Header logo is


1997


no image
Improving the accuracy and speed of support vector learning machines

Burges, C., Schölkopf, B.

In Advances in Neural Information Processing Systems 9, pages: 375-381, (Editors: M Mozer and MJ Jordan and T Petsche), MIT Press, Cambridge, MA, USA, Tenth Annual Conference on Neural Information Processing Systems (NIPS), May 1997 (inproceedings)

Abstract
Support Vector Learning Machines (SVM) are finding application in pattern recognition, regression estimation, and operator inversion for illposed problems . Against this very general backdrop any methods for improving the generalization performance, or for improving the speed in test phase of SVMs are of increasing interest. In this paper we combine two such techniques on a pattern recognition problem The method for improving generalization performance the "virtual support vector" method does so by incorporating known invariances of the problem This method achieves a drop in the error rate on 10.000 NIST test digit images of 1,4 % to 1 %. The method for improving the speed (the "reduced set" method) does so by approximating the support vector decision surface. We apply this method to achieve a factor of fifty speedup in test phase over the virtual support vector machine The combined approach yields a machine which is both 22 times faster than the original machine, and which has better generalization performance achieving 1,1 % error . The virtual support vector method is applicable to any SVM problem with known invariances The reduced set method is applicable to any support vector machine .

ei

PDF Web [BibTex]

1997


PDF Web [BibTex]


no image
Learning view graphs for robot navigation

Franz, M., Schölkopf, B., Georg, P., Mallot, H., Bülthoff, H.

In Proceedings of the 1st Intl. Conf. on Autonomous Agents, pages: 138-147, (Editors: Johnson, W.L.), ACM Press, New York, NY, USA, First International Conference on Autonomous Agents (AGENTS '97), Febuary 1997 (inproceedings)

Abstract
We present a purely vision-based scheme for learning a parsimonious representation of an open environment. Using simple exploration behaviours, our system constructs a graph of appropriately chosen views. To navigate between views connected in the graph, we employ a homing strategy inspired by findings of insect ethology. Simulations and robot experiments demonstrate the feasibility of the proposed approach.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase.

Vaziri, H., MD, .., RC, .., Davison, T., YS, .., CH, .., GG, .., Benchimol, S.

The European Molecular Biology Organization Journal, 16(19):6018-6033, 1997 (article)

ei

Web [BibTex]

Web [BibTex]

1996


no image
Quality Prediction of Steel Products using Neural Networks

Shin, H., Jhee, W.

In Proc. of the Korean Expert System Conference, pages: 112-124, Korean Expert System Society Conference, November 1996 (inproceedings)

ei

[BibTex]

1996


[BibTex]


no image
Comparison of view-based object recognition algorithms using realistic 3D models

Blanz, V., Schölkopf, B., Bülthoff, H., Burges, C., Vapnik, V., Vetter, T.

In Artificial Neural Networks: ICANN 96, LNCS, vol. 1112, pages: 251-256, Lecture Notes in Computer Science, (Editors: C von der Malsburg and W von Seelen and JC Vorbrüggen and B Sendhoff), Springer, Berlin, Germany, 6th International Conference on Artificial Neural Networks, July 1996 (inproceedings)

Abstract
Two view-based object recognition algorithms are compared: (1) a heuristic algorithm based on oriented filters, and (2) a support vector learning machine trained on low-resolution images of the objects. Classification performance is assessed using a high number of images generated by a computer graphics system under precisely controlled conditions. Training- and test-images show a set of 25 realistic three-dimensional models of chairs from viewing directions spread over the upper half of the viewing sphere. The percentage of correct identification of all 25 objects is measured.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Incorporating invariances in support vector learning machines

Schölkopf, B., Burges, C., Vapnik, V.

In Artificial Neural Networks: ICANN 96, LNCS vol. 1112, pages: 47-52, (Editors: C von der Malsburg and W von Seelen and JC Vorbrüggen and B Sendhoff), Springer, Berlin, Germany, 6th International Conference on Artificial Neural Networks, July 1996, volume 1112 of Lecture Notes in Computer Science (inproceedings)

Abstract
Developed only recently, support vector learning machines achieve high generalization ability by minimizing a bound on the expected test error; however, so far there existed no way of adding knowledge about invariances of a classification problem at hand. We present a method of incorporating prior knowledge about transformation invariances by applying transformations to support vectors, the training examples most critical for determining the classification boundary.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
A practical Monte Carlo implementation of Bayesian learning

Rasmussen, CE.

In Advances in Neural Information Processing Systems 8, pages: 598-604, (Editors: Touretzky, D.S. , M.C. Mozer, M.E. Hasselmo), MIT Press, Cambridge, MA, USA, Ninth Annual Conference on Neural Information Processing Systems (NIPS), June 1996 (inproceedings)

Abstract
A practical method for Bayesian training of feed-forward neural networks using sophisticated Monte Carlo methods is presented and evaluated. In reasonably small amounts of computer time this approach outperforms other state-of-the-art methods on 5 datalimited tasks from real world domains.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Gaussian Processes for Regression

Williams, CKI., Rasmussen, CE.

In Advances in neural information processing systems 8, pages: 514-520, (Editors: Touretzky, D.S. , M.C. Mozer, M.E. Hasselmo), MIT Press, Cambridge, MA, USA, Ninth Annual Conference on Neural Information Processing Systems (NIPS), June 1996 (inproceedings)

Abstract
The Bayesian analysis of neural networks is difficult because a simple prior over weights implies a complex prior over functions. We investigate the use of a Gaussian process prior over functions, which permits the predictive Bayesian analysis for fixed values of hyperparameters to be carried out exactly using matrix operations. Two methods, using optimization and averaging (via Hybrid Monte Carlo) over hyperparameters have been tested on a number of challenging problems and have produced excellent results.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Künstliches Lernen

Schölkopf, B.

In Komplexe adaptive Systeme, Forum für Interdisziplinäre Forschung, 15, pages: 93-117, Forum für interdisziplinäre Forschung, (Editors: S Bornholdt and PH Feindt), Röll, Dettelbach, 1996 (inbook)

ei

[BibTex]

[BibTex]