Header logo is


2010


no image
A Novel Protocol for Accuracy Assessment in Classification of Very High Resolution Images

Persello, C., Bruzzone, L.

IEEE Transactions on Geoscience and Remote Sensing, 48(3):1232-1244, March 2010 (article)

Abstract
This paper presents a novel protocol for the accuracy assessment of the thematic maps obtained by the classification of very high resolution images. As the thematic accuracy alone is not sufficient to adequately characterize the geometrical properties of high-resolution classification maps, we propose a protocol that is based on the analysis of two families of indices: 1) the traditional thematic accuracy indices and 2) a set of novel geometric indices that model different geometric properties of the objects recognized in the map. In this context, we present a set of indices that characterize five different types of geometric errors in the classification map: 1) oversegmentation; 2) undersegmentation; 3) edge location; 4) shape distortion; and 5) fragmentation. Moreover, we propose a new approach for tuning the free parameters of supervised classifiers on the basis of a multiobjective criterion function that aims at selecting the parameter values that result in the classification map that jointly optimize thematic and geometric error indices. Experimental results obtained on QuickBird images show the effectiveness of the proposed protocol in selecting classification maps characterized by a better tradeoff between thematic and geometric accuracies than standard procedures based only on thematic accuracy measures. In addition, results obtained with support vector machine classifiers confirm the effectiveness of the proposed multiobjective technique for the selection of free-parameter values for the classification algorithm.

ei

Web DOI [BibTex]

2010


Web DOI [BibTex]


no image
On the Entropy Production of Time Series with Unidirectional Linearity

Janzing, D.

Journal of Statistical Physics, 138(4-5):767-779, March 2010 (article)

Abstract
There are non-Gaussian time series that admit a causal linear autoregressive moving average (ARMA) model when regressing the future on the past, but not when regressing the past on the future. The reason is that, in the latter case, the regression residuals are not statistically independent of the regressor. In previous work, we have experimentally verified that many empirical time series indeed show such a time inversion asymmetry. For various physical systems, it is known that time-inversion asymmetries are linked to the thermodynamic entropy production in non-equilibrium states. Here we argue that unidirectional linearity is also accompanied by entropy generation. To this end, we study the dynamical evolution of a physical toy system with linear coupling to an infinite environment and show that the linearity of the dynamics is inherited by the forward-time conditional probabilities, but not by the backward-time conditionals. The reason is that the environment permanently provides particles that are in a product state before they interact with the system, but show statistical dependence afterwards. From a coarse-grained perspective, the interaction thus generates entropy. We quantitatively relate the strength of the non-linearity of the backward process to the minimal amount of entropy generation. The paper thus shows that unidirectional linearity is an indirect implication of the thermodynamic arrow of time, given that the joint dynamics of the system and its environment is linear.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


Thumb xl ijcvcoverhd
Guest editorial: State of the art in image- and video-based human pose and motion estimation

Sigal, L., Black, M. J.

International Journal of Computer Vision, 87(1):1-3, March 2010 (article)

ps

pdf from publisher [BibTex]

pdf from publisher [BibTex]


Thumb xl humanevaimagesmall2
HumanEva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion

Sigal, L., Balan, A., Black, M. J.

International Journal of Computer Vision, 87(1):4-27, Springer Netherlands, March 2010 (article)

Abstract
While research on articulated human motion and pose estimation has progressed rapidly in the last few years, there has been no systematic quantitative evaluation of competing methods to establish the current state of the art. We present data obtained using a hardware system that is able to capture synchronized video and ground-truth 3D motion. The resulting HumanEva datasets contain multiple subjects performing a set of predefined actions with a number of repetitions. On the order of 40,000 frames of synchronized motion capture and multi-view video (resulting in over one quarter million image frames in total) were collected at 60 Hz with an additional 37,000 time instants of pure motion capture data. A standard set of error measures is defined for evaluating both 2D and 3D pose estimation and tracking algorithms. We also describe a baseline algorithm for 3D articulated tracking that uses a relatively standard Bayesian framework with optimization in the form of Sequential Importance Resampling and Annealed Particle Filtering. In the context of this baseline algorithm we explore a variety of likelihood functions, prior models of human motion and the effects of algorithm parameters. Our experiments suggest that image observation models and motion priors play important roles in performance, and that in a multi-view laboratory environment, where initialization is available, Bayesian filtering tends to perform well. The datasets and the software are made available to the research community. This infrastructure will support the development of new articulated motion and pose estimation algorithms, will provide a baseline for the evaluation and comparison of new methods, and will help establish the current state of the art in human pose estimation and tracking.

ps

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


no image
Derivatives of Logarithmic Stationary Distributions for Policy Gradient Reinforcement Learning

Morimura, T., Uchibe, E., Yoshimoto, J., Peters, J., Doya, K.

Neural Computation, 22(2):342-376, February 2010 (article)

Abstract
Most conventional policy gradient reinforcement learning (PGRL) algorithms neglect (or do not explicitly make use of) a term in the average reward gradient with respect to the policy parameter. That term involves the derivative of the stationary state distribution that corresponds to the sensitivity of its distribution to changes in the policy parameter. Although the bias introduced by this omission can be reduced by setting the forgetting rate γ for the value functions close to 1, these algorithms do not permit γ to be set exactly at γ = 1. In this article, we propose a method for estimating the log stationary state distribution derivative (LSD) as a useful form of the derivative of the stationary state distribution through backward Markov chain formulation and a temporal difference learning framework. A new policy gradient (PG) framework with an LSD is also proposed, in which the average reward gradient can be estimated by setting //!-- MFG_und--//amp;#947; = 0, so it becomes unnecessary to learn the value functions. We also test the performance of the proposed algorithms using simple benchmark tasks and show that these can improve the performances of existing PG methods.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Bayesian Online Multitask Learning of Gaussian Processes

Pillonetto, G., Dinuzzo, F., De Nicolao, G.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(2):193-205, February 2010 (article)

Abstract
Standard single-task kernel methods have recently been extended to the case of multitask learning in the context of regularization theory. There are experimental results, especially in biomedicine, showing the benefit of the multitask approach compared to the single-task one. However, a possible drawback is computational complexity. For instance, when regularization networks are used, complexity scales as the cube of the overall number of training data, which may be large when several tasks are involved. The aim of this paper is to derive an efficient computational scheme for an important class of multitask kernels. More precisely, a quadratic loss is assumed and each task consists of the sum of a common term and a task-specific one. Within a Bayesian setting, a recursive online algorithm is obtained, which updates both estimates and confidence intervals as new data become available. The algorithm is tested on two simulated problems and a real data set relative to xenobiotics administration in human patients.

ei

DOI [BibTex]

DOI [BibTex]


no image
The semigroup approach to transport processes in networks

Dorn, B., Fijavz, M., Nagel, R., Radl, A.

Physica D: Nonlinear Phenomena, 239(15):1416-1421, January 2010 (article)

Abstract
We explain how operator semigroups can be used to study transport processes in networks. This method is applied to a linear Boltzmann equation on a finite as well as on an infinite network and yields well-posedness and information on the long term behavior of the solutions to the presented problems.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Optimization of k-Space Trajectories for Compressed Sensing by Bayesian Experimental Design

Seeger, M., Nickisch, H., Pohmann, R., Schölkopf, B.

Magnetic Resonance in Medicine, 63(1):116-126, January 2010 (article)

Abstract
The optimization of k-space sampling for nonlinear sparse MRI reconstruction is phrased as a Bayesian experimental design problem. Bayesian inference is approximated by a novel relaxation to standard signal processing primitives, resulting in an efficient optimization algorithm for Cartesian and spiral trajectories. On clinical resolution brain image data from a Siemens 3T scanner, automatically optimized trajectories lead to significantly improved images, compared to standard low-pass, equispaced, or variable density randomized designs. Insights into the nonlinear design optimization problem for MRI are given.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Learning functional dependencies with kernel methods

Dinuzzo, F.

Scientifica Acta, 4(1):16-25, 2010 (article)

Abstract
In this paper, we review some recent research directions regarding the synthesis of functions from data using kernel methods. We start by highlighting the central role of the representer theorem and then outline some recent advances in large scale optimization, learning the kernel, and multi-task learning.

ei

Web [BibTex]

Web [BibTex]


no image
Consistent Nonparametric Tests of Independence

Gretton, A., Györfi, L.

Journal of Machine Learning Research, 11, pages: 1391-1423, 2010 (article)

ei

PDF [BibTex]

PDF [BibTex]


no image
Inferring latent task structure for Multitask Learning by Multiple Kernel Learning

Widmer, C., Toussaint, N., Altun, Y., Rätsch, G.

BMC Bioinformatics, 11 Suppl 8, pages: S5, 2010 (article)

Abstract
The lack of sufficient training data is the limiting factor for many Machine Learning applications in Computational Biology. If data is available for several different but related problem domains, Multitask Learning algorithms can be used to learn a model based on all available information. In Bioinformatics, many problems can be cast into the Multitask Learning scenario by incorporating data from several organisms. However, combining information from several tasks requires careful consideration of the degree of similarity between tasks. Our proposed method simultaneously learns or refines the similarity between tasks along with the Multitask Learning classifier. This is done by formulating the Multitask Learning problem as Multiple Kernel Learning, using the recently published q-Norm MKL algorithm.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Policy learning algorithmis for motor learning (Algorithmen zum automatischen Erlernen von Motorfähigkigkeiten)

Peters, J., Kober, J., Schaal, S.

Automatisierungstechnik, 58(12):688-694, 2010, clmc (article)

Abstract
Robot learning methods which allow au- tonomous robots to adapt to novel situations have been a long standing vision of robotics, artificial intelligence, and cognitive sciences. However, to date, learning techniques have yet to ful- fill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics. If possible, scaling was usually only achieved in precisely pre-structured domains. In this paper, we investigate the ingredients for a general ap- proach policy learning with the goal of an application to motor skill refinement in order to get one step closer towards human- like performance. For doing so, we study two major components for such an approach, i. e., firstly, we study policy learning algo- rithms which can be applied in the general setting of motor skill learning, and, secondly, we study a theoretically well-founded general approach to representing the required control structu- res for task representation and execution.

am

link (url) [BibTex]


no image
On a disparity between relative cliquewidth and relative NLC-width

Müller, H., Urner, R.

Discrete Applied Mathematics, 158(7):828-840, 2010 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl screen shot 2018 02 03 at 7.21.10 pm
Roombots: Reconfigurable Robots for Adaptive Furniture

Spröwitz, A., Pouya, S., Bonardi, S., van den Kieboom, J., Möckel, R., Billard, A., Dillenbourg, P., Ijspeert, A.

Computational Intelligence Magazine, IEEE, 5(3):20-32, 2010 (article)

Abstract
Imagine a world in which our furniture moves around like legged robots, interacts with us, and changes shape and function during the day according to our needs. This is the long term vision we have in the Roombots project. To work towards this dream, we are developing modular robotic modules that have rotational degrees of freedom for locomotion as well as active connection mechanisms for runtime reconfiguration. A piece of furniture, e.g. a stool, will thus be composed of several modules that activate their rotational joints together to implement locomotor gaits, and will be able to change shape, e.g. transforming into a chair, by sequences of attachments and detachments of modules. In this article, we firstly present the project and the hardware we are currently developing. We explore how reconfiguration from a configuration A to a configuration B can be controlled in a distributed fashion. This is done using metamodules-two Roombots modules connected serially-that use broadcast signals and connections to a structured ground to collectively build desired structures without the need of a centralized planner. We then present how locomotion controllers can be implemented in a distributed system of coupled oscillators-one per degree of freedom-similarly to the concept of central pattern generators (CPGs) found in the spinal cord of vertebrate animals. The CPGs are based on coupled phase oscillators to ensure synchronized behavior and have different output filters to allow switching between oscillations and rotations. A stochastic optimization algorithm is used to explore optimal CPG configurations for different simulated Roombots structures.

dlg

DOI [BibTex]

DOI [BibTex]


no image
Gait planning based on kinematics for a quadruped gecko model with redundancy

Son, D., Jeon, D., Nam, W. C., Chang, D., Seo, T., Kim, J.

Robotics and Autonomous Systems, 58, 2010 (article)

pi

[BibTex]

[BibTex]


Thumb xl toc image
Molecular QED of coherent and incoherent sum-frequency and second-harmonic generation in chiral liquids in the presence of a static electric field

Fischer, P., Salam, A.

MOLECULAR PHYSICS, 108(14):1857-1868, 2010 (article)

Abstract
Coherent second-order nonlinear optical processes are symmetry forbidden in centrosymmetric environments in the electric-dipole approximation. In liquids that contain chiral molecules, however, and which therefore lack mirror image symmetry, coherent sum-frequency generation is possible, whereas second-harmonic generation remains forbidden. Here we apply the theory of molecular quantum electrodynamics to the calculation of the matrix element, transition rate, and integrated signal intensity for sum-frequency and second-harmonic generation taking place in a chiral liquid in the presence and absence of a static electric field, to examine which coherent and incoherent processes exist in the electric-dipole approximation in liquids. Third- and fourth-order time-dependent perturbation theory is employed in combination with single-sided Feynman diagrams to evaluate two contributions arising from static field-free and field-induced processes. It is found that, in addition to the coherent term, an incoherent process exists for sum-frequency generation in liquids. Surprisingly, in the case of dc-field-induced second-harmonic generation, the incoherent contribution is found to always vanish for isotropic chiral liquids even though hyper-Rayleigh second-harmonic generation and electric-field-induced second-harmonic generation are both independently symmetry allowed in any liquid.

pf

DOI [BibTex]


no image
Flat dry elastomer adhesives as attachment materials for climbing robots

Unver, O., Sitti, M.

IEEE transactions on robotics, 26(1):131-141, IEEE, 2010 (article)

pi

[BibTex]

[BibTex]


no image
A Bayesian approach to nonlinear parameter identification for rigid-body dynamics

Ting, J., DSouza, A., Schaal, S.

Neural Networks, 2010, clmc (article)

Abstract
For complex robots such as humanoids, model-based control is highly beneficial for accurate tracking while keeping negative feedback gains low for compliance. However, in such multi degree-of-freedom lightweight systems, conventional identification of rigid body dynamics models using CAD data and actuator models is inaccurate due to unknown nonlinear robot dynamic effects. An alternative method is data-driven parameter estimation, but significant noise in measured and inferred variables affects it adversely. Moreover, standard estimation procedures may give physically inconsistent results due to unmodeled nonlinearities or insufficiently rich data. This paper addresses these problems, proposing a Bayesian system identification technique for linear or piecewise linear systems. Inspired by Factor Analysis regression, we develop a computationally efficient variational Bayesian regression algorithm that is robust to ill-conditioned data, automatically detects relevant features, and identifies input and output noise. We evaluate our approach on rigid body parameter estimation for various robotic systems, achieving an error of up to three times lower than other state-of-the-art machine learning methods.

am

link (url) [BibTex]


no image
A first optimal control solution for a complex, nonlinear, tendon driven neuromuscular finger model

Theodorou, E. A., Todorov, E., Valero-Cuevas, F.

Proceedings of the ASME 2010 Summer Bioengineering Conference August 30-September 2, 2010, Naples, Florida, USA, 2010, clmc (article)

Abstract
In this work we present the first constrained stochastic op- timal feedback controller applied to a fully nonlinear, tendon driven index finger model. Our model also takes into account an extensor mechanism, and muscle force-length and force-velocity properties. We show this feedback controller is robust to noise and perturbations to the dynamics, while successfully handling the nonlinearities and high dimensionality of the system. By ex- tending prior methods, we are able to approximate physiological realism by ensuring positivity of neural commands and tendon tensions at all timesthus can, for the first time, use the optimal control framework to predict biologically plausible tendon tensions for a nonlinear neuromuscular finger model. METHODS 1 Muscle Model The rigid-body triple pendulum finger model with slightly viscous joints is actuated by Hill-type muscle models. Joint torques are generated by the seven muscles of the index fin-

am

PDF [BibTex]

PDF [BibTex]


Thumb xl ncomm fig2
Automated Home-Cage Behavioral Phenotyping of Mice

Jhuang, H., Garrote, E., Mutch, J., Poggio, T., Steele, A., Serre, T.

Nature Communications, Nature Communications, 2010 (article)

ps

software, demo pdf [BibTex]

software, demo pdf [BibTex]


no image
Dzyaloshinskii-Moriya interactions in systems with fabrication induced strain gradients: ab-initio study

Beck, P., Fähnle, M

{Journal of Magnetism and Magnetic Materials}, 322, pages: 3701-3703, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
On the nature of displacement bursts during nanoindentation of ultrathin Ni films on sapphire

Rabkin, E., Deuschle, J. K., Baretzky, B.

{Acta Materialia}, 58, pages: 1589-1598, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Nanospheres generate out-of-plane magnetization

Amaladass, E., Ludescher, B., Schütz, G., Tyliszczak, T., Lee, M., Eimüller, T.

{Journal of Applied Physics}, 107, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Temperature dependence of the magnetic properties of L10-FePt nanostructures and films

Bublat, T., Goll, D.

{Journal of Applied Physics}, 108(11), 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic properties of Fe nanoclusters on Cu(111) studied with X-ray magnetic circular dichroism

Fauth, K., Ballentine, G., Praetorius, C., Kleibert, A., Wilken, N., Voitkans, A., Meiwes-Broer, K.-H.

{Physica Status Solidi B}, 247(5):1170-1179, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
An experimental analysis of elliptical adhesive contact

Sümer, B., Onal, C. D., Aksak, B., Sitti, M.

Journal of Applied Physics, 107(11):113512, AIP, 2010 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Efficient learning and feature detection in high dimensional regression

Ting, J., D’Souza, A., Vijayakumar, S., Schaal, S.

Neural Computation, 22, pages: 831-886, 2010, clmc (article)

Abstract
We present a novel algorithm for efficient learning and feature selection in high- dimensional regression problems. We arrive at this model through a modification of the standard regression model, enabling us to derive a probabilistic version of the well-known statistical regression technique of backfitting. Using the Expectation- Maximization algorithm, along with variational approximation methods to overcome intractability, we extend our algorithm to include automatic relevance detection of the input features. This Variational Bayesian Least Squares (VBLS) approach retains its simplicity as a linear model, but offers a novel statistically robust â??black- boxâ? approach to generalized linear regression with high-dimensional inputs. It can be easily extended to nonlinear regression and classification problems. In particular, we derive the framework of sparse Bayesian learning, e.g., the Relevance Vector Machine, with VBLS at its core, offering significant computational and robustness advantages for this class of methods. We evaluate our algorithm on synthetic and neurophysiological data sets, as well as on standard regression and classification benchmark data sets, comparing it with other competitive statistical approaches and demonstrating its suitability as a drop-in replacement for other generalized linear regression techniques.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Nanoscale imaging using deep ultraviolet digital holographic microscopy

Faridian, A., Hopp, D., Pedrini, G., Eigenthaler, U., Hirscher, M., Osten, W.

{Optics Express}, 18(13):14159-14164, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Metal-organic frameworks for hydrogen storage

Hirscher, M., Panella, B., Schmitz, B.

{Microporous and Mesoporous Materials}, 129, pages: 335-339, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Samarium-cobalt 2:17 magnets: analysis of the coercive field of Sm2(CoFeCuZr)17 high-temperature permanent magnets

Goll, D., Stadelmaier, H. H., Kronmüller, H.

{Scripta Materialia}, 63, pages: 243-245, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Low-temperature growth of silicon nanotubes and nanowires on amorphous substrates

Mbenkum, B. N., Schneider, A. S., Schütz, G., Xu, C., Richter, G., van Aken, P. A., Majer, G., Spatz, J. P.

{ACS Nano}, 4(4):1805-1812, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Formation and mobility of protonic charge carriers in methyl sulfonic acid-water mixtures: A model for sulfonic acid based ionomers at low degree of hydration

Telfah, A., Majer, G., Kreuer, K. D., Schuster, M., Maier, J.

{Solid State Ionics}, 181, pages: 461-465, 2010 (article)

mms

[BibTex]

[BibTex]


no image
Continuous photobleaching to study the growth modes of focal adhesions

de Beer, A. G. F., Majer, G., Roke, S., Spatz, J. P.

{Journal of Adhesion Science and Technology}, 24, pages: 2323-2334, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic antivortex-core reversal by circular-rotational spin currents

Kamionka, T., Martens, M., Chou, K. W., Curcic, M., Drews, A., Schütz, G., Tyliszczak, T., Stoll, H., Van Waeyenberge, B., Meier, G.

{Physical Review Letters}, 105, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Extension of Yafet\textquotesingles theory of spin relaxation to ferromagnets

Steiauf, D., Illg, C., Fähnle, M.

{Journal of Magnetism and Magnetic Materials}, 322, pages: L5-L7, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Stochastic Differential Dynamic Programming

Theodorou, E., Tassa, Y., Todorov, E.

In the proceedings of American Control Conference (ACC 2010) , 2010, clmc (article)

Abstract
We present a generalization of the classic Differential Dynamic Programming algorithm. We assume the existence of state- and control-dependent process noise, and proceed to derive the second-order expansion of the cost-to-go. Despite having quartic and cubic terms in the initial expression, we show that these vanish, leaving us with the same quadratic structure as standard DDP.

am

PDF [BibTex]

PDF [BibTex]


no image
Enhanced wet adhesion and shear of elastomeric micro-fiber arrays with mushroom tip geometry and a photopolymerized p (DMA-co-MEA) tip coating

Glass, P., Chung, H., Washburn, N. R., Sitti, M.

Langmuir, 26(22):17357-17362, American Chemical Society, 2010 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl thumb screen shot 2012 10 06 at 12.00.36 pm
Visual Object-Action Recognition: Inferring Object Affordances from Human Demonstration

Kjellström, H., Romero, J., Kragic, D.

Computer Vision and Image Understanding, pages: 81-90, 2010 (article)

ps

Pdf [BibTex]

Pdf [BibTex]


no image
Lateral transport of thermal capillary waves

Smith, T. H. R., Vasilyev, O., Maciolek, A., Schmidt, M.

{Europhysics Letters}, 89(1), 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
The formation and propagation of flux avalanches in tailored MgB2 films

Treiber, S., Albrecht, J.

{New Journal of Physics}, 12, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Direct imaging of current induced magnetic vortex gyration in an asymmetric potential well

Bisig, A., Rhensius, J., Kammerer, M., Curcic, M., Stoll, H., Schütz, G., Van Waeyenberge, B., Chou, K. W., Tyliszczak, T., Heyderman, L. J., Krzyk, S., von Bieren, A., Kläui, M.

{Applied Physics Letters}, 96, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Induced magnetism of carbon atoms at the graphene/Ni(111) interface

Weser, M., Rehder, Y., Horn, K., Sicot, M., Fonin, M., Preobrajenski, A. B., Voloshina, E. N., Goering, E., Dedkov, Y. S.

{Applied Physics Letters}, 96, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Photon counting system for time-resolved experiments in multibunch mode

Puzic, A., Korhonen, T., Kalantari, B., Raabe, J., Quitmann, C., Jüllig, P., Bommer, L., Goll, D., Schütz, G., Wintz, S., Strache, T., Körner, M., Markó, D., Bunce, C., Fassbender, J.

{Synchrotron Radiation News}, 23(2):26-32, 2010 (article)

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Coupling of Fe and uncompensated Mn moments in exchange-biased Fe/MnPd

Brück, S., Macke, S., Goering, E., Ji, X., Zhan, Q., Krishnan, K. M.

{Physical Review B}, 81(13), 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Remarks about spillover and hydrogen adsorption - Comments on the contributions of A.V. Talyzin and R.T. Yang

Hirscher, M.

{Microporous and Mesoporous Materials}, 135, pages: 209-210, 2010 (article)

mms

DOI [BibTex]


no image
Grain boundary ridges and triple lines

Straumal, B. B., Sursaeva, V. G., Baretzky, B.

{Scripta Materialia}, 62(12):924-927, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Expanding micelle nanolithography to the self-assembly of multicomponent core-shell nanoparticles

Mbenkum, B. N., D\’\iaz-Ortiz, A., Gu, L., van Aken, P. A., Schütz, G.

{Journal of the American Chemical Society}, 132(31):10671-10673, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Learning control in robotics – trajectory-based opitimal control techniques

Schaal, S., Atkeson, C. G.

Robotics and Automation Magazine, 17(2):20-29, 2010, clmc (article)

Abstract
In a not too distant future, robots will be a natural part of daily life in human society, providing assistance in many areas ranging from clinical applications, education and care giving, to normal household environments [1]. It is hard to imagine that all possible tasks can be preprogrammed in such robots. Robots need to be able to learn, either by themselves or with the help of human supervision. Additionally, wear and tear on robots in daily use needs to be automatically compensated for, which requires a form of continuous self-calibration, another form of learning. Finally, robots need to react to stochastic and dynamic environments, i.e., they need to learn how to optimally adapt to uncertainty and unforeseen changes. Robot learning is going to be a key ingredient for the future of autonomous robots. While robot learning covers a rather large field, from learning to perceive, to plan, to make decisions, etc., we will focus this review on topics of learning control, in particular, as it is concerned with learning control in simulated or actual physical robots. In general, learning control refers to the process of acquiring a control strategy for a particular control system and a particular task by trial and error. Learning control is usually distinguished from adaptive control [2] in that the learning system can have rather general optimization objectivesâ??not just, e.g., minimal tracking errorâ??and is permitted to fail during the process of learning, while adaptive control emphasizes fast convergence without failure. Thus, learning control resembles the way that humans and animals acquire new movement strategies, while adaptive control is a special case of learning control that fulfills stringent performance constraints, e.g., as needed in life-critical systems like airplanes. Learning control has been an active topic of research for at least three decades. However, given the lack of working robots that actually use learning components, more work needs to be done before robot learning will make it beyond the laboratory environment. This article will survey some ongoing and past activities in robot learning to assess where the field stands and where it is going. We will largely focus on nonwheeled robots and less on topics of state estimation, as typically explored in wheeled robots [3]â??6], and we emphasize learning in continuous state-action spaces rather than discrete state-action spaces [7], [8]. We will illustrate the different topics of robot learning with examples from our own research with anthropomorphic and humanoid robots.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Learning, planning, and control for quadruped locomotion over challenging terrain

Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., Schaal, S.

International Journal of Robotics Research, 30(2):236-258, 2010, clmc (article)

Abstract
We present a control architecture for fast quadruped locomotion over rough terrain. We approach the problem by decomposing it into many sub-systems, in which we apply state-of-the-art learning, planning, optimization, and control techniques to achieve robust, fast locomotion. Unique features of our control strategy include: (1) a system that learns optimal foothold choices from expert demonstration using terrain templates, (2) a body trajectory optimizer based on the Zero- Moment Point (ZMP) stability criterion, and (3) a floating-base inverse dynamics controller that, in conjunction with force control, allows for robust, compliant locomotion over unperceived obstacles. We evaluate the performance of our controller by testing it on the LittleDog quadruped robot, over a wide variety of rough terrains of varying difficulty levels. The terrain that the robot was tested on includes rocks, logs, steps, barriers, and gaps, with obstacle sizes up to the leg length of the robot. We demonstrate the generalization ability of this controller by presenting results from testing performed by an independent external test team on terrain that has never been shown to us.

am

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]