Header logo is


2018


Thumb xl hp teaser
A probabilistic model for the numerical solution of initial value problems

Schober, M., Särkkä, S., Philipp Hennig,

Statistics and Computing, Springer US, 2018 (article)

Abstract
We study connections between ordinary differential equation (ODE) solvers and probabilistic regression methods in statistics. We provide a new view of probabilistic ODE solvers as active inference agents operating on stochastic differential equation models that estimate the unknown initial value problem (IVP) solution from approximate observations of the solution derivative, as provided by the ODE dynamics. Adding to this picture, we show that several multistep methods of Nordsieck form can be recast as Kalman filtering on q-times integrated Wiener processes. Doing so provides a family of IVP solvers that return a Gaussian posterior measure, rather than a point estimate. We show that some such methods have low computational overhead, nontrivial convergence order, and that the posterior has a calibrated concentration rate. Additionally, we suggest a step size adaptation algorithm which completes the proposed method to a practically useful implementation, which we experimentally evaluate using a representative set of standard codes in the DETEST benchmark set.

pn

PDF Code DOI Project Page [BibTex]


no image
Autofocusing-based phase correction

Loktyushin, A., Ehses, P., Schölkopf, B., Scheffler, K.

Magnetic Resonance in Medicine, 80(3):958-968, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Generalized phase locking analysis of electrophysiology data

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N. K., Besserve, M.

7th AREADNE Conference on Research in Encoding and Decoding of Neural Ensembles, 2018 (poster)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Case series: Slowing alpha rhythm in late-stage ALS patients

Hohmann, M. R., Fomina, T., Jayaram, V., Emde, T., Just, J., Synofzik, M., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.

Clinical Neurophysiology, 129(2):406-408, 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Inverse Reinforcement Learning via Nonparametric Spatio-Temporal Subgoal Modeling

Šošić, A., Rueckert, E., Peters, J., Zoubir, A., Koeppl, H.

Journal of Machine Learning Research, 19(69):1-45, 2018 (article)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Grip Stabilization of Novel Objects using Slip Prediction

Veiga, F., Peters, J., Hermans, T.

IEEE Transactions on Haptics, 2018 (article) In press

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Domain Adaptation Under Causal Assumptions

Lechner, T.

Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
A Differentially Private Kernel Two-Sample Test

Raj*, A., Law*, L., Sejdinovic*, D., Park, M.

2018, *equal contribution (conference) Submitted

ei

[BibTex]

[BibTex]


no image
Electrophysiological correlates of neurodegeneration in motor and non-motor brain regions in amyotrophic lateral sclerosis—implications for brain–computer interfacing

Kellmeyer, P., Grosse-Wentrup, M., Schulze-Bonhage, A., Ziemann, U., Ball, T.

Journal of Neural Engineering, 15(4):041003, IOP Publishing, 2018 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
A Causal Perspective on Deep Representation Learning

Suter, R.

ETH Zurich, 2018 (mastersthesis)

ei

[BibTex]


no image
Quantum machine learning: a classical perspective

Ciliberto, C., Herbster, M., Ialongo, A. D., Pontil, M., Rocchetto, A., Severini, S., Wossnig, L.

Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474(2209):20170551, 2018 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Kernel-based tests for joint independence

Pfister, N., Bühlmann, P., Schölkopf, B., Peters, J.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80(1):5-31, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Prediction of Glucose Tolerance without an Oral Glucose Tolerance Test

Babbar, R., Heni, M., Peter, A., Hrabě de Angelis, M., Häring, H., Fritsche, A., Preissl, H., Schölkopf, B., Wagner, R.

Frontiers in Endocrinology, 9, pages: 82, 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Invariant Models for Causal Transfer Learning

Rojas-Carulla, M., Schölkopf, B., Turner, R., Peters, J.

Journal of Machine Learning Research, 19(36):1-34, 2018 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
MOABB: Trustworthy algorithm benchmarking for BCIs

Jayaram, V., Barachant, A.

Journal of Neural Engineering, 15(6):066011, 2018 (article)

ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
f-Divergence constrained policy improvement

Belousov, B., Peters, J.

Journal of Machine Learning Research, 2018 (article) Submitted

ei

Project Page [BibTex]

Project Page [BibTex]


no image
Phylogenetic convolutional neural networks in metagenomics

Fioravanti*, D., Giarratano*, Y., Maggio*, V., Agostinelli, C., Chierici, M., Jurman, G., Furlanello, C.

BMC Bioinformatics, 19(2):49 pages, 2018, *equal contribution (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Food specific inhibitory control under negative mood in binge-eating disorder: Evidence from a multimethod approach

Leehr, E. J., Schag, K., Dresler, T., Grosse-Wentrup, M., Hautzinger, M., Fallgatter, A. J., Zipfel, S., Giel, K. E., Ehlis, A.

International Journal of Eating Disorders, 51(2):112-123, Wiley Online Library, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Probabilistic Approaches to Stochastic Optimization

Mahsereci, M.

Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

ei pn

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Reinforcement Learning for High-Speed Robotics with Muscular Actuation

Guist, S.

Ruprecht-Karls-Universität Heidelberg , 2018 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Linking imaging to omics utilizing image-guided tissue extraction

Disselhorst, J. A., Krueger, M. A., Ud-Dean, S. M. M., Bezrukov, I., Jarboui, M. A., Trautwein, C., Traube, A., Spindler, C., Cotton, J. M., Leibfritz, D., Pichler, B. J.

Proceedings of the National Academy of Sciences, 115(13):E2980-E2987, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Methods in Psychophysics

Wichmann, F. A., Jäkel, F.

In Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience, 5 (Methodology), 7, 4th, John Wiley & Sons, Inc., 2018 (inbook)

ei

[BibTex]

[BibTex]


no image
Discriminative Transfer Learning for General Image Restoration

Xiao, L., Heide, F., Heidrich, W., Schölkopf, B., Hirsch, M.

IEEE Transactions on Image Processing, 27(8):4091-4104, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Photorealistic Video Super Resolution

Pérez-Pellitero, E., Sajjadi, M. S. M., Hirsch, M., Schölkopf, B.

Workshop and Challenge on Perceptual Image Restoration and Manipulation (PIRM) at the 15th European Conference on Computer Vision (ECCV), 2018 (poster)

ei

[BibTex]

[BibTex]


no image
Denotational Validation of Higher-order Bayesian Inference

Ścibior, A., Kammar, O., Vákár, M., Staton, S., Yang, H., Cai, Y., Ostermann, K., Moss, S. K., Heunen, C., Ghahramani, Z.

Proceedings of the ACM on Principles of Programming Languages (POPL), 2(Article No. 60):1-29, ACM, 2018 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Dissecting the synapse- and frequency-dependent network mechanisms of in vivo hippocampal sharp wave-ripples

Ramirez-Villegas, J. F., Willeke, K. F., Logothetis, N. K., Besserve, M.

Neuron, 100(5):1224-1240, 2018 (article)

ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Retinal image quality of the human eye across the visual field

Meding, K., Hirsch, M., Wichmann, F. A.

14th Biannual Conference of the German Society for Cognitive Science (KOGWIS 2018), 2018 (poster)

ei

[BibTex]

[BibTex]


no image
In-Hand Object Stabilization by Independent Finger Control

Veiga, F. F., Edin, B. B., Peters, J.

IEEE Transactions on Robotics, 2018 (article) Submitted

ei

Project Page [BibTex]

Project Page [BibTex]


no image
Visualizing and understanding Sum-Product Networks

Vergari, A., Di Mauro, N., Esposito, F.

Machine Learning, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Transfer Learning for BCIs

Jayaram, V., Fiebig, K., Peters, J., Grosse-Wentrup, M.

In Brain–Computer Interfaces Handbook, pages: 425-442, 22, (Editors: Chang S. Nam, Anton Nijholt and Fabien Lotte), CRC Press, 2018 (incollection)

ei

Project Page [BibTex]

Project Page [BibTex]


no image
Probabilistic Ordinary Differential Equation Solvers — Theory and Applications

Schober, M.

Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

ei pn

[BibTex]

[BibTex]


no image
A machine learning approach to taking EEG-based computer interfaces out of the lab

Jayaram, V.

Graduate Training Centre of Neuroscience, IMPRS, Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Non-Equilibrium Relations for Bounded Rational Decision-Making in Changing Environments

Grau-Moya, J, Krüger, M, Braun, DA

Entropy, 20(1:1):1-28, January 2018 (article)

Abstract
Living organisms from single cells to humans need to adapt continuously to respond to changes in their environment. The process of behavioural adaptation can be thought of as improving decision-making performance according to some utility function. Here, we consider an abstract model of organisms as decision-makers with limited information-processing resources that trade off between maximization of utility and computational costs measured by a relative entropy, in a similar fashion to thermodynamic systems undergoing isothermal transformations. Such systems minimize the free energy to reach equilibrium states that balance internal energy and entropic cost. When there is a fast change in the environment, these systems evolve in a non-equilibrium fashion because they are unable to follow the path of equilibrium distributions. Here, we apply concepts from non-equilibrium thermodynamics to characterize decision-makers that adapt to changing environments under the assumption that the temporal evolution of the utility function is externally driven and does not depend on the decision-maker’s action. This allows one to quantify performance loss due to imperfect adaptation in a general manner and, additionally, to find relations for decision-making similar to Crooks’ fluctuation theorem and Jarzynski’s equality. We provide simulations of several exemplary decision and inference problems in the discrete and continuous domains to illustrate the new relations.

ei

DOI [BibTex]

DOI [BibTex]

2017


no image
Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning

Gu, S., Lillicrap, T., Turner, R. E., Ghahramani, Z., Schölkopf, B., Levine, S.

Advances in Neural Information Processing Systems 30, pages: 3849-3858, (Editors: Guyon I. and Luxburg U.v. and Bengio S. and Wallach H. and Fergus R. and Vishwanathan S. and Garnett R.), Curran Associates, Inc., 31st Annual Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) Project Page [BibTex]

2017


link (url) Project Page [BibTex]


no image
Boosting Variational Inference: an Optimization Perspective

Locatello, F., Khanna, R., Ghosh, J., Rätsch, G.

Workshop: Advances in Approximate Bayesian Inference at the 31st Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Learning Independent Causal Mechanisms

Parascandolo, G., Rojas-Carulla, M., Kilbertus, N., Schölkopf, B.

Workshop: Learning Disentangled Representations: from Perception to Control at the 31st Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Avoiding Discrimination through Causal Reasoning

Kilbertus, N., Rojas-Carulla, M., Parascandolo, G., Hardt, M., Janzing, D., Schölkopf, B.

Advances in Neural Information Processing Systems 30, pages: 656-666, (Editors: Guyon I. and Luxburg U.v. and Bengio S. and Wallach H. and Fergus R. and Vishwanathan S. and Garnett R.), Curran Associates, Inc., 31st Annual Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Greedy Algorithms for Cone Constrained Optimization with Convergence Guarantees

Locatello, F., Tschannen, M., Rätsch, G., Jaggi, M.

Advances in Neural Information Processing Systems 30, pages: 773-784, (Editors: Guyon I. and Luxburg U.v. and Bengio S. and Wallach H. and Fergus R. and Vishwanathan S. and Garnett R.), Curran Associates, Inc., 31st Annual Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
AdaGAN: Boosting Generative Models

Tolstikhin, I., Gelly, S., Bousquet, O., Simon-Gabriel, C. J., Schölkopf, B.

Advances in Neural Information Processing Systems 30, pages: 5424-5433, (Editors: Guyon I. and Luxburg U.v. and Bengio S. and Wallach H. and Fergus R. and Vishwanathan S. and Garnett R.), Curran Associates, Inc., 31st Annual Conference on Neural Information Processing Systems, December 2017 (conference)

ei

arXiv link (url) Project Page [BibTex]

arXiv link (url) Project Page [BibTex]


no image
Safe Adaptive Importance Sampling

Stich, S. U., Raj, A., Jaggi, M.

Advances in Neural Information Processing Systems 30, pages: 4384-4394, (Editors: Guyon I. and Luxburg U.v. and Bengio S. and Wallach H. and Fergus R. and Vishwanathan S. and Garnett R.), Curran Associates, Inc., 31st Annual Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
ConvWave: Searching for Gravitational Waves with Fully Convolutional Neural Nets

Gebhard, T., Kilbertus, N., Parascandolo, G., Harry, I., Schölkopf, B.

Workshop on Deep Learning for Physical Sciences (DLPS) at the 31st Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
From Parity to Preference-based Notions of Fairness in Classification

Zafar, M. B., Valera, I., Gomez Rodriguez, M., Gummadi, K., Weller, A.

Advances in Neural Information Processing Systems 30, pages: 229-239, (Editors: Guyon I. and Luxburg U.v. and Bengio S. and Wallach H. and Fergus R. and Vishwanathan S. and Garnett R.), Curran Associates, Inc., 31st Annual Conference on Neural Information Processing Systems, December 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb xl fig toyex lqr1kernel 1
On the Design of LQR Kernels for Efficient Controller Learning

Marco, A., Hennig, P., Schaal, S., Trimpe, S.

Proceedings of the 56th IEEE Annual Conference on Decision and Control (CDC), pages: 5193-5200, IEEE, IEEE Conference on Decision and Control, December 2017 (conference)

Abstract
Finding optimal feedback controllers for nonlinear dynamic systems from data is hard. Recently, Bayesian optimization (BO) has been proposed as a powerful framework for direct controller tuning from experimental trials. For selecting the next query point and finding the global optimum, BO relies on a probabilistic description of the latent objective function, typically a Gaussian process (GP). As is shown herein, GPs with a common kernel choice can, however, lead to poor learning outcomes on standard quadratic control problems. For a first-order system, we construct two kernels that specifically leverage the structure of the well-known Linear Quadratic Regulator (LQR), yet retain the flexibility of Bayesian nonparametric learning. Simulations of uncertain linear and nonlinear systems demonstrate that the LQR kernels yield superior learning performance.

am ics pn

arXiv PDF On the Design of LQR Kernels for Efficient Controller Learning - CDC presentation DOI Project Page [BibTex]

arXiv PDF On the Design of LQR Kernels for Efficient Controller Learning - CDC presentation DOI Project Page [BibTex]


no image
Discriminative k-shot learning using probabilistic models

Bauer*, M., Rojas-Carulla*, M., Świątkowski, J. B., Schölkopf, B., Turner, R. E.

Second Workshop on Bayesian Deep Learning at the 31st Conference on Neural Information Processing Systems , December 2017, *equal contribution (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Closed-form Inference and Prediction in Gaussian Process State-Space Models

Ialongo, A. D., Van Der Wilk, M., Rasmussen, C. E.

Time Series Workshop at the 31st Conference on Neural Information Processing Systems, December 2017 (conference)

ei

PDF [BibTex]

PDF [BibTex]