancement and disparity computation to increase stereo range resolution under dynamic, natural lighting and turbid conditions. The technique estimates the visibility properties from a sparse 3D map of the original degraded image using a physical underwater light attenuation model. Firstly, an iterated distance-adaptive image contrast enhancement enables a dense disparity computation and visibility estimation. Secondly, using a light attenuation model for ocean water, a color corrected stereo underwater image is obtained along with a visibility distance estimate. Experimental results in shallow, naturally lit, high-turbidity coastal environments show the proposed technique improves range estimation over the original images as well as image quality and color for habitat classification. Furthermore, the recursiveness and robustness of the technique allows real-time implementation onboard an Autonomous Underwater Vehicles for improved navigation and obstacle avoidance performance.

avg ps

pdf DOI [BibTex]

pdf DOI [BibTex]


Thumb xl schoenbein
Calibrating and Centering Quasi-Central Catadioptric Cameras

Schoenbein, M., Strauss, T., Geiger, A.

IEEE International Conference on Robotics and Automation, pages: 4443 - 4450, Hong Kong, China, IEEE International Conference on Robotics and Automation, June 2014 (conference)

Abstract
Non-central catadioptric models are able to cope with irregular camera setups and inaccuracies in the manufacturing process but are computationally demanding and thus not suitable for robotic applications. On the other hand, calibrating a quasi-central (almost central) system with a central model introduces errors due to a wrong relationship between the viewing ray orientations and the pixels on the image sensor. In this paper, we propose a central approximation to quasi-central catadioptric camera systems that is both accurate and efficient. We observe that the distance to points in 3D is typically large compared to deviations from the single viewpoint. Thus, we first calibrate the system using a state-of-the-art non-central camera model. Next, we show that by remapping the observations we are able to match the orientation of the viewing rays of a much simpler single viewpoint model with the true ray orientations. While our approximation is general and applicable to all quasi-central camera systems, we focus on one of the most common cases in practice: hypercatadioptric cameras. We compare our model to a variety of baselines in synthetic and real localization and motion estimation experiments. We show that by using the proposed model we are able to achieve near non-central accuracy while obtaining speed-ups of more than three orders of magnitude compared to state-of-the-art non-central models.

avg ps

pdf DOI [BibTex]

pdf DOI [BibTex]


Thumb xl pami
3D Traffic Scene Understanding from Movable Platforms

Geiger, A., Lauer, M., Wojek, C., Stiller, C., Urtasun, R.

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 36(5):1012-1025, published, IEEE, Los Alamitos, CA, May 2014 (article)

Abstract
In this paper, we present a novel probabilistic generative model for multi-object traffic scene understanding from movable platforms which reasons jointly about the 3D scene layout as well as the location and orientation of objects in the scene. In particular, the scene topology, geometry and traffic activities are inferred from short video sequences. Inspired by the impressive driving capabilities of humans, our model does not rely on GPS, lidar or map knowledge. Instead, it takes advantage of a diverse set of visual cues in the form of vehicle tracklets, vanishing points, semantic scene labels, scene flow and occupancy grids. For each of these cues we propose likelihood functions that are integrated into a probabilistic generative model. We learn all model parameters from training data using contrastive divergence. Experiments conducted on videos of 113 representative intersections show that our approach successfully infers the correct layout in a variety of very challenging scenarios. To evaluate the importance of each feature cue, experiments using different feature combinations are conducted. Furthermore, we show how by employing context derived from the proposed method we are able to improve over the state-of-the-art in terms of object detection and object orientation estimation in challenging and cluttered urban environments.

avg ps

pdf link (url) [BibTex]

pdf link (url) [BibTex]


no image
Rough Terrain Mapping and Navigation using a Continuously Rotating 2D Laser Scanner

Schadler, M., Stueckler, J., Behnke, S.

Künstliche Intelligenz (KI), 28(2):93-99, Springer, 2014 (article)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Adaptive Tool-Use Strategies for Anthropomorphic Service Robots

Stueckler, J., Behnke, S.

In Proc. of the 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids), 2014 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


Thumb xl high order run 3
Learning to Rank using High-Order Information

Dokania, P. K., Behl, A., Jawahar, C. V., Kumar, M. P.

International Conference on Computer Vision, 2014 (conference)

avg

[BibTex]

[BibTex]


no image
Dense Real-Time Mapping of Object-Class Semantics from RGB-D Video

Stueckler, J., Waldvogel, B., Schulz, H., Behnke, S.

Journal of Real-Time Image Processing (JRTIP), 10(4):599-609, Springer, 2014 (article)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Local Multi-Resolution Surfel Grids for MAV Motion Estimation and 3D Mapping

Droeschel, D., Stueckler, J., Behnke, S.

In Proc. of the 13th International Conference on Intelligent Autonomous Systems (IAS), 2014 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]