Header logo is


2015


no image
Segmentation-based attenuation correction in positron emission tomography/magnetic resonance: erroneous tissue identification and its impact on positron emission tomography interpretation

Brendle, C., Schmidt, H., Oergel, A., Bezrukov, I., Mueller, M., Schraml, C., Pfannenberg, C., la Fougère, C., Nikolaou, K., Schwenzer, N.

Investigative Radiology, 50(5):339-346, 2015 (article)

ei

DOI [BibTex]

2015


DOI [BibTex]


no image
Isosteric heat of hydrogen adsorption on MOFs: comparison between adsorption calorimetry, sorption isosteric metod, and analytical models

Kloutse, A. F., Zacharia, R., Cossement, D., Chahine, R., Balderas-Xicohténcatl, R., Oh, H., Streppel, B., Schlichtenmayer, M., Hirscher, M.

{Applied Physics A}, 121(4):1417-1424, Springer-Verlag Heidelberg, Heidelberg, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Neural Adaptive Sequential Monte Carlo

Gu, S., Ghahramani, Z., Turner, R. E.

Advances in Neural Information Processing Systems 28, pages: 2629-2637, (Editors: Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett), 29th Annual Conference on Neural Information Processing Systems (NIPS), 2015 (conference)

ei

PDF Supplementary [BibTex]

PDF Supplementary [BibTex]


no image
Discovering Temporal Causal Relations from Subsampled Data

Gong, M., Zhang, K., Schölkopf, B., Tao, D., Geiger, P.

In Proceedings of the 32nd International Conference on Machine Learning, 37, pages: 1898–1906, JMLR Workshop and Conference Proceedings, (Editors: F. Bach and D. Blei), JMLR, ICML, 2015 (inproceedings)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Active Nearest Neighbors in Changing Environments

Berlind, C., Urner, R.

In Proceedings of the 32nd International Conference on Machine Learning, 37, pages: 1870-1879, JMLR Workshop and Conference Proceedings, (Editors: Bach, F. and Blei, D. ), JMLR, ICML, 2015 (inproceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Active Reward Learning with a Novel Acquisition Function

Daniel, C., Kroemer, O., Viering, M., Metz, J., Peters, J.

Autonomous Robots, 39(3):389-405, 2015 (article)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Inverse Dynamics Models with Contacts

Calandra, R., Ivaldi, S., Deisenroth, M., Rückert, E., Peters, J.

In IEEE International Conference on Robotics and Automation, pages: 3186-3191, ICRA, 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A Probabilistic Framework for Semi-Autonomous Robots Based on Interaction Primitives with Phase Estimation

Maeda, G., Neumann, G., Ewerton, M., Lioutikov, R., Peters, J.

In Proceedings of the International Symposium of Robotics Research, ISRR, 2015 (inproceedings)

am ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl 2016 peer grading
Peer grading in a course on algorithms and data structures

Sajjadi, M. S. M., Alamgir, M., von Luxburg, U.

Workshop on Machine Learning for Education (ML4Ed) at the 32th International Conference on Machine Learning (ICML), 2015 (conference)

ei

Arxiv [BibTex]

Arxiv [BibTex]


no image
Removing systematic errors for exoplanet search via latent causes

Schölkopf, B., Hogg, D., Wang, D., Foreman-Mackey, D., Janzing, D., Simon-Gabriel, C. J., Peters, J.

In Proceedings of The 32nd International Conference on Machine Learning, 37, pages: 2218–2226, JMLR Workshop and Conference Proceedings, (Editors: Bach, F. and Blei, D.), JMLR, ICML, 2015 (inproceedings)

ei

Extended version on arXiv link (url) [BibTex]

Extended version on arXiv link (url) [BibTex]


no image
A systematic search for transiting planets in the K2 data

Foreman-Mackey, D., Montet, B., Hogg, D., Morton, T., Wang, D., Schölkopf, B.

The Astrophysical Journal, 806(2), 2015 (article)

Abstract
Photometry of stars from the K2 extension of NASA’s Kepler mission is afflicted by systematic effects caused by small (few-pixel) drifts in the telescope pointing and other spacecraft issues. We present a method for searching K2 light curves for evidence of exoplanets by simultaneously fitting for these systematics and the transit signals of interest. This method is more computationally expensive than standard search algorithms but we demonstrate that it can be efficiently implemented and used to discover transit signals. We apply this method to the full Campaign 1 data set and report a list of 36 planet candidates transiting 31 stars, along with an analysis of the pipeline performance and detection efficiency based on artificial signal injections and recoveries. For all planet candidates, we present posterior distributions on the properties of each system based strictly on the transit observables.

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Causal Inference by Identification of Vector Autoregressive Processes with Hidden Components

Geiger, P., Zhang, K., Schölkopf, B., Gong, M., Janzing, D.

In Proceedings of the 32nd International Conference on Machine Learning, 37, pages: 1917–1925, JMLR Workshop and Conference Proceedings, (Editors: F. Bach and D. Blei), JMLR, ICML, 2015 (inproceedings)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Brain-Computer Interfacing in Amyotrophic Lateral Sclerosis: Implications of a Resting-State EEG Analysis

Jayaram, V., Widmann, N., Förster, C., Fomina, T., Hohmann, M. R., Müller vom Hagen, J., Synofzik, M., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.

In Proceedings of the 37th IEEE Conference for Engineering in Medicine and Biology, pages: 6979-6982, EMBC, 2015 (inproceedings)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Identification of the Default Mode Network with Electroencephalography

Fomina, T., Hohmann, M. R., Schölkopf, B., Grosse-Wentrup, M.

In Proceedings of the 37th IEEE Conference for Engineering in Medicine and Biology, pages: 7566-7569, EMBC, 2015 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Towards Cognitive Brain-Computer Interfaces for Patients with Amyotrophic Lateral Sclerosis

Fomina, T., Schölkopf, B., Grosse-Wentrup, M.

In 7th Computer Science and Electronic Engineering Conference, pages: 77-80, Curran Associates, Inc., CEEC, 2015 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Learning Movement Primitive Attractor Goals and Sequential Skills from Kinesthetic Demonstrations

Manschitz, S., Kober, J., Gienger, M., Peters, J.

Robotics and Autonomous Systems, 74, Part A, pages: 97-107, 2015 (article)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Bayesian Optimization for Learning Gaits under Uncertainty

Calandra, R., Seyfarth, A., Peters, J., Deisenroth, M.

Annals of Mathematics and Artificial Intelligence, pages: 1-19, 2015 (article)

am ei

DOI [BibTex]

DOI [BibTex]


no image
Towards Learning Hierarchical Skills for Multi-Phase Manipulation Tasks

Kroemer, O., Daniel, C., Neumann, G., van Hoof, H., Peters, J.

In IEEE International Conference on Robotics and Automation, pages: 1503 - 1510, ICRA, 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl maren ls
Probabilistic Line Searches for Stochastic Optimization

Mahsereci, M., Hennig, P.

In Advances in Neural Information Processing Systems 28, pages: 181-189, (Editors: C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama and R. Garnett), Curran Associates, Inc., 29th Annual Conference on Neural Information Processing Systems (NIPS), 2015 (inproceedings)

Abstract
In deterministic optimization, line searches are a standard tool ensuring stability and efficiency. Where only stochastic gradients are available, no direct equivalent has so far been formulated, because uncertain gradients do not allow for a strict sequence of decisions collapsing the search space. We construct a probabilistic line search by combining the structure of existing deterministic methods with notions from Bayesian optimization. Our method retains a Gaussian process surrogate of the univariate optimization objective, and uses a probabilistic belief over the Wolfe conditions to monitor the descent. The algorithm has very low computational cost, and no user-controlled parameters. Experiments show that it effectively removes the need to define a learning rate for stochastic gradient descent. [You can find the matlab research code under `attachments' below. The zip-file contains a minimal working example. The docstring in probLineSearch.m contains additional information. A more polished implementation in C++ will be published here at a later point. For comments and questions about the code please write to mmahsereci@tue.mpg.de.]

ei pn

Matlab research code link (url) [BibTex]

Matlab research code link (url) [BibTex]


no image
Assessment of murine brain tissue shrinkage caused by different histological fixatives using magnetic resonance and computed tomography imaging

Wehrl, H. F., Bezrukov, I., Wiehr, S., Lehnhoff, M., Fuchs, K., Mannheim, J. G., Quintanilla-Martinez, L., Kneilling, M., Pichler, B. J., Sauter, A. W.

Histology and Histopathology, 30(5):601-613, 2015 (article)

ei

[BibTex]

[BibTex]


no image
BACKSHIFT: Learning causal cyclic graphs from unknown shift interventions

Rothenhäusler, D., Heinze, C., Peters, J., Meinshausen, N.

Advances in Neural Information Processing Systems 28, pages: 1513-1521, (Editors: C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama and R. Garnett), Curran Associates, Inc., 29th Annual Conference on Neural Information Processing Systems (NIPS), 2015 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Particle Gibbs for Infinite Hidden Markov Models

Tripuraneni*, N., Gu*, S., Ge, H., Ghahramani, Z.

Advances in Neural Information Processing Systems 28, pages: 2395-2403, (Editors: Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett), 29th Annual Conference on Neural Information Processing Systems (NIPS), 2015, *equal contribution (conference)

ei

PDF [BibTex]

PDF [BibTex]


no image
Improved Bayesian Information Criterion for Mixture Model Selection

Mehrjou, A., Hosseini, R., Araabi, B.

Pattern Recognition Letters, 69, pages: 22-27, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl 2016 peer grading
Peer grading in a course on algorithms and data structures

Sajjadi, M. S. M., Alamgir, M., von Luxburg, U.

Workshop on Crowdsourcing and Machine Learning (CrowdML) Workshop on Machine Learning for Education (ML4Ed) at at the 32th International Conference on Machine Learning (ICML), 2015 (conference)

ei

Arxiv [BibTex]

Arxiv [BibTex]


no image
A Random Riemannian Metric for Probabilistic Shortest-Path Tractography

Hauberg, S., Schober, M., Liptrot, M., Hennig, P., Feragen, A.

In 18th International Conference on Medical Image Computing and Computer Assisted Intervention, 9349, pages: 597-604, Lecture Notes in Computer Science, MICCAI, 2015 (inproceedings)

ei pn

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Recent Methodological Advances in Causal Discovery and Inference

Spirtes, P., Zhang, K.

In 15th Conference on Theoretical Aspects of Rationality and Knowledge, pages: 23-35, (Editors: Ramanujam, R.), TARK, 2015 (inproceedings)

ei

[BibTex]

[BibTex]


no image
Learning Optimal Striking Points for A Ping-Pong Playing Robot

Huang, Y., Schölkopf, B., Peters, J.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 4587-4592, IROS, 2015 (inproceedings)

am ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Model-Based Relative Entropy Stochastic Search

Abdolmaleki, A., Peters, J., Neumann, G.

In Advances in Neural Information Processing Systems 28, pages: 3523-3531, (Editors: C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama and R. Garnett), Curran Associates, Inc., 29th Annual Conference on Neural Information Processing Systems (NIPS), 2015 (inproceedings)

am ei

link (url) [BibTex]

link (url) [BibTex]


no image
Modeling Spatio-Temporal Variability in Human-Robot Interaction with Probabilistic Movement Primitives

Ewerton, M., Neumann, G., Lioutikov, R., Ben Amor, H., Peters, J., Maeda, G.

In Workshop on Machine Learning for Social Robotics, ICRA, 2015 (inproceedings)

am ei

link (url) [BibTex]

link (url) [BibTex]


no image
Extracting Low-Dimensional Control Variables for Movement Primitives

Rueckert, E., Mundo, J., Paraschos, A., Peters, J., Neumann, G.

In IEEE International Conference on Robotics and Automation, pages: 1511-1518, ICRA, 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Correlation matrix nearness and completion under observation uncertainty

Alaíz, C. M., Dinuzzo, F., Sra, S.

IMA Journal of Numerical Analysis, 35(1):325-340, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Quantitative evaluation of segmentation- and atlas- based attenuation correction for PET/MR on pediatric patients

Bezrukov, I., Schmidt, H., Gatidis, S., Mantlik, F., Schäfer, J. F., Schwenzer, N., Pichler, B. J.

Journal of Nuclear Medicine, 56(7):1067-1074, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Self-calibration of optical lenses

Hirsch, M., Schölkopf, B.

In IEEE International Conference on Computer Vision (ICCV 2015), pages: 612-620, IEEE, 2015 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Telling cause from effect in deterministic linear dynamical systems

Shajarisales, N., Janzing, D., Schölkopf, B., Besserve, M.

In Proceedings of the 32nd International Conference on Machine Learning, 37, pages: 285–294, JMLR Workshop and Conference Proceedings, (Editors: F. Bach and D. Blei), JMLR, ICML, 2015 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
A Cognitive Brain-Computer Interface for Patients with Amyotrophic Lateral Sclerosis

Hohmann, M. R., Fomina, T., Jayaram, V., Widmann, N., Förster, C., Müller vom Hagen, J., Synofzik, M., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.

In Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, pages: 3187-3191, SMC, 2015 (inproceedings)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Probabilistic numerics and uncertainty in computations

Hennig, P., Osborne, M. A., Girolami, M.

Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 471(2179), 2015 (article)

Abstract
We deliver a call to arms for probabilistic numerical methods: algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations.

ei pn

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Efficient Learning of Linear Separators under Bounded Noise

Awasthi, P., Balcan, M., Haghtalab, N., Urner, R.

In Proceedings of the 28th Conference on Learning Theory, 40, pages: 167-190, (Editors: Grünwald, P. and Hazan, E. and Kale, S.), JMLR, COLT, 2015 (inproceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Learning multiple collaborative tasks with a mixture of Interaction Primitives

Ewerton, M., Neumann, G., Lioutikov, R., Ben Amor, H., Peters, J., Maeda, G.

In IEEE International Conference on Robotics and Automation, pages: 1535-1542, ICRA, 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

Melchior, P., Suchyta, E., Huff, E., Hirsch, M., Kacprzak, T., Rykoff, E., Gruen, D., Armstrong, R., Bacon, D., Bechtol, K., others,

Monthly Notices of the Royal Astronomical Society, 449(3):2219-2238, Oxford University Press, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Subspace Alignement based Domain Adaptation for RCNN detector

Raj, A., V., N., Tuytelaars, T.

Proceedings of the 26th British Machine Vision Conference (BMVC 2015), pages: 166.1-166.11, (Editors: Xianghua Xie and Mark W. Jones and Gary K. L. Tam), 2015 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Practical Probabilistic Programming with Monads

Ścibior, A., Ghahramani, Z., Gordon, A. D.

Proceedings of the 2015 ACM SIGPLAN Symposium on Haskell, pages: 165-176, Haskell ’15, ACM, 2015 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Time-resolved imaging of pulse-induced magnetization reversal with a microwave assist field

Rao, S., Rhensius, J., Bisig, A., Mawass, M.-A., Weigand, M., Kläui, M., Bhatia, C. S., Yang, H.

{Scientific Reports}, 5, Nature Publishing Group, London, UK, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
XMCD studies of thin Co films on BaTiO3

Welke, M., Gräfe, J., Govind, R. K., Babu, V. H., Trautmann, M., Schindler, K., Denecke, R.

{Journal of Physics: Condensed Matter}, 27(32), IOP Publishing, Bristol, UK, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Combined FORC and x-ray microscopy study of magnetisation reversal in antidot lattices

Gräfe, J., Haering, F., Stahl, C., Weigand, M., Skripnik, M., Nowak, U., Ziemann, P., Wiedwald, U., Schütz, G., Goering, E.

In IEEE International Magnetics Conference (INTERMAG 2015), IEEE, Beijing, China, 2015 (inproceedings)

mms

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


no image
Low temperature X-ray imaging of magnetic flux patterns in high temperature superconductors

Stahl, C., Ruoß, S., Weigand, M., Bechtel, M., Schütz, G., Albrecht, J.

{Journal of Applied Physics}, 117(17), AIP Publishing, New York, NY, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Local control of domain wall dynamics in ferromagnetic rings

Richter, K., Mawass, M., Krone, A., Krüger, B., Weigand, M., Stoll, H., Schütz, G., Kläui, M.

In IEEE International Magnetics Conference (INTERMAG 2015), IEEE, Beijing, China, 2015 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Formation of a quasi-solid structure by intercalated noble gas atoms in pores of CuI-MFU-4l metal-organic framework

Magdysyuk, O. V., Denysenko, D., Weinrauch, I., Volkmer, D., Hirscher, M., Dinnebier, R. E.

{Chemical Communications}, 51(4):714-717, Royal Society of Chemistry, Cambridge, UK, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Burst-mode manipulation of magnonic vortex crystals

Hänze, M., Adolff, C. F., Weigand, M., Meier, G.

{Physical Review B}, 91(10), American Physical Society, Woodbury, NY, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Entropic Movement Complexity Reflects Subjective Creativity Rankings of Visualized Hand Motion Trajectories

Peng, Z, Braun, DA

Frontiers in Psychology, 6(1879):1-13, December 2015 (article)

Abstract
In a previous study we have shown that human motion trajectories can be characterized by translating continuous trajectories into symbol sequences with well-defined complexity measures. Here we test the hypothesis that the motion complexity individuals generate in their movements might be correlated to the degree of creativity assigned by a human observer to the visualized motion trajectories. We asked participants to generate 55 novel hand movement patterns in virtual reality, where each pattern had to be repeated 10 times in a row to ensure reproducibility. This allowed us to estimate a probability distribution over trajectories for each pattern. We assessed motion complexity not only by the previously proposed complexity measures on symbolic sequences, but we also propose two novel complexity measures that can be directly applied to the distributions over trajectories based on the frameworks of Gaussian Processes and Probabilistic Movement Primitives. In contrast to previous studies, these new methods allow computing complexities of individual motion patterns from very few sample trajectories. We compared the different complexity measures to how a group of independent jurors rank ordered the recorded motion trajectories according to their personal creativity judgment. We found three entropic complexity measures that correlate significantly with human creativity judgment and discuss differences between the measures. We also test whether these complexity measures correlate with individual creativity in divergent thinking tasks, but do not find any consistent correlation. Our results suggest that entropic complexity measures of hand motion may reveal domain-specific individual differences in kinesthetic creativity.

ei

DOI [BibTex]

DOI [BibTex]


no image
Bounded rationality, abstraction and hierarchical decision-making: an information-theoretic optimality principle

Genewein, T, Leibfried, F, Grau-Moya, J, Braun, DA

Frontiers in Robotics and AI, 2(27):1-24, October 2015 (article)

Abstract
Abstraction and hierarchical information-processing are hallmarks of human and animal intelligence underlying the unrivaled flexibility of behavior in biological systems. Achieving such a flexibility in artificial systems is challenging, even with more and more computational power. Here we investigate the hypothesis that abstraction and hierarchical information-processing might in fact be the consequence of limitations in information-processing power. In particular, we study an information-theoretic framework of bounded rational decision-making that trades off utility maximization against information-processing costs. We apply the basic principle of this framework to perception-action systems with multiple information-processing nodes and derive bounded optimal solutions. We show how the formation of abstractions and decision-making hierarchies depends on information-processing costs. We illustrate the theoretical ideas with example simulations and conclude by formalizing a mathematically unifying optimization principle that could potentially be extended to more complex systems.

ei

DOI [BibTex]

DOI [BibTex]