Header logo is


2016


Thumb xl publications toc
Chemotaxis of bio-hybrid multiple bacteria-driven microswimmers

Zhuang, J., Sitti, M.

Scientific reports, 6, pages: 32135, Nature Publishing Group, March 2016 (article)

Abstract
In this study, in a bio-hybrid microswimmer system driven by multiple Serratia marcescens bacteria, we quantify the chemotactic drift of a large number of microswimmers towards L-serine and elucidate the associated collective chemotaxis behavior by statistical analysis of over a thousand swimming trajectories of the microswimmers. The results show that the microswimmers have a strong heading preference for moving up the L-serine gradient, while their speed does not change considerably when moving up and down the gradient; therefore, the heading bias constitutes the major factor that produces the chemotactic drift. The heading direction of a microswimmer is found to be significantly more persistent when it moves up the L-serine gradient than when it travels down the gradient; this effect causes the apparent heading preference of the microswimmers and is the crucial reason that enables the seemingly cooperative chemotaxis of multiple bacteria on a microswimmer. In addition, we find that their chemotactic drift velocity increases superquadratically with their mean swimming speed, suggesting that chemotaxis of bio-hybrid microsystems can be enhanced by designing and building faster microswimmers. Such bio-hybrid microswimmers with chemotactic steering capability may find future applications in targeted drug delivery, bioengineering, and lab-on-a-chip devices.

pi

DOI Project Page [BibTex]

2016


DOI Project Page [BibTex]


Thumb xl publications toc
Targeted drug delivery and imaging using mobile milli/microrobots: A promising future towards theranostic pharmaceutical design

Vikram Singh, A., Sitti, M.

Current Pharmaceutical Design, 22(11):1418-1428, Bentham Science Publishers, March 2016 (article)

Abstract
Miniature untethered medical robots have been receiving growing attention due to technological advances in microactuation, microsensors, and microfabrication and have significant potential to reduce the invasiveness and improve the accessibility of medical devices into unprecedented small spaces inside the human body. In this review, we discuss therapeutic and diagnostic applications of untethered medical microrobots. Wirelessly controlled milli/microrobots with integrated sensors are revolutionizing micromanipulation based medical interventions and are enabling doctors to perform minimally invasive procedures not possible before. 3D fabrication technologies enabling milli/microrobot fabrication at the single cell scale are empowering high-resolution visual imaging and in vivo manipulation capabilities. Swallowable millirobots and injectabale ocular microrobots allow the gastric ulcer imaging, and performance of vitreoretinal microsurgery at previously inaccessible ocular sites. Many invasive excision and incision based diagnostic biopsy, prostrate, and nephrolgical procedures can be performed minimally or almost noninvasively due to recent advancements in microrobotic technology. Advances in biohybrid microrobot systems are pushing microrobotic systems even smaller, using biological cells as on-board microactuators and microsensors using the chemical energy. Such microrobotic systems could be used for local targeted delivery of imaging contrast agents, drugs, genes, and mRNA, minimally invasive surgery, and cell micromanipulation in the near future.

pi

link (url) [BibTex]


Thumb xl publications toc
Parallel microcracks-based ultrasensitive and highly stretchable strain sensors

Amjadi, M., Turan, M., Clementson, C. P., Sitti, M.

ACS Applied Materials \& Interfaces, 8(8):5618-5626, American Chemical Society, Febuary 2016 (article)

Abstract
There is an increasing demand for flexible, skin-attachable, and wearable strain sensors due to their various potential applications. However, achieving strain sensors with both high sensitivity and high stretchability is still a grand challenge. Here, we propose highly sensitive and stretchable strain sensors based on the reversible microcrack formation in composite thin films. Controllable parallel microcracks are generated in graphite thin films coated on elastomer films. Sensors made of graphite thin films with short microcracks possess high gauge factors (maximum value of 522.6) and stretchability (ε ≥ 50%), whereas sensors with long microcracks show ultrahigh sensitivity (maximum value of 11 344) with limited stretchability (ε ≤ 50%). We demonstrate the high performance strain sensing of our sensors in both small and large strain sensing applications such as human physiological activity recognition, human body large motion capturing, vibration detection, pressure sensing, and soft robotics.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl amjadi et al 2016 advanced functional materials
Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review

Amjadi, M., Kyung, K., Park, I., Sitti, M.

Advanced Functional Materials, 26, pages: 1678-1698, Febuary 2016 (article)

Abstract
There is a growing demand for flexible and soft electronic devices. In particular, stretchable, skin-mountable, and wearable strain sensors are needed for several potential applications including personalized health-monitoring, human motion detection, human-machine interfaces, soft robotics, and so forth. This Feature Article presents recent advancements in the development of flexible and stretchable strain sensors. The article shows that highly stretchable strain sensors are successfully being developed by new mechanisms such as disconnection between overlapped nanomaterials, crack propagation in thin films, and tunneling effect, different from traditional strain sensing mechanisms. Strain sensing performances of recently reported strain sensors are comprehensively studied and discussed, showing that appropriate choice of composite structures as well as suitable interaction between functional nanomaterials and polymers are essential for the high performance strain sensing. Next, simulation results of piezoresistivity of stretchable strain sensors by computational models are reported. Finally, potential applications of flexible strain sensors are described. This survey reveals that flexible, skin-mountable, and wearable strain sensors have potential in diverse applications while several grand challenges have to be still overcome.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl b 07384529
Size optimization of a magnetic system for drug delivery with capsule robots

Munoz, F., Alici, G., Li, W., Sitti, M.

IEEE Transactions on Magnetics, 52(5):1-11, IEEE, January 2016 (article)

Abstract
In this paper, we present a methodology for the size optimization of an external magnetic system made of arc-shaped permanent magnets (ASMs). This magnetic system is able to remotely actuate a drug-release module embedded in a prototype of a capsule robot. The optimization of the magnetic system is carried out by using an accurate analytical model that is valid for any arbitrary dimensions of the ASMs. By using this analytical model, we perform parametric studies and conduct a statistical analysis [analysis of variance (ANOVA)] to investigate efficient ways to distribute the volume of the ASMs so that the dimensions and volume of the magnetic system are minimized while optimal flux densities and magnetic torques are obtained to actuate the drug delivery system (DDS). The ANOVA results, at 5% significance level, indicate that changes in the angular width followed by changes in the length of the ASMs have the highest impact on the magnetic linkage. Furthermore, our experimental results, which are in agreement with the analytical results, show that the size optimization of the magnetic system is effective for the actuation of the DDS in capsule robots.

pi

DOI [BibTex]

DOI [BibTex]

2012


no image
Two-dimensional autonomous microparticle manipulation strategies for magnetic microrobots in fluidic environments

Pawashe, C., Floyd, S., Diller, E., Sitti, M.

IEEE Transactions on Robotics, 28(2):467-477, IEEE, 2012 (article)

pi

Project Page [BibTex]

2012


Project Page [BibTex]


no image
Three-dimensional microfiber devices that mimic physiological environments to probe cell mechanics and signaling

Ruder, W. C., Pratt, E. D., Bakhru, S., Sitti, M., Zappe, S., Cheng, C., Antaki, J. F., LeDuc, P. R.

Lab on a Chip, 12(10):1775-1779, Royal Society of Chemistry, 2012 (article)

pi

[BibTex]

[BibTex]


no image
Active visual search in unknown environments using uncertain semantics

Aydemir, Alper, Pronobis, Andrzej, Jensfelt, Patric, Sj, Kristoffer, Aydemir, Alper, Jensfelt, Patric, Aydemir, A, Jensfelt, P, Aydemir, A, Jensfelt, P, others

Transactions, 1, pages: 2329-2335, IEEE, 2012 (article)

pi

[BibTex]

[BibTex]


no image
Modelling of conductive atomic force microscope probes for scanning tunnelling microscope operation

Ozcan, O, Sitti, M

IET Micro \& Nano Letters, 7(4):329-333, IET, 2012 (article)

pi

[BibTex]

[BibTex]


no image
Shape memory polymer-based flexure stiffness control in a miniature flapping-wing robot

Hines, L., Arabagi, V., Sitti, M.

IEEE Transactions on Robotics, 28(4):987-990, IEEE, 2012 (article)

pi

[BibTex]

[BibTex]


no image
Micro-manipulation using rotational fluid flows induced by remote magnetic micro-manipulators

Ye, Z., Diller, E., Sitti, M.

Journal of Applied Physics, 112(6):064912, AIP, 2012 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Remotely addressable magnetic composite micropumps

Diller, E., Miyashita, S., Sitti, M.

Rsc Advances, 2(9):3850-3856, Royal Society of Chemistry, 2012 (article)

pi

[BibTex]

[BibTex]


no image
Shape-Programmable Soft Capsule Robots for Semi-Implantable Drug Delivery

Yim, S., Sitti, M.

Mechatronics, IEEE/ASME Transactions on, 2012 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Control of multiple heterogeneous magnetic microrobots in two dimensions on nonspecialized surfaces

Diller, E., Floyd, S., Pawashe, C., Sitti, M.

IEEE Transactions on Robotics, 28(1):172-182, IEEE, 2012 (article)

pi

[BibTex]

[BibTex]


no image
Gecko-Inspired Controllable Adhesive Structures Applied to Micromanipulation

Mengüç, Y., Yang, S. Y., Kim, S., Rogers, J. A., Sitti, M.

Advanced Functional Materials, 22(6):1245-1245, WILEY-VCH Verlag, 2012 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Elastomer surfaces with directionally dependent adhesion strength and their use in transfer printing with continuous roll-to-roll applications

Yang, S. Y., Carlson, A., Cheng, H., Yu, Q., Ahmed, N., Wu, J., Kim, S., Sitti, M., Ferreira, P. M., Huang, Y., others,

Advanced Materials, 24(16):2117-2122, WILEY-VCH Verlag, 2012 (article)

pi

[BibTex]

[BibTex]


no image
Effect of retraction speed on adhesion of elastomer fibrillar structures

Abusomwan, U., Sitti, M.

Applied Physics Letters, 101(21):211907, AIP, 2012 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Impact and Surface Tension in Water: a Study of Landing Bodies

Shih, B., Laham, L., Lee, K. J., Krasnoff, N., Diller, E., Sitti, M.

Bio-inspired Robotics Final Project, Carnegie Mellon University, 2012 (article)

pi

[BibTex]

[BibTex]


no image
Design and rolling locomotion of a magnetically actuated soft capsule endoscope

Yim, S., Sitti, M.

IEEE Transactions on Robotics, 28(1):183-194, IEEE, 2012 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Design and manufacturing of a controllable miniature flapping wing robotic platform

Arabagi, V., Hines, L., Sitti, M.

The International Journal of Robotics Research, 31(6):785-800, SAGE Publications Sage UK: London, England, 2012 (article)

pi

[BibTex]

[BibTex]


no image
Chemotactic steering of bacteria propelled microbeads

Kim, D., Liu, A., Diller, E., Sitti, M.

Biomedical microdevices, 14(6):1009-1017, Springer US, 2012 (article)

pi

Project Page [BibTex]

Project Page [BibTex]

2007


no image
Bacterial flagella-based propulsion and on/off motion control of microscale objects

Behkam, B., Sitti, M.

Applied Physics Letters, 90(2):023902, AIP, 2007 (article)

pi

[BibTex]

2007


[BibTex]


no image
Friction of partially embedded vertically aligned carbon nanofibers inside elastomers

Aksak, B., Sitti, M., Cassell, A., Li, J., Meyyappan, M., Callen, P.

Applied Physics Letters, 91(6):061906, AIP, 2007 (article)

pi

[BibTex]

[BibTex]


no image
Enhanced friction of elastomer microfiber adhesives with spatulate tips

Kim, S., Aksak, B., Sitti, M.

Applied Physics Letters, 91(22):221913, AIP, 2007 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Microscale and nanoscale robotics systems [grand challenges of robotics]

Sitti, M.

IEEE Robotics \& Automation Magazine, 14(1):53-60, IEEE, 2007 (article)

pi

[BibTex]

[BibTex]


no image
A new biomimetic adhesive for therapeutic capsule endoscope applications in the gastrointestinal tract

Glass, P., Sitti, M., Appasamy, R.

Gastrointestinal Endoscopy, 65(5):AB91, Mosby, 2007 (article)

pi

[BibTex]

[BibTex]


no image
Visual servoing-based autonomous 2-D manipulation of microparticles using a nanoprobe

Onal, C. D., Sitti, M.

IEEE Transactions on control systems technology, 15(5):842-852, IEEE, 2007 (article)

pi

[BibTex]

[BibTex]


no image
Adhesion of biologically inspired vertical and angled polymer microfiber arrays

Aksak, B., Murphy, M. P., Sitti, M.

Langmuir, 23(6):3322-3332, ACS Publications, 2007 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Waalbot: An agile small-scale wall-climbing robot utilizing dry elastomer adhesives

Murphy, M. P., Sitti, M.

IEEE/ASME transactions on Mechatronics, 12(3):330-338, IEEE, 2007 (article)

pi

[BibTex]

[BibTex]


no image
Subfeature patterning of organic and inorganic materials using robotic assembly

Tafazzoli, A., Cheng, C., Pawashe, C., Sabo, E. K., Trofin, L., Sitti, M., LeDuc, P. R.

Journal of materials research, 22(06):1601-1608, Cambridge University Press, 2007 (article)

pi

[BibTex]

[BibTex]


no image
Effect of backing layer thickness on adhesion of single-level elastomer fiber arrays

Kim, S., Sitti, M., Hui, C., Long, R., Jagota, A.

Applied Physics Letters, 91(16):161905, AIP, 2007 (article)

pi

[BibTex]

[BibTex]


no image
Adhesion and anisotropic friction enhancements of angled heterogeneous micro-fiber arrays with spherical and spatula tips

Murphy, M. P., Aksak, B., Sitti, M.

Journal of Adhesion Science and Technology, 21(12-13):1281-1296, Taylor & Francis Group, 2007 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Surface-tension-driven biologically inspired water strider robots: Theory and experiments

Song, Y. S., Sitti, M.

IEEE Transactions on robotics, 23(3):578-589, IEEE, 2007 (article)

pi

[BibTex]

[BibTex]