Header logo is


2015


Thumb xl img sceneflow
Object Scene Flow for Autonomous Vehicles

Menze, M., Geiger, A.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 2015, pages: 3061-3070, IEEE, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2015 (inproceedings)

Abstract
This paper proposes a novel model and dataset for 3D scene flow estimation with an application to autonomous driving. Taking advantage of the fact that outdoor scenes often decompose into a small number of independently moving objects, we represent each element in the scene by its rigid motion parameters and each superpixel by a 3D plane as well as an index to the corresponding object. This minimal representation increases robustness and leads to a discrete-continuous CRF where the data term decomposes into pairwise potentials between superpixels and objects. Moreover, our model intrinsically segments the scene into its constituting dynamic components. We demonstrate the performance of our model on existing benchmarks as well as a novel realistic dataset with scene flow ground truth. We obtain this dataset by annotating 400 dynamic scenes from the KITTI raw data collection using detailed 3D CAD models for all vehicles in motion. Our experiments also reveal novel challenges which can't be handled by existing methods.

avg ps

pdf abstract suppmat DOI [BibTex]

2015


pdf abstract suppmat DOI [BibTex]


Thumb xl teaser
Permutohedral Lattice CNNs

Kiefel, M., Jampani, V., Gehler, P. V.

In ICLR Workshop Track, ICLR, May 2015 (inproceedings)

Abstract
This paper presents a convolutional layer that is able to process sparse input features. As an example, for image recognition problems this allows an efficient filtering of signals that do not lie on a dense grid (like pixel position), but of more general features (such as color values). The presented algorithm makes use of the permutohedral lattice data structure. The permutohedral lattice was introduced to efficiently implement a bilateral filter, a commonly used image processing operation. Its use allows for a generalization of the convolution type found in current (spatial) convolutional network architectures.

ei ps

pdf link (url) [BibTex]

pdf link (url) [BibTex]


Thumb xl publications toc
Fiberbot: A miniature crawling robot using a directional fibrillar pad

Han, Y., Marvi, H., Sitti, M.

In Robotics and Automation (ICRA), 2015 IEEE International Conference on, pages: 3122-3127, May 2015 (inproceedings)

Abstract
Vibration-driven locomotion has been widely used for crawling robot studies. Such robots usually have a vibration motor as the actuator and a fibrillar structure for providing directional friction on the substrate. However, there has not been any studies about the effect of fiber structure on robot crawling performance. In this paper, we develop Fiberbot, a custom made mini vibration robot, for studying the effect of fiber angle on robot velocity, steering, and climbing performance. It is known that the friction force with and against fibers depends on the fiber angle. Thus, we first present a new fabrication method for making millimeter scale fibers at a wide range of angles. We then show that using 30° angle fibers that have the highest friction anisotropy (ratio of backward to forward friction force) among the other fibers we fabricated in this study, Fiberbot speed on glass increases to 13.8±0.4 cm/s (compared to ν = 0.6±0.1 cm/s using vertical fibers). We also demonstrate that the locomotion direction of Fiberbot depends on the tilting direction of fibers and we can steer the robot by rotating the fiber pad. Fiberbot could also climb on glass at inclinations of up to 10° when equipped with fibers of high friction anisotropy. We show that adding a rigid tail to the robot it can climb on glass at 25° inclines. Moreover, the robot is able to crawl on rough surfaces such as wood (ν = 10.0±0.2 cm/s using 30° fiber pad). Fiberbot, a low-cost vibration robot equipped with a custom-designed fiber pad with steering and climbing capabilities could be used for studies on collective behavior on a wide range of topographies as well as search and exploratory missions.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl publications toc
Platform design and tethered flight of a motor-driven flapping-wing system

Hines, L., Colmenares, D., Sitti, M.

In Robotics and Automation (ICRA), 2015 IEEE International Conference on, pages: 5838-5845, May 2015 (inproceedings)

Abstract
In this work, we examine two design modifications to a tethered motor-driven flapping-wing system. Previously, we had demonstrated a simple mechanism utilizing a linear transmission for resonant operation and direct drive of the wing flapping angle for control. The initial two-wing system had a weight of 2.7 grams and a maximum lift-to-weight ratio of 1.4. While capable of vertical takeoff, in open-loop flight it demonstrated instability and pitch oscillations at the wing flapping frequency, leading to flight times of only a few wing strokes. Here the effect of vertical wing offset as well as an alternative multi-wing layout is investigated and experimentally tested with newly constructed prototypes. With only a change in vertical wing offset, stable open-loop flight of the two-wing flapping system is shown to be theoretically possible, but difficult to achieve with our current design and operating parameters. Both of the new two and four-wing systems, however, prove capable of flying to the end of the tether, with the four-wing system prototype eliminating disruptive wing beat oscillations.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl 1 s2.0 s0141635915000938 main
Structural optimization for flexure-based parallel mechanisms–Towards achieving optimal dynamic and stiffness properties

Lum, G. Z., Teo, T. J., Yeo, S. H., Yang, G., Sitti, M.

Precision Engineering, 42, pages: 195-207, Elsevier, May 2015 (article)

Abstract
Flexure-based parallel mechanisms (FPMs) are a type of compliant mechanisms that consist of a rigid end-effector that is articulated by several parallel, flexible limbs (a.k.a. sub-chains). Existing design methods can enhance the FPMs’ dynamic and stiffness properties by conducting a size optimization on their sub-chains. A similar optimization process, however, was not performed for their sub-chains’ topology, and this may severely limit the benefits of a size optimization. Thus, this paper proposes to use a structural optimization approach to synthesize and optimize the topology, shape and size of the FPMs’ sub-chains. The benefits of this approach are demonstrated via the design and development of a planar X − Y − θz FPM. A prototype of this FPM was evaluated experimentally to have a large workspace of 1.2 mm × 1.2 mm × 6°, a fundamental natural frequency of 102 Hz, and stiffness ratios that are greater than 120. The achieved properties show significant improvement over existing 3-degrees-of-freedom compliant mechanisms that can deflect more than 0.5 mm and 0.5°. These compliant mechanisms typically have stiffness ratios that are less than 60 and a fundamental natural frequency that is less than 45 Hz.

pi

DOI [BibTex]

DOI [BibTex]


no image
Blind Retrospective Motion Correction of MR Images

Loktyushin, A.

University of Tübingen, Germany, May 2015 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Event-based Estimation and Control for Remote Robot Operation with Reduced Communication

Trimpe, S., Buchli, J.

In Proceedings of the IEEE International Conference on Robotics and Automation, May 2015 (inproceedings)

Abstract
An event-based communication framework for remote operation of a robot via a bandwidth-limited network is proposed. The robot sends state and environment estimation data to the operator, and the operator transmits updated control commands or policies to the robot. Event-based communication protocols are designed to ensure that data is transmitted only when required: the robot sends new estimation data only if this yields a significant information gain at the operator, and the operator transmits an updated control policy only if this comes with a significant improvement in control performance. The developed framework is modular and can be used with any standard estimation and control algorithms. Simulation results of a robotic arm highlight its potential for an efficient use of limited communication resources, for example, in disaster response scenarios such as the DARPA Robotics Challenge.

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
Lernende Roboter

Trimpe, S.

In Jahrbuch der Max-Planck-Gesellschaft, Max Planck Society, May 2015, (popular science article in German) (inbook)

am ics

link (url) [BibTex]

link (url) [BibTex]


Thumb xl 1 s2.0 s0142961215003683 main
Controlled surface topography regulates collective 3D migration by epithelial–mesenchymal composite embryonic tissues

Song, J., Shawky, J. H., Kim, Y., Hazar, M., LeDuc, P. R., Sitti, M., Davidson, L. A.

Biomaterials, 58, pages: 1-9, Elsevier, April 2015 (article)

Abstract
Cells in tissues encounter a range of physical cues as they migrate. Probing single cell and collective migratory responses to physically defined three-dimensional (3D) microenvironments and the factors that modulate those responses are critical to understanding how tissue migration is regulated during development, regeneration, and cancer. One key physical factor that regulates cell migration is topography. Most studies on surface topography and cell mechanics have been carried out with single migratory cells, yet little is known about the spreading and motility response of 3D complex multi-cellular tissues to topographical cues. Here, we examine the response to complex topographical cues of microsurgically isolated tissue explants composed of epithelial and mesenchymal cell layers from naturally 3D organized embryos of the aquatic frog Xenopus laevis. We control topography using fabricated micropost arrays (MPAs) and investigate the collective 3D migration of these multi-cellular systems in these MPAs. We find that the topography regulates both collective and individual cell migration and that dense MPAs reduce but do not eliminate tissue spreading. By modulating cell size through the cell cycle inhibitor Mitomycin C or the spacing of the MPAs we uncover how 3D topographical cues disrupt collective cell migration. We find surface topography can direct both single cell motility and tissue spreading, altering tissue-scale processes that enable efficient conversion of single cell motility into collective movement.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl publications toc
Transfer Printing of Metallic Microstructures on Adhesion-Promoting Hydrogel Substrates

Wu, H., Sariola, V., Zhu, C., Zhao, J., Sitti, M., Bettinger, C. J.

Advanced Materials, 27(22):3398-3404, April 2015 (article)

Abstract
Fabrication schemes that integrate inorganic microstructures with hydrogel substrates are essential for advancing flexible electronics. A transfer printing process that is made possible through the design and synthesis of adhesion-promoting hydrogels as target substrates is reported. This fabrication technique may advance ultracompliant electronics by melding microfabricated structures with swollen hydrogel substrates.

pi

DOI [BibTex]

DOI [BibTex]


no image
Independence of cause and mechanism in brain networks

Besserve, M.

DALI workshop on Networks: Processes and Causality, April 2015 (talk)

ei

[BibTex]

[BibTex]


no image
Blind multirigid retrospective motion correction of MR images

Loktyushin, A., Nickisch, H., Pohmann, R., Schölkopf, B.

Magnetic Resonance in Medicine, 73(4):1457-1468, April 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image patent
Dry adhesives and methods for making dry adhesives

Sitti, M., Murphy, M., Aksak, B.

March 2015, US Patent App. 14/625,162 (patent)

Abstract
Dry adhesives and methods for forming dry adhesives. A method of forming a dry adhesive structure on a substrate, comprises: forming a template backing layer of energy sensitive material on the substrate; forming a template layer of energy sensitive material on the template backing layer; exposing the template layer to a predetermined pattern of energy; removing a portion of the template layer related to the predetermined pattern of energy, and leaving a template structure formed from energy sensitive material and connected to the substrate via the template backing layer.

pi

[BibTex]

[BibTex]


Thumb xl publications toc
Biomedical applications of untethered mobile milli/microrobots

Sitti, M., Ceylan, H., Hu, W., Giltinan, J., Turan, M., Yim, S., Diller, E.

Proceedings of the IEEE, 103(2):205-224, IEEE, March 2015 (article)

Abstract
Untethered robots miniaturized to the length scale of millimeter and below attract growing attention for the prospect of transforming many aspects of health care and bioengineering. As the robot size goes down to the order of a single cell, previously inaccessible body sites would become available for high-resolution in situ and in vivo manipulations. This unprecedented direct access would enable an extensive range of minimally invasive medical operations. Here, we provide a comprehensive review of the current advances in biomedical untethered mobile milli/microrobots. We put a special emphasis on the potential impacts of biomedical microrobots in the near future. Finally, we discuss the existing challenges and emerging concepts associated with designing such a miniaturized robot for operation inside a biological environment for biomedical applications.

pi

DOI [BibTex]

DOI [BibTex]


no image
A quantum advantage for inferring causal structure

Ried, K., Agnew, M., Vermeyden, L., Janzing, D., Spekkens, R. W., Resch, K. J.

Nature Physics, 11(5):414-420, March 2015 (article)

Abstract
The problem of inferring causal relations from observed correlations is relevant to a wide variety of scientific disciplines. Yet given the correlations between just two classical variables, it is impossible to determine whether they arose from a causal influence of one on the other or a common cause influencing both. Only a randomized trial can settle the issue. Here we consider the problem of causal inference for quantum variables. We show that the analogue of a randomized trial, causal tomography, yields a complete solution. We also show that, in contrast to the classical case, one can sometimes infer the causal structure from observations alone. We implement a quantum-optical experiment wherein we control the causal relation between two optical modes, and two measurement schemes—with and without randomization—that extract this relation from the observed correlations. Our results show that entanglement and quantum coherence provide an advantage for causal inference.

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl publications toc
Collective 3D Migration of Embryonic Epithelial Mesenchymal Composite Tissues are Regulated by Surface Topology

Song, J., Shawky, J., Kim, Y. T., Hazar, M., Sitti, M., LeDuc, P. R., Davidson, L. A.

Biophysical Journal, 108(2):455a, Elsevier, January 2015 (article)

Abstract
Cells in tissues encounter a range of physical cues as they migrate. Probing single cell and collective migratory responses to physically defined three-dimensional (3D) microenvironments and the factors that modulate those responses are critical to understanding how tissue migration is regulated during development, regeneration, and cancer. One key physical factor that regulates cell migration is topology. Most studies on surface topology and cell mechanics have been carried out with single migratory cells, yet little is known about the spreading and motility response of 3D complex multicellular tissues to topological cues. Here, we examine the behaviors of microsurgically isolated tissue explants composed of epithelial and mesenchymal cell layers from naturally 3D organized embryos of the aquatic frog Xenopus laevis to complex topological cues. We control topology using fabricated micropost arrays (MPAs) with different diameters (e.g., different spacing gaps) and investigate the collective 3D migration of these multicellular systems in these MPAs. Our topographical controlled approach for cellular application enables us to achieve a high degree of control over micropost positioning and geometry via simple, accurate, and repeatable microfabrication processes. We find that the topology regulates both collective and individual cell migration and that dense MPAs reduce but do not eliminate tissue spreading. By modulating cell size through the cell cycle inhibitor Mitomycin C or the spacing within MPAs we discover a role for topology in disrupting collective enhancement of cell migration. We find 3D topological cues can direct both single cell motility and tissue spreading, altering tissue-scale processes that enable efficient conversion of single cell motility into collective movement.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl publications toc
Three-dimensional heterogeneous assembly of coded microgels using an untethered mobile microgripper

Chung, S. E., Dong, X., Sitti, M.

Lab on a Chip, 15(7):1667-1676, Royal Society of Chemistry, January 2015 (article)

Abstract
Three-dimensional (3D) heterogeneous assembly of coded microgels in enclosed aquatic environments is demonstrated using a remotely actuated and controlled magnetic microgripper by a customized electromagnetic coil system. The microgripper uses different ‘stick–slip’ and ‘rolling’ locomotion in 2D and also levitation in 3D by magnetic gradient-based pulling force. This enables the microrobot to precisely manipulate each microgel by controlling its position and orientation in all x–y–z directions. Our microrobotic assembly method broke the barrier of limitation on the number of assembled microgel layers, because it enabled precise 3D levitation of the microgripper. We used the gripper to assemble microgels that had been coded with different colours and shapes onto prefabricated polymeric microposts. This eliminates the need for extra secondary cross-linking to fix the final construct. We demonstrated assembly of microgels on a single micropost up to ten layers. By increasing the number and changing the distribution of the posts, complex heterogeneous microsystems were possible to construct in 3D.

pi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl publications toc
Integrating mechanism synthesis and topological optimization technique for stiffness-oriented design of a three degrees-of-freedom flexure-based parallel mechanism

Lum, G. Z., Teo, T. J., Yang, G., Yeo, S. H., Sitti, M.

Precision Engineering, 39, pages: 125-133, Elsevier, January 2015 (article)

Abstract
This paper introduces a new design approach to synthesize multiple degrees-of-freedom (DOF) flexure-based parallel mechanism (FPM). Termed as an integrated design approach, it is a systematic design methodology, which integrates both classical mechanism synthesis and modern topology optimization technique, to deliver an optimized multi-DOF FPM. This design approach is separated into two levels. At sub-chain level, a novel topology optimization technique, which uses the classical linkage mechanisms as DNA seeds, is used to synthesize the compliant joints or limbs. At configuration level, the optimal compliant joints are used to form the parallel limbs of the multi-DOF FPM and another stage of optimization was conducted to determine the optimal space distribution between these compliant joints so as to generate a multi-DOF FPM with optimized stiffness characteristic. In this paper, the design of a 3-DOF planar motion FPM was used to demonstrate the effectiveness and accuracy of this proposed design approach.

pi

DOI [BibTex]


Thumb xl publications toc
Actively controlled fibrillar friction surfaces

Marvi, H, Han, Y, Sitti, M

Applied Physics Letters, 106(5):051602, AIP Publishing, January 2015 (article)

Abstract
In this letter, we propose a technique by which we can actively adjust frictional properties of elastic fibrillar structures in different directions. Using a mesh attached to a two degree-of-freedom linear stage, we controlled the active length and the tilt angle of fibers, independently. Thus, we were able to achieve desired levels of friction forces in different directions and significantly improve passive friction anisotropies observed in the same fiber arrays. The proposed technique would allow us to readily control the friction anisotropy and the friction magnitude of fibrillar structures in any planar direction.

pi

DOI [BibTex]

DOI [BibTex]


no image
Policy Search for Imitation Learning

Doerr, A.

University of Stuttgart, January 2015 (thesis)

am ics

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Positive definite matrices and the S-divergence

Sra, S.

Proceedings of the American Mathematical Society, 2015, Published electronically: October 22, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Adaptive information-theoretic bounded rational decision-making with parametric priors

Grau-Moya, J, Braun, DA

pages: 1-4, NIPS Workshop on Bounded Optimality and Rational Metareasoning, December 2015 (conference)

Abstract
Deviations from rational decision-making due to limited computational resources have been studied in the field of bounded rationality, originally proposed by Herbert Simon. There have been a number of different approaches to model bounded rationality ranging from optimality principles to heuristics. Here we take an information-theoretic approach to bounded rationality, where information-processing costs are measured by the relative entropy between a posterior decision strategy and a given fixed prior strategy. In the case of multiple environments, it can be shown that there is an optimal prior rendering the bounded rationality problem equivalent to the rate distortion problem for lossy compression in information theory. Accordingly, the optimal prior and posterior strategies can be computed by the well-known Blahut-Arimoto algorithm which requires the computation of partition sums over all possible outcomes and cannot be applied straightforwardly to continuous problems. Here we derive a sampling-based alternative update rule for the adaptation of prior behaviors of decision-makers and we show convergence to the optimal prior predicted by rate distortion theory. Importantly, the update rule avoids typical infeasible operations such as the computation of partition sums. We show in simulations a proof of concept for discrete action and environment domains. This approach is not only interesting as a generic computational method, but might also provide a more realistic model of human decision-making processes occurring on a fast and a slow time scale.

ei

[BibTex]

[BibTex]


no image
Structural Intervention Distance (SID) for Evaluating Causal Graphs

Peters, J., Bühlmann, P.

Neural Computation , 27(3):771-799, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Likelihood and Consilience: On Forster’s Counterexamples to the Likelihood Theory of Evidence

Zhang, J., Zhang, K.

Philosophy of Science, Supplementary Volume 2015, 82(5):930-940, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Increasing the sensitivity of Kepler to Earth-like exoplanets

Foreman-Mackey, D., Hogg, D., Schölkopf, B., Wang, D.

Workshop: 225th American Astronomical Society Meeting 2015 , pages: 105.01D, 2015 (poster)

ei

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Information-Theoretic Implications of Classical and Quantum Causal Structures

Chaves, R., Majenz, C., Luft, L., Maciel, T., Janzing, D., Schölkopf, B., Gross, D.

18th Conference on Quantum Information Processing (QIP), 2015 (talk)

ei

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Crowdsourced analysis of clinical trial data to predict amyotrophic lateral sclerosis progression

Küffner, R., Zach, N., Norel, R., Hawe, J., Schoenfeld, D., Wang, L., Li, G., Fang, L., Mackey, L., Hardiman, O., Cudkowicz, M., Sherman, A., Ertaylan, G., Grosse-Wentrup, M., Hothorn, T., van Ligtenberg, J., Macke, J., Meyer, T., Schölkopf, B., Tran, L., Vaughan, R., Stolovitzky, G., Leitner, M.

Nature Biotechnology, 33, pages: 51-57, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Inference of Cause and Effect with Unsupervised Inverse Regression

Sgouritsa, E., Janzing, D., Hennig, P., Schölkopf, B.

In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics, 38, pages: 847-855, JMLR Workshop and Conference Proceedings, (Editors: Lebanon, G. and Vishwanathan, S.V.N.), JMLR.org, AISTATS, 2015 (inproceedings)

ei pn

Web PDF [BibTex]

Web PDF [BibTex]


no image
Distinguishing Cause from Effect Based on Exogeneity

Zhang, K., Zhang, J., Schölkopf, B.

In Fifteenth Conference on Theoretical Aspects of Rationality and Knowledge, pages: 261-271, (Editors: Ramanujam, R.), TARK, 2015 (inproceedings)

ei

[BibTex]

[BibTex]


no image
Probabilistic Interpretation of Linear Solvers

Hennig, P.

SIAM Journal on Optimization, 25(1):234-260, 2015 (article)

ei pn

Web PDF link (url) DOI [BibTex]

Web PDF link (url) DOI [BibTex]


no image
Developing biorobotics for veterinary research into cat movements

Mariti, C., Muscolo, G., Peters, J., Puig, D., Recchiuto, C., Sighieri, C., Solanas, A., von Stryk, O.

Journal of Veterinary Behavior: Clinical Applications and Research, 10(3):248-254, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Identification of Time-Dependent Causal Model: A Gaussian Process Treatment

Huang, B., Zhang, K., Schölkopf, B.

In 24th International Joint Conference on Artificial Intelligence, Machine Learning Track, pages: 3561-3568, (Editors: Yang, Q. and Wooldridge, M.), AAAI Press, Palo Alto, California USA, IJCAI15, 2015 (inproceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Spatial statistics and attentional dynamics in scene viewing

Engbert, R., Trukenbrod, H., Barthelmé, S., Wichmann, F.

Journal of Vision, 15(1):1-17, 2015 (article)

ei

Web PDF link (url) DOI [BibTex]

Web PDF link (url) DOI [BibTex]


no image
The Randomized Causation Coefficient

Lopez-Paz, D., Muandet, K., Recht, B.

Journal of Machine Learning, 16, pages: 2901-2907, 2015 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Towards denoising XMCD movies of fast magnetization dynamics using extended Kalman filter

Kopp, M., Harmeling, S., Schütz, G., Schölkopf, B., Fähnle, M.

Ultramicroscopy, 148, pages: 115-122, 2015 (article)

Abstract
The Kalman filter is a well-established approach to get information on the time-dependent state of a system from noisy observations. It was developed in the context of the Apollo project to see the deviation of the true trajectory of a rocket from the desired trajectory. Afterwards it was applied to many different systems with small numbers of components of the respective state vector (typically about 10). In all cases the equation of motion for the state vector was known exactly. The fast dissipative magnetization dynamics is often investigated by x-ray magnetic circular dichroism movies (XMCD movies), which are often very noisy. In this situation the number of components of the state vector is extremely large (about 105), and the equation of motion for the dissipative magnetization dynamics (especially the values of the material parameters of this equation) is not well known. In the present paper it is shown by theoretical considerations that – nevertheless – there is no principle problem for the use of the Kalman filter to denoise XMCD movies of fast dissipative magnetization dynamics.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Multi-Source Domain Adaptation: A Causal View

Zhang, K., Gong, M., Schölkopf, B.

In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pages: 3150-3157, AAAI Press, AAAI, 2015 (inproceedings)

ei

Web PDF link (url) [BibTex]

Web PDF link (url) [BibTex]


no image
Learning of Non-Parametric Control Policies with High-Dimensional State Features

van Hoof, H., Peters, J., Neumann, G.

In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics, 38, pages: 995–1003, (Editors: Lebanon, G. and Vishwanathan, S.V.N. ), JMLR, AISTATS, 2015 (inproceedings)

am ei

link (url) [BibTex]

link (url) [BibTex]


no image
Artificial intelligence: Learning to see and act

Schölkopf, B.

Nature, News & Views, 518(7540):486-487, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Context affects lightness at the level of surfaces

Maertens, M., Wichmann, F., Shapley, R.

Journal of Vision, 15(1):1-15, 2015 (article)

ei

Web PDF link (url) DOI [BibTex]

Web PDF link (url) DOI [BibTex]


no image
Towards a Learning Theory of Cause-Effect Inference

Lopez-Paz, D., Muandet, K., Schölkopf, B., Tolstikhin, I.

In Proceedings of the 32nd International Conference on Machine Learning, 37, pages: 1452–1461, JMLR Workshop and Conference Proceedings, (Editors: F. Bach and D. Blei), JMLR, ICML, 2015 (inproceedings)

ei

Web [BibTex]

Web [BibTex]


no image
Calibrating the pixel-level Kepler imaging data with a causal data-driven model

Wang, D., Foreman-Mackey, D., Hogg, D., Schölkopf, B.

Workshop: 225th American Astronomical Society Meeting 2015 , pages: 258.08, 2015 (poster)

ei

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Genome-wide analysis of local chromatin packing in Arabidopsis thaliana

Wang, C., Liu, C., Roqueiro, D., Grimm, D., Schwab, R., Becker, C., Lanz, C., Weigel, D.

Genome Research, 25(2):246-256, 2015 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
BundleMAP: Anatomically Localized Features from dMRI for Detection of Disease

Khatami, M., Schmidt-Wilcke, T., Sundgren, P., Abbasloo, A., Schölkopf, B., Schultz, T.

In 6th International Workshop on Machine Learning in Medical Imaging, 9352, pages: 52-60, Lecture Notes in Computer Science, (Editors: L. Zhou, L. Wang, Q. Wang and Y. Shi), Springer, MLMI, 2015 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Hierarchical Label Queries with Data-Dependent Partitions

Kpotufe, S., Urner, R., Ben-David, S.

In Proceedings of the 28th Conference on Learning Theory, 40, pages: 1176-1189, (Editors: Grünwald, P. and Hazan, E. and Kale, S. ), JMLR, COLT, 2015 (inproceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Semi-Autonomous 3rd-Hand Robot

Lopes, M., Peters, J., Piater, J., Toussaint, M., Baisero, A., Busch, B., Erkent, O., Kroemer, O., Lioutikov, R., Maeda, G., Mollard, Y., Munzer, T., Shukla, D.

In Workshop on Cognitive Robotics in Future Manufacturing Scenarios, European Robotics Forum, 2015 (inproceedings)

am ei

link (url) [BibTex]

link (url) [BibTex]


no image
A Cognitive Brain-Computer Interface for Patients with Amyotrophic Lateral Sclerosis

Hohmann, M.

Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Segmentation-based attenuation correction in positron emission tomography/magnetic resonance: erroneous tissue identification and its impact on positron emission tomography interpretation

Brendle, C., Schmidt, H., Oergel, A., Bezrukov, I., Mueller, M., Schraml, C., Pfannenberg, C., la Fougère, C., Nikolaou, K., Schwenzer, N.

Investigative Radiology, 50(5):339-346, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]