Header logo is


2001


no image
Hexagonally ordered 100 nm period nickel nanowire arrays

Nielsch, K., Wehrspohn, R. B., Barthel, J., Kirschner, J., Gösele, U., Fischer, S. F., Kronmüller, H.

{Applied Physics Letters}, 79(9):1360-1362, 2001 (article)

mms

[BibTex]

2001


[BibTex]


no image
Magnetization processes in isotropic and textured Nd2Fe14B- films

Melsheimer, A., Kronmüller, H.

{Physica B}, 299(3-4):251-259, 2001 (article)

mms

[BibTex]

[BibTex]


no image
Critical magnetic properties of disordered Cr-rich FeCr alloys

Fischer, S. F., Kaul, S. N., Kronmüller, H.

{Journal of Magnetism and Magnetic Materials}, 226(Sp. Iss. SI):540-541, 2001 (article)

mms

[BibTex]

[BibTex]


no image
Fast ab initio methods for the calculation of adiabatic spin wave spectra in complex systems

Grotheer, O., Ederer, C., Fähnle, M.

{Physical Review B}, 63(10):100401-100401, 2001 (article)

mms

[BibTex]

[BibTex]


no image
Hydrogen storage in sonicated carbon materials

Hirscher, M., Becher, M., Haluska, M., Dettlaff-Weglikowska, U., Quintel, A., Duesberg, G. S., Choi, Y. M., Downes, P., Hulman, M., Roth, S., Stepanek, I., Bernier, P.

{Applied Physics A-Materials Science \& Processing}, 72(2):129-132, 2001 (article)

mms

[BibTex]

[BibTex]


no image
Measurement of the low-temperature self-diffusivity of lithium by elastic recoil detection analysis

Wieland, O., Carstanjen, H. D.

In Proceedings of DIMAT 2000, the Fifth International Conference on Diffusion in Materials, 194/199, pages: 35-41, Defect and Diffusion Forum, Scitec Publications Ltd., Paris, France, 2001 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Co(NH3)2Cl2 and Co(ND3)2Cl2: Order-Disorder Behaviour of N(H,D)3 and Antiferromagnetic Structure

Leineweber, A., Jacobs, H., E\ssmann, P., Allenspach, F., Fauth, F., Fischer, P.

{Zeitschrift f\"ur Anorganische und Allgemeine Chemie}, 627, pages: 2063-2069, 2001 (article)

mms

[BibTex]

[BibTex]


no image
Critical magnetic properties of disordered polycrystalline Fe75Fe25 and Cr70Fe30 alloys

Fischer, S. F., Kaul, S. N., Kronmüller, H.

{Physical Review B}, 65, 2001 (article)

mms

[BibTex]

[BibTex]


no image
From the electronic structure to the macroscopic behaviour: a multi-scale analysis of plasticity in intermetallic compounds

Fähnle, M., Kohlhammer, S., Bester, G.

In Influences of Interface and Dislocation Behavior on Microstructure Evolution, 652, pages: Y.4.5.1-Y.4.5.12, Materials Research Society Symposium Proceedings, MRS, Boston, Mass., 2001 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Enhancement of the critical current density of YBa2Cu3O7-8-films by substracte irradiation

Leonhardt, S., Albrecht, J., Warthmann, R., Kronmüller, H.

In High-Tc Superconductors and Related Applications: Materials Science, Fundamental Properties, and Some Future Electronic Applications. Proceedings of the NATO Advanced Study Institute, 86, pages: 529-534, NATO Science Series 3. High Technology, Kluwer Academic Publishers, Albena, Bulgaria, 2001 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Diffusion of 23Na and 35K in the eutectic melt Na0.32K0.69

Feinauer, A., Majer, G.

{Physical Review B}, 64, 2001 (article)

mms

[BibTex]

[BibTex]


no image
AMOC studies of positronium in fine MgO powder

van Waeyenberge, B., Dauwe, C., Stoll, H.

In Positron Annihilation. Proceedings of the 12th International Conference on Positron Annihilation, 363/365, pages: 401-403, Materials Science Forum, Trans Tech Publications Ltd., München, 2001 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Influence of nanocrystallization on the evolution of domain patterns and the magnetoimpedance effect in amorphous Fe73.5Cu1Nb3Si13.5B9 ribbons

Guo, H. Q., Kronmüller, H., Dragon, T., Cheng, Z. H., Shen, B. G.

{Journal of Applied Physics}, 89(1):514-520, 2001 (article)

mms

[BibTex]

[BibTex]


no image
Ab-initio statistical mechanics for the phase diagram of NiAl including the effect of vacancies

Lechermann, F., Fähnle, M.

{Physica Status Solidi (B)}, 224, pages: R4-R6, 2001 (article)

mms

[BibTex]

[BibTex]


no image
Atomic defects and electronic structure of B2-FeAl, CoAl and NiAl

Fähnle, M., Meyer, B., Bester, G., Majer, J., Börnsen, N.

In Proceedings of DIMAT 2000, the Fifth International Conference on Diffusion in Materials, 194/199, pages: 279-285, Defect and Diffusion Forum, Scitec Publications Ltd., Paris, France, 2001 (inproceedings)

mms

[BibTex]

[BibTex]


Learning and tracking cyclic human motion
Learning and tracking cyclic human motion

Ormoneit, D., Sidenbladh, H., Black, M. J., Hastie, T.

In Advances in Neural Information Processing Systems 13, NIPS, pages: 894-900, (Editors: Leen, Todd K. and Dietterich, Thomas G. and Tresp, Volker), The MIT Press, 2001 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]

1997


no image
Comparing support vector machines with Gaussian kernels to radial basis function classifiers

Schölkopf, B., Sung, K., Burges, C., Girosi, F., Niyogi, P., Poggio, T., Vapnik, V.

IEEE Transactions on Signal Processing, 45(11):2758-2765, November 1997 (article)

Abstract
The support vector (SV) machine is a novel type of learning machine, based on statistical learning theory, which contains polynomial classifiers, neural networks, and radial basis function (RBF) networks as special cases. In the RBF case, the SV algorithm automatically determines centers, weights, and threshold that minimize an upper bound on the expected test error. The present study is devoted to an experimental comparison of these machines with a classical approach, where the centers are determined by X-means clustering, and the weights are computed using error backpropagation. We consider three machines, namely, a classical RBF machine, an SV machine with Gaussian kernel, and a hybrid system with the centers determined by the SV method and the weights trained by error backpropagation. Our results show that on the United States postal service database of handwritten digits, the SV machine achieves the highest recognition accuracy, followed by the hybrid system. The SV approach is thus not only theoretically well-founded but also superior in a practical application.

ei

Web DOI [BibTex]

1997


Web DOI [BibTex]


no image
The view-graph approach to visual navigation and spatial memory

Mallot, H., Franz, M., Schölkopf, B., Bülthoff, H.

In Artificial Neural Networks: ICANN ’97, pages: 751-756, (Editors: W Gerstner and A Germond and M Hasler and J-D Nicoud), Springer, Berlin, Germany, 7th International Conference on Artificial Neural Networks, October 1997 (inproceedings)

Abstract
This paper describes a purely visual navigation scheme based on two elementary mechanisms (piloting and guidance) and a graph structure combining individual navigation steps controlled by these mechanisms. In robot experiments in real environments, both mechanisms have been tested, piloting in an open environment and guidance in a maze with restricted movement opportunities. The results indicate that navigation and path planning can be brought about with these simple mechanisms. We argue that the graph of local views (snapshots) is a general and biologically plausible means of representing space and integrating the various mechanisms of map behaviour.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Predicting time series with support vector machines

Müller, K., Smola, A., Rätsch, G., Schölkopf, B., Kohlmorgen, J., Vapnik, V.

In Artificial Neural Networks: ICANN’97, pages: 999-1004, (Editors: Schölkopf, B. , C.J.C. Burges, A.J. Smola), Springer, Berlin, Germany, 7th International Conference on Artificial Neural Networks , October 1997 (inproceedings)

Abstract
Support Vector Machines are used for time series prediction and compared to radial basis function networks. We make use of two different cost functions for Support Vectors: training with (i) an e insensitive loss and (ii) Huber's robust loss function and discuss how to choose the regularization parameters in these models. Two applications are considered: data from (a) a noisy (normal and uniform noise) Mackey Glass equation and (b) the Santa Fe competition (set D). In both cases Support Vector Machines show an excellent performance. In case (b) the Support Vector approach improves the best known result on the benchmark by a factor of 29%.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Predicting time series with support vectur machines

Müller, K., Smola, A., Rätsch, G., Schölkopf, B., Kohlmorgen, J., Vapnik, V.

In Artificial neural networks: ICANN ’97, pages: 999-1004, (Editors: W Gerstner and A Germond and M Hasler and J-D Nicoud), Springer, Berlin, Germany, 7th International Conference on Artificial Neural Networks , October 1997 (inproceedings)

Abstract
Support Vector Machines are used for time series prediction and compared to radial basis function networks. We make use of two different cost functions for Support Vectors: training with (i) an e insensitive loss and (ii) Huber's robust loss function and discuss how to choose the regularization parameters in these models. Two applications are considered: data from (a) a noisy (normal and uniform noise) Mackey Glass equation and (b) the Santa Fe competition (set D). In both cases Support Vector Machines show an excellent performance. In case (b) the Support Vector approach improves the best known result on the benchmark by a factor of 29%.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Kernel principal component analysis

Schölkopf, B., Smola, A., Müller, K.

In Artificial neural networks: ICANN ’97, LNCS, vol. 1327, pages: 583-588, (Editors: W Gerstner and A Germond and M Hasler and J-D Nicoud), Springer, Berlin, Germany, 7th International Conference on Artificial Neural Networks, October 1997 (inproceedings)

Abstract
A new method for performing a nonlinear form of Principal Component Analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all possible d-pixel products in images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


Robust anisotropic diffusion and sharpening of scalar and vector images
Robust anisotropic diffusion and sharpening of scalar and vector images

Black, M. J., Sapiro, G., Marimont, D., Heeger, D.

In Int. Conf. on Image Processing, ICIP, 1, pages: 263-266, Vol. 1, Santa Barbara, CA, October 1997 (inproceedings)

Abstract
Relations between anisotropic diffusion and robust statistics are described. We show that anisotropic diffusion can be seen as a robust estimation procedure that estimates a piecewise smooth image from a noisy input image. The "edge-stopping" function in the anisotropic diffusion equation is closely related to the error norm and influence function in the robust estimation framework. This connection leads to a new "edge-stopping" function based on Tukey's biweight robust estimator, that preserves sharper boundaries than previous formulations and improves the automatic stopping of the diffusion. The robust statistical interpretation also provides a means for detecting the boundaries (edges) between the piecewise smooth regions in the image. We extend the framework to vector-valued images and show applications to robust image sharpening.

ps

pdf publisher site [BibTex]

pdf publisher site [BibTex]


no image
Homing by parameterized scene matching

Franz, M., Schölkopf, B., Bülthoff, H.

In Proceedings of the 4th European Conference on Artificial Life, (Eds.) P. Husbands, I. Harvey. MIT Press, Cambridge 1997, pages: 236-245, (Editors: P Husbands and I Harvey), MIT Press, Cambridge, MA, USA, 4th European Conference on Artificial Life (ECAL97), July 1997 (inproceedings)

Abstract
In visual homing tasks, animals as well as robots can compute their movements from the current view and a snapshot taken at a home position. Solving this problem exactly would require knowledge about the distances to visible landmarks, information, which is not directly available to passive vision systems. We propose a homing scheme that dispenses with accurate distance information by using parameterized disparity fields. These are obtained from an approximation that incorporates prior knowledge about perspective distortions of the visual environment. A mathematical analysis proves that the approximation does not prevent the scheme from approaching the goal with arbitrary accuracy. Mobile robot experiments are used to demonstrate the practical feasibility of the approach.

ei

PDF [BibTex]

PDF [BibTex]


Robust anisotropic diffusion: Connections between robust statistics, line processing, and anisotropic diffusion
Robust anisotropic diffusion: Connections between robust statistics, line processing, and anisotropic diffusion

Black, M. J., Sapiro, G., Marimont, D., Heeger, D.

In Scale-Space Theory in Computer Vision, Scale-Space’97, pages: 323-326, LNCS 1252, Springer Verlag, Utrecht, the Netherlands, July 1997 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Learning parameterized models of image motion
Learning parameterized models of image motion

Black, M. J., Yacoob, Y., Jepson, A. D., Fleet, D. J.

In IEEE Conf. on Computer Vision and Pattern Recognition, CVPR-97, pages: 561-567, Puerto Rico, June 1997 (inproceedings)

Abstract
A framework for learning parameterized models of optical flow from image sequences is presented. A class of motions is represented by a set of orthogonal basis flow fields that are computed from a training set using principal component analysis. Many complex image motions can be represented by a linear combination of a small number of these basis flows. The learned motion models may be used for optical flow estimation and for model-based recognition. For optical flow estimation we describe a robust, multi-resolution scheme for directly computing the parameters of the learned flow models from image derivatives. As examples we consider learning motion discontinuities, non-rigid motion of human mouths, and articulated human motion.

ps

pdf [BibTex]

pdf [BibTex]


Analysis of gesture and action in technical talks for video indexing
Analysis of gesture and action in technical talks for video indexing

Ju, S. X., Black, M. J., Minneman, S., Kimber, D.

In IEEE Conf. on Computer Vision and Pattern Recognition, pages: 595-601, CVPR-97, Puerto Rico, June 1997 (inproceedings)

Abstract
In this paper, we present an automatic system for analyzing and annotating video sequences of technical talks. Our method uses a robust motion estimation technique to detect key frames and segment the video sequence into subsequences containing a single overhead slide. The subsequences are stabilized to remove motion that occurs when the speaker adjusts their slides. Any changes remaining between frames in the stabilized sequences may be due to speaker gestures such as pointing or writing and we use active contours to automatically track these potential gestures. Given the constrained domain we define a simple ``vocabulary'' of actions which can easily be recognized based on the active contour shape and motion. The recognized actions provide a rich annotation of the sequence that can be used to access a condensed version of the talk from a web page.

ps

pdf [BibTex]

pdf [BibTex]


no image
Improving the accuracy and speed of support vector learning machines

Burges, C., Schölkopf, B.

In Advances in Neural Information Processing Systems 9, pages: 375-381, (Editors: M Mozer and MJ Jordan and T Petsche), MIT Press, Cambridge, MA, USA, Tenth Annual Conference on Neural Information Processing Systems (NIPS), May 1997 (inproceedings)

Abstract
Support Vector Learning Machines (SVM) are finding application in pattern recognition, regression estimation, and operator inversion for illposed problems . Against this very general backdrop any methods for improving the generalization performance, or for improving the speed in test phase of SVMs are of increasing interest. In this paper we combine two such techniques on a pattern recognition problem The method for improving generalization performance the "virtual support vector" method does so by incorporating known invariances of the problem This method achieves a drop in the error rate on 10.000 NIST test digit images of 1,4 % to 1 %. The method for improving the speed (the "reduced set" method) does so by approximating the support vector decision surface. We apply this method to achieve a factor of fifty speedup in test phase over the virtual support vector machine The combined approach yields a machine which is both 22 times faster than the original machine, and which has better generalization performance achieving 1,1 % error . The virtual support vector method is applicable to any SVM problem with known invariances The reduced set method is applicable to any support vector machine .

ei

PDF Web [BibTex]

PDF Web [BibTex]


Modeling appearance change in image sequences
Modeling appearance change in image sequences

Black, M. J., Yacoob, Y., Fleet, D. J.

In Advances in Visual Form Analysis, pages: 11-20, Proceedings of the Third International Workshop on Visual Form, Capri, Italy, May 1997 (inproceedings)

ps

abstract [BibTex]

abstract [BibTex]


no image
Learning view graphs for robot navigation

Franz, M., Schölkopf, B., Georg, P., Mallot, H., Bülthoff, H.

In Proceedings of the 1st Intl. Conf. on Autonomous Agents, pages: 138-147, (Editors: Johnson, W.L.), ACM Press, New York, NY, USA, First International Conference on Autonomous Agents (AGENTS '97), Febuary 1997 (inproceedings)

Abstract
We present a purely vision-based scheme for learning a parsimonious representation of an open environment. Using simple exploration behaviours, our system constructs a graph of appropriately chosen views. To navigate between views connected in the graph, we employ a homing strategy inspired by findings of insect ethology. Simulations and robot experiments demonstrate the feasibility of the proposed approach.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase.

Vaziri, H., MD, .., RC, .., Davison, T., YS, .., CH, .., GG, .., Benchimol, S.

The European Molecular Biology Organization Journal, 16(19):6018-6033, 1997 (article)

ei

Web [BibTex]

Web [BibTex]


Recognizing facial expressions in image sequences using local parameterized models of image motion
Recognizing facial expressions in image sequences using local parameterized models of image motion

Black, M. J., Yacoob, Y.

Int. Journal of Computer Vision, 25(1):23-48, 1997 (article)

Abstract
This paper explores the use of local parametrized models of image motion for recovering and recognizing the non-rigid and articulated motion of human faces. Parametric flow models (for example affine) are popular for estimating motion in rigid scenes. We observe that within local regions in space and time, such models not only accurately model non-rigid facial motions but also provide a concise description of the motion in terms of a small number of parameters. These parameters are intuitively related to the motion of facial features during facial expressions and we show how expressions such as anger, happiness, surprise, fear, disgust, and sadness can be recognized from the local parametric motions in the presence of significant head motion. The motion tracking and expression recognition approach performed with high accuracy in extensive laboratory experiments involving 40 subjects as well as in television and movie sequences.

ps

pdf pdf from publisher abstract video [BibTex]


no image
Locally weighted learning

Atkeson, C. G., Moore, A. W., Schaal, S.

Artificial Intelligence Review, 11(1-5):11-73, 1997, clmc (article)

Abstract
This paper surveys locally weighted learning, a form of lazy learning and memory-based learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, assessing predictions, handling noisy data and outliers, improving the quality of predictions by tuning fit parameters, interference between old and new data, implementing locally weighted learning efficiently, and applications of locally weighted learning. A companion paper surveys how locally weighted learning can be used in robot learning and control. Keywords: locally weighted regression, LOESS, LWR, lazy learning, memory-based learning, least commitment learning, distance functions, smoothing parameters, weighting functions, global tuning, local tuning, interference.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Locally weighted learning for control

Atkeson, C. G., Moore, A. W., Schaal, S.

Artificial Intelligence Review, 11(1-5):75-113, 1997, clmc (article)

Abstract
Lazy learning methods provide useful representations and training algorithms for learning about complex phenomena during autonomous adaptive control of complex systems. This paper surveys ways in which locally weighted learning, a type of lazy learning, has been applied by us to control tasks. We explain various forms that control tasks can take, and how this affects the choice of learning paradigm. The discussion section explores the interesting impact that explicitly remembering all previous experiences has on the problem of learning to control. Keywords: locally weighted regression, LOESS, LWR, lazy learning, memory-based learning, least commitment learning, forward models, inverse models, linear quadratic regulation (LQR), shifting setpoint algorithm, dynamic programming.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Learning from demonstration

Schaal, S.

In Advances in Neural Information Processing Systems 9, pages: 1040-1046, (Editors: Mozer, M. C.;Jordan, M.;Petsche, T.), MIT Press, Cambridge, MA, 1997, clmc (inproceedings)

Abstract
By now it is widely accepted that learning a task from scratch, i.e., without any prior knowledge, is a daunting undertaking. Humans, however, rarely attempt to learn from scratch. They extract initial biases as well as strategies how to approach a learning problem from instructions and/or demonstrations of other humans. For learning control, this paper investigates how learning from demonstration can be applied in the context of reinforcement learning. We consider priming the Q-function, the value function, the policy, and the model of the task dynamics as possible areas where demonstrations can speed up learning. In general nonlinear learning problems, only model-based reinforcement learning shows significant speed-up after a demonstration, while in the special case of linear quadratic regulator (LQR) problems, all methods profit from the demonstration. In an implementation of pole balancing on a complex anthropomorphic robot arm, we demonstrate that, when facing the complexities of real signal processing, model-based reinforcement learning offers the most robustness for LQR problems. Using the suggested methods, the robot learns pole balancing in just a single trial after a 30 second long demonstration of the human instructor. 

am

link (url) [BibTex]

link (url) [BibTex]


no image
Robot learning from demonstration

Atkeson, C. G., Schaal, S.

In Machine Learning: Proceedings of the Fourteenth International Conference (ICML ’97), pages: 12-20, (Editors: Fisher Jr., D. H.), Morgan Kaufmann, Nashville, TN, July 8-12, 1997, 1997, clmc (inproceedings)

Abstract
The goal of robot learning from demonstration is to have a robot learn from watching a demonstration of the task to be performed. In our approach to learning from demonstration the robot learns a reward function from the demonstration and a task model from repeated attempts to perform the task. A policy is computed based on the learned reward function and task model. Lessons learned from an implementation on an anthropomorphic robot arm using a pendulum swing up task include 1) simply mimicking demonstrated motions is not adequate to perform this task, 2) a task planner can use a learned model and reward function to compute an appropriate policy, 3) this model-based planning process supports rapid learning, 4) both parametric and nonparametric models can be learned and used, and 5) incorporating a task level direct learning component, which is non-model-based, in addition to the model-based planner, is useful in compensating for structural modeling errors and slow model learning. 

am

link (url) [BibTex]

link (url) [BibTex]


no image
Local dimensionality reduction for locally weighted learning

Vijayakumar, S., Schaal, S.

In International Conference on Computational Intelligence in Robotics and Automation, pages: 220-225, Monteray, CA, July10-11, 1997, 1997, clmc (inproceedings)

Abstract
Incremental learning of sensorimotor transformations in high dimensional spaces is one of the basic prerequisites for the success of autonomous robot devices as well as biological movement systems. So far, due to sparsity of data in high dimensional spaces, learning in such settings requires a significant amount of prior knowledge about the learning task, usually provided by a human expert. In this paper we suggest a partial revision of the view. Based on empirical studies, it can been observed that, despite being globally high dimensional and sparse, data distributions from physical movement systems are locally low dimensional and dense. Under this assumption, we derive a learning algorithm, Locally Adaptive Subspace Regression, that exploits this property by combining a local dimensionality reduction as a preprocessing step with a nonparametric learning technique, locally weighted regression. The usefulness of the algorithm and the validity of its assumptions are illustrated for a synthetic data set and data of the inverse dynamics of an actual 7 degree-of-freedom anthropomorphic robot arm.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Learning tasks from a single demonstration

Atkeson, C. G., Schaal, S.

In IEEE International Conference on Robotics and Automation (ICRA97), 2, pages: 1706-1712, Piscataway, NJ: IEEE, Albuquerque, NM, 20-25 April, 1997, clmc (inproceedings)

Abstract
Learning a complex dynamic robot manoeuvre from a single human demonstration is difficult. This paper explores an approach to learning from demonstration based on learning an optimization criterion from the demonstration and a task model from repeated attempts to perform the task, and using the learned criterion and model to compute an appropriate robot movement. A preliminary version of the approach has been implemented on an anthropomorphic robot arm using a pendulum swing up task as an example

am

link (url) [BibTex]

link (url) [BibTex]

1996


no image
Quality Prediction of Steel Products using Neural Networks

Shin, H., Jhee, W.

In Proc. of the Korean Expert System Conference, pages: 112-124, Korean Expert System Society Conference, November 1996 (inproceedings)

ei

[BibTex]

1996


[BibTex]


Cardboard people: A parameterized model of articulated motion
Cardboard people: A parameterized model of articulated motion

Ju, S. X., Black, M. J., Yacoob, Y.

In 2nd Int. Conf. on Automatic Face- and Gesture-Recognition, pages: 38-44, Killington, Vermont, October 1996 (inproceedings)

Abstract
We extend the work of Black and Yacoob on the tracking and recognition of human facial expressions using parameterized models of optical flow to deal with the articulated motion of human limbs. We define a "cardboard person model" in which a person's limbs are represented by a set of connected planar patches. The parameterized image motion of these patches is constrained to enforce articulated motion and is solved for directly using a robust estimation technique. The recovered motion parameters provide a rich and concise description of the activity that can be used for recognition. We propose a method for performing view-based recognition of human activities from the optical flow parameters that extends previous methods to cope with the cyclical nature of human motion. We illustrate the method with examples of tracking human legs over long image sequences.

ps

pdf [BibTex]

pdf [BibTex]


Estimating optical flow in segmented images using variable-order parametric models with local deformations
Estimating optical flow in segmented images using variable-order parametric models with local deformations

Black, M. J., Jepson, A.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(10):972-986, October 1996 (article)

Abstract
This paper presents a new model for estimating optical flow based on the motion of planar regions plus local deformations. The approach exploits brightness information to organize and constrain the interpretation of the motion by using segmented regions of piecewise smooth brightness to hypothesize planar regions in the scene. Parametric flow models are estimated in these regions in a two step process which first computes a coarse fit and estimates the appropriate parameterization of the motion of the region (two, six, or eight parameters). The initial fit is refined using a generalization of the standard area-based regression approaches. Since the assumption of planarity is likely to be violated, we allow local deformations from the planar assumption in the same spirit as physically-based approaches which model shape using coarse parametric models plus local deformations. This parametric+deformation model exploits the strong constraints of parametric approaches while retaining the adaptive nature of regularization approaches. Experimental results on a variety of images indicate that the parametric+deformation model produces accurate flow estimates while the incorporation of brightness segmentation provides precise localization of motion boundaries.

ps

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


no image
A kendama learning robot based on a dynamic optimiation principle

Miyamoto, H., Gandolfo, F., Gomi, H., Schaal, S., Koike, Y., Rieka, O., Nakano, E., Wada, Y., Kawato, M.

In Preceedings of the International Conference on Neural Information Processing, pages: 938-942, Hong Kong, September 1996, clmc (inproceedings)

am

[BibTex]

[BibTex]


no image
Comparison of view-based object recognition algorithms using realistic 3D models

Blanz, V., Schölkopf, B., Bülthoff, H., Burges, C., Vapnik, V., Vetter, T.

In Artificial Neural Networks: ICANN 96, LNCS, vol. 1112, pages: 251-256, Lecture Notes in Computer Science, (Editors: C von der Malsburg and W von Seelen and JC Vorbrüggen and B Sendhoff), Springer, Berlin, Germany, 6th International Conference on Artificial Neural Networks, July 1996 (inproceedings)

Abstract
Two view-based object recognition algorithms are compared: (1) a heuristic algorithm based on oriented filters, and (2) a support vector learning machine trained on low-resolution images of the objects. Classification performance is assessed using a high number of images generated by a computer graphics system under precisely controlled conditions. Training- and test-images show a set of 25 realistic three-dimensional models of chairs from viewing directions spread over the upper half of the viewing sphere. The percentage of correct identification of all 25 objects is measured.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Incorporating invariances in support vector learning machines

Schölkopf, B., Burges, C., Vapnik, V.

In Artificial Neural Networks: ICANN 96, LNCS vol. 1112, pages: 47-52, (Editors: C von der Malsburg and W von Seelen and JC Vorbrüggen and B Sendhoff), Springer, Berlin, Germany, 6th International Conference on Artificial Neural Networks, July 1996, volume 1112 of Lecture Notes in Computer Science (inproceedings)

Abstract
Developed only recently, support vector learning machines achieve high generalization ability by minimizing a bound on the expected test error; however, so far there existed no way of adding knowledge about invariances of a classification problem at hand. We present a method of incorporating prior knowledge about transformation invariances by applying transformations to support vectors, the training examples most critical for determining the classification boundary.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


On the unification of line processes, outlier rejection, and robust statistics with applications in early vision
On the unification of line processes, outlier rejection, and robust statistics with applications in early vision

Black, M., Rangarajan, A.

International Journal of Computer Vision , 19(1):57-92, July 1996 (article)

Abstract
The modeling of spatial discontinuities for problems such as surface recovery, segmentation, image reconstruction, and optical flow has been intensely studied in computer vision. While “line-process” models of discontinuities have received a great deal of attention, there has been recent interest in the use of robust statistical techniques to account for discontinuities. This paper unifies the two approaches. To achieve this we generalize the notion of a “line process” to that of an analog “outlier process” and show how a problem formulated in terms of outlier processes can be viewed in terms of robust statistics. We also characterize a class of robust statistical problems for which an equivalent outlier-process formulation exists and give a straightforward method for converting a robust estimation problem into an outlier-process formulation. We show how prior assumptions about the spatial structure of outliers can be expressed as constraints on the recovered analog outlier processes and how traditional continuation methods can be extended to the explicit outlier-process formulation. These results indicate that the outlier-process approach provides a general framework which subsumes the traditional line-process approaches as well as a wide class of robust estimation problems. Examples in surface reconstruction, image segmentation, and optical flow are presented to illustrate the use of outlier processes and to show how the relationship between outlier processes and robust statistics can be exploited. An appendix provides a catalog of common robust error norms and their equivalent outlier-process formulations.

ps

pdf pdf from publisher DOI [BibTex]


no image
A practical Monte Carlo implementation of Bayesian learning

Rasmussen, CE.

In Advances in Neural Information Processing Systems 8, pages: 598-604, (Editors: Touretzky, D.S. , M.C. Mozer, M.E. Hasselmo), MIT Press, Cambridge, MA, USA, Ninth Annual Conference on Neural Information Processing Systems (NIPS), June 1996 (inproceedings)

Abstract
A practical method for Bayesian training of feed-forward neural networks using sophisticated Monte Carlo methods is presented and evaluated. In reasonably small amounts of computer time this approach outperforms other state-of-the-art methods on 5 datalimited tasks from real world domains.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Gaussian Processes for Regression

Williams, CKI., Rasmussen, CE.

In Advances in neural information processing systems 8, pages: 514-520, (Editors: Touretzky, D.S. , M.C. Mozer, M.E. Hasselmo), MIT Press, Cambridge, MA, USA, Ninth Annual Conference on Neural Information Processing Systems (NIPS), June 1996 (inproceedings)

Abstract
The Bayesian analysis of neural networks is difficult because a simple prior over weights implies a complex prior over functions. We investigate the use of a Gaussian process prior over functions, which permits the predictive Bayesian analysis for fixed values of hyperparameters to be carried out exactly using matrix operations. Two methods, using optimization and averaging (via Hybrid Monte Carlo) over hyperparameters have been tested on a number of challenging problems and have produced excellent results.

ei

PDF Web [BibTex]

PDF Web [BibTex]


Skin and Bones: Multi-layer, locally affine, optical flow and regularization with transparency
Skin and Bones: Multi-layer, locally affine, optical flow and regularization with transparency

(Nominated: Best paper)

Ju, S., Black, M. J., Jepson, A. D.

In IEEE Conf. on Computer Vision and Pattern Recognition, CVPR’96, pages: 307-314, San Francisco, CA, June 1996 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


EigenTracking: Robust matching and tracking of articulated objects using a view-based representation
EigenTracking: Robust matching and tracking of articulated objects using a view-based representation

Black, M. J., Jepson, A.

In Proc. Fourth European Conf. on Computer Vision, ECCV’96, pages: 329-342, LNCS 1064, Springer Verlag, Cambridge, England, April 1996 (inproceedings)

ps

pdf video [BibTex]

pdf video [BibTex]


The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields
The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields

Black, M. J., Anandan, P.

Computer Vision and Image Understanding, 63(1):75-104, January 1996 (article)

Abstract
Most approaches for estimating optical flow assume that, within a finite image region, only a single motion is present. This single motion assumption is violated in common situations involving transparency, depth discontinuities, independently moving objects, shadows, and specular reflections. To robustly estimate optical flow, the single motion assumption must be relaxed. This paper presents a framework based on robust estimation that addresses violations of the brightness constancy and spatial smoothness assumptions caused by multiple motions. We show how the robust estimation framework can be applied to standard formulations of the optical flow problem thus reducing their sensitivity to violations of their underlying assumptions. The approach has been applied to three standard techniques for recovering optical flow: area-based regression, correlation, and regularization with motion discontinuities. This paper focuses on the recovery of multiple parametric motion models within a region, as well as the recovery of piecewise-smooth flow fields, and provides examples with natural and synthetic image sequences.

ps

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


no image
A Kendama learning robot based on bi-directional theory

Miyamoto, H., Schaal, S., Gandolfo, F., Koike, Y., Osu, R., Nakano, E., Wada, Y., Kawato, M.

Neural Networks, 9(8):1281-1302, 1996, clmc (article)

Abstract
A general theory of movement-pattern perception based on bi-directional theory for sensory-motor integration can be used for motion capture and learning by watching in robotics. We demonstrate our methods using the game of Kendama, executed by the SARCOS Dextrous Slave Arm, which has a very similar kinematic structure to the human arm. Three ingredients have to be integrated for the successful execution of this task. The ingredients are (1) to extract via-points from a human movement trajectory using a forward-inverse relaxation model, (2) to treat via-points as a control variable while reconstructing the desired trajectory from all the via-points, and (3) to modify the via-points for successful execution. In order to test the validity of the via-point representation, we utilized a numerical model of the SARCOS arm, and examined the behavior of the system under several conditions.

am

link (url) [BibTex]

link (url) [BibTex]