Header logo is


2016


no image
Influence of initial fixation position in scene viewing

Rothkegel, L. O. M., Trukenbrod, H. A., Schütt, H. H., Wichmann, F. A., Engbert, R.

Vision Research, 129, pages: 33-49, 2016 (article)

ei

link (url) DOI Project Page [BibTex]

2016


link (url) DOI Project Page [BibTex]


no image
Testing models of peripheral encoding using metamerism in an oddity paradigm

Wallis, T. S. A., Bethge, M., Wichmann, F. A.

Journal of Vision, 16(2), 2016 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Modeling Confounding by Half-Sibling Regression

Schölkopf, B., Hogg, D., Wang, D., Foreman-Mackey, D., Janzing, D., Simon-Gabriel, C. J., Peters, J.

Proceedings of the National Academy of Science, 113(27):7391-7398, 2016 (article)

ei

Code link (url) DOI Project Page [BibTex]

Code link (url) DOI Project Page [BibTex]


Thumb xl dual control sampled b
Dual Control for Approximate Bayesian Reinforcement Learning

Klenske, E. D., Hennig, P.

Journal of Machine Learning Research, 17(127):1-30, 2016 (article)

ei pn

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
A Population Based Gaussian Mixture Model Incorporating 18F-FDG-PET and DW-MRI Quantifies Tumor Tissue Classes

Divine, M. R., Katiyar, P., Kohlhofer, U., Quintanilla-Martinez, L., Disselhorst, J. A., Pichler, B. J.

Journal of Nuclear Medicine, 57(3):473-479, 2016 (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl siyong
Shape estimation of subcutaneous adipose tissue using an articulated statistical shape model

Yeo, S. Y., Romero, J., Loper, M., Machann, J., Black, M.

Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 0(0):1-8, 2016 (article)

ps

publisher website preprint pdf link (url) DOI Project Page [BibTex]

publisher website preprint pdf link (url) DOI Project Page [BibTex]


Thumb xl img02
Probabilistic Duality for Parallel Gibbs Sampling without Graph Coloring

Mescheder, L., Nowozin, S., Geiger, A.

Arxiv, 2016 (article)

Abstract
We present a new notion of probabilistic duality for random variables involving mixture distributions. Using this notion, we show how to implement a highly-parallelizable Gibbs sampler for weakly coupled discrete pairwise graphical models with strictly positive factors that requires almost no preprocessing and is easy to implement. Moreover, we show how our method can be combined with blocking to improve mixing. Even though our method leads to inferior mixing times compared to a sequential Gibbs sampler, we argue that our method is still very useful for large dynamic networks, where factors are added and removed on a continuous basis, as it is hard to maintain a graph coloring in this setup. Similarly, our method is useful for parallelizing Gibbs sampling in graphical models that do not allow for graph colorings with a small number of colors such as densely connected graphs.

avg

pdf [BibTex]


no image
Analysis of multiparametric MRI using a semi-supervised random forest framework allows the detection of therapy response in ischemic stroke

Castaneda, S., Katiyar, P., Russo, F., Calaminus, C., Disselhorst, J. A., Ziemann, U., Kohlhofer, U., Quintanilla-Martinez, L., Poli, S., Pichler, B. J.

World Molecular Imaging Conference, 2016 (talk)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Painfree and accurate Bayesian estimation of psychometric functions for (potentially) overdispersed data

Schütt, H. H., Harmeling, S., Macke, J. H., Wichmann, F. A.

Vision Research, 122, pages: 105-123, 2016 (article)

ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Hydrodynamic simulations of the interaction between giant stars and planets

Staff, J., De Marco, O., Wood, P., Galaviz, P., Passy, J.

Monthly Notices of the Royal Astronomical Society, 458, pages: 832-844, 2016 (article)

DOI [BibTex]

DOI [BibTex]


no image
Peripheral vs. central determinants of vibrotactile adaptation

Klöcker, A., Gueorguiev, D., Thonnard, J. L., Mouraux, A.

Journal of Neurophysiology, 115(2):685-691, 2016, PMID: 26581868 (article)

Abstract
Long-lasting mechanical vibrations applied to the skin induce a reversible decrease in the perception of vibration at the stimulated skin site. This phenomenon of vibrotactile adaptation has been studied extensively, yet there is still no clear consensus on the mechanisms leading to vibrotactile adaptation. In particular, the respective contributions of 1) changes affecting mechanical skin impedance, 2) peripheral processes, and 3) central processes are largely unknown. Here we used direct electrical stimulation of nerve fibers to bypass mechanical transduction processes and thereby explore the possible contribution of central vs. peripheral processes to vibrotactile adaptation. Three experiments were conducted. In the first, adaptation was induced with mechanical vibration of the fingertip (51- or 251-Hz vibration delivered for 8 min, at 40× detection threshold). In the second, we attempted to induce adaptation with transcutaneous electrical stimulation of the median nerve (51- or 251-Hz constant-current pulses delivered for 8 min, at 1.5× detection threshold). Vibrotactile detection thresholds were measured before and after adaptation. Mechanical stimulation induced a clear increase of vibrotactile detection thresholds. In contrast, thresholds were unaffected by electrical stimulation. In the third experiment, we assessed the effect of mechanical adaptation on the detection thresholds to transcutaneous electrical nerve stimuli, measured before and after adaptation. Electrical detection thresholds were unaffected by the mechanical adaptation. Taken together, our results suggest that vibrotactile adaptation is predominantly the consequence of peripheral mechanoreceptor processes and/or changes in biomechanical properties of the skin.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
On designing an active tail for legged robots: simplifying control via decoupling of control objectives

Heim, S. W., Ajallooeian, M., Eckert, P., Vespignani, M., Ijspeert, A. J.

Industrial Robot: An International Journal, 43, pages: 338-346, Emerald Group Publishing Limited, 2016 (article)

dlg

Preprint [BibTex]

Preprint [BibTex]


no image
NimbRo Explorer: Semi-Autonomous Exploration and Mobile Manipulation in Rough Terrain

Stueckler, J., Schwarz, M., Schadler, M., Topalidou-Kyniazopoulou, A., Behnke, S.

Journal of Field Robotics (JFR), 33(4):411-430, Wiley, 2016 (article)

ev

[BibTex]

[BibTex]


no image
Stochastic search with Poisson and deterministic resetting

Bhat, U., De Bacco, C., Redner, S.

Journal of Statistical Mechanics: Theory and Experiment, 2016(8):083401, IOP Publishing, 2016 (article)

pio

Preprint link (url) [BibTex]

Preprint link (url) [BibTex]


no image
Hierarchical Relative Entropy Policy Search

Daniel, C., Neumann, G., Kroemer, O., Peters, J.

Journal of Machine Learning Research, 17(93):1-50, 2016 (article)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
γ‐Conicein und Coniin aus Geflecktem Schierling

Puidokait, M., Graefe, J., Sehl, A., Steinke, K., Siehl, H., Zeller, K., Sicker, D., Berger, S.

Chemie in unserer Zeit, 50(6):382-391, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Kernel Mean Shrinkage Estimators

Muandet, K., Sriperumbudur, B., Fukumizu, K., Gretton, A., Schölkopf, B.

Journal of Machine Learning Research, 17(48):1-41, 2016 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Learning to Deblur

Schuler, C. J., Hirsch, M., Harmeling, S., Schölkopf, B.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(7):1439-1451, IEEE, 2016 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Transfer Learning in Brain-Computer Interfaces

Jayaram, V., Alamgir, M., Altun, Y., Schölkopf, B., Grosse-Wentrup, M.

IEEE Computational Intelligence Magazine, 11(1):20-31, 2016 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
MERLiN: Mixture Effect Recovery in Linear Networks

Weichwald, S., Grosse-Wentrup, M., Gretton, A.

IEEE Journal of Selected Topics in Signal Processing, 10(7):1254-1266, 2016 (article)

ei

Arxiv Code PDF DOI Project Page [BibTex]

Arxiv Code PDF DOI Project Page [BibTex]


no image
Causal inference using invariant prediction: identification and confidence intervals

Peters, J., Bühlmann, P., Meinshausen, N.

Journal of the Royal Statistical Society, Series B (Statistical Methodology), 78(5):947-1012, 2016, (with discussion) (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Causal discovery and inference: concepts and recent methodological advances

Spirtes, P., Zhang, K.

Applied Informatics, 3(3):1-28, 2016 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Self-regulation of brain rhythms in the precuneus: a novel BCI paradigm for patients with ALS

Fomina, T., Lohmann, G., Erb, M., Ethofer, T., Schölkopf, B., Grosse-Wentrup, M.

Journal of Neural Engineering, 13(6):066021, 2016 (article)

ei

link (url) Project Page [BibTex]


Thumb xl screen shot 2017 06 14 at 3.04.03 pm
ATRIAS: Design and validation of a tether-free 3D-capable spring-mass bipedal robot

Hubicki, C., Grimes, J., Jones, M., Renjewski, D., Spröwitz, A., Abate, A., Hurst, J.

{The International Journal of Robotics Research}, 35(12):1497-1521, Sage Publications, Inc., Cambridge, MA, 2016 (article)

dlg

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Hydrodynamic simulations of the interaction between an AGB star and a main-sequence companion in eccentric orbits

Staff, J., De Marco, O., Macdonald, D., Galaviz, P., Passy, J., Iaconi, R., Low, M.

Monthly Notices of the Royal Astronomical Society, 455, pages: 3511-3525, 2016 (article)

DOI [BibTex]

DOI [BibTex]


no image
Influence Estimation and Maximization in Continuous-Time Diffusion Networks

Gomez-Rodriguez, M., Song, L., Du, N., Zha, H., Schölkopf, B.

ACM Transactions on Information Systems, 34(2):9:1-9:33, 2016 (article)

ei

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


no image
Silent Expectations: Dynamic Causal Modeling of Cortical Prediction and Attention to Sounds That Weren’t

Chennu, S., Noreika, V., Gueorguiev, D., Shtyrov, Y., Bekinschtein, T. A., Henson, R.

Journal of Neuroscience, 36(32):8305-8316, Society for Neuroscience, 2016 (article)

Abstract
There is increasing evidence that human perception is realized by a hierarchy of neural processes in which predictions sent backward from higher levels result in prediction errors that are fed forward from lower levels, to update the current model of the environment. Moreover, the precision of prediction errors is thought to be modulated by attention. Much of this evidence comes from paradigms in which a stimulus differs from that predicted by the recent history of other stimuli (generating a so-called {\textquotedblleft}mismatch response{\textquotedblright}). There is less evidence from situations where a prediction is not fulfilled by any sensory input (an {\textquotedblleft}omission{\textquotedblright} response). This situation arguably provides a more direct measure of {\textquotedblleft}top-down{\textquotedblright} predictions in the absence of confounding {\textquotedblleft}bottom-up{\textquotedblright} input. We applied Dynamic Causal Modeling of evoked electromagnetic responses recorded by EEG and MEG to an auditory paradigm in which we factorially crossed the presence versus absence of {\textquotedblleft}bottom-up{\textquotedblright} stimuli with the presence versus absence of {\textquotedblleft}top-down{\textquotedblright} attention. Model comparison revealed that both mismatch and omission responses were mediated by increased forward and backward connections, differing primarily in the driving input. In both responses, modeling results suggested that the presence of attention selectively modulated backward {\textquotedblleft}prediction{\textquotedblright} connections. Our results provide new model-driven evidence of the pure top-down prediction signal posited in theories of hierarchical perception, and highlight the role of attentional precision in strengthening this prediction.SIGNIFICANCE STATEMENT Human auditory perception is thought to be realized by a network of neurons that maintain a model of and predict future stimuli. Much of the evidence for this comes from experiments where a stimulus unexpectedly differs from previous ones, which generates a well-known {\textquotedblleft}mismatch response.{\textquotedblright} But what happens when a stimulus is unexpectedly omitted altogether? By measuring the brain{\textquoteright}s electromagnetic activity, we show that it also generates an {\textquotedblleft}omission response{\textquotedblright} that is contingent on the presence of attention. We model these responses computationally, revealing that mismatch and omission responses only differ in the location of inputs into the same underlying neuronal network. In both cases, we show that attention selectively strengthens the brain{\textquoteright}s prediction of the future.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Multi-Layered Mapping and Navigation for Autonomous Micro Aerial Vehicles

Droeschel, D., Nieuwenhuisen, M., Beul, M., Stueckler, J., Holz, D., Behnke, S.

Journal of Field Robotics (JFR), 33(4):451-475, 2016 (article)

ev

[BibTex]

[BibTex]


no image
Dynamics of beneficial epidemics

Berdahl, A., Brelsford, C., De Bacco, C., Dumas, M., Ferdinand, V., Grochow, J. A., Hébert-Dufresne, L., Kallus, Y., Kempes, C. P., Kolchinsky, A., others,

arXiv preprint arXiv:1604.02096, 2016 (article)

pio

Preprint [BibTex]

Preprint [BibTex]


no image
Rare events statistics of random walks on networks: localisation and other dynamical phase transitions

De Bacco, C., Guggiola, A., Kühn, R., Paga, P.

Journal of Physics A: Mathematical and Theoretical, 49(18):184003, IOP Publishing, 2016 (article)

pio

Preprint link (url) [BibTex]

Preprint link (url) [BibTex]


no image
One for all?! Simultaneous examination of load-inducing factors for advancing media-related instructional research

Wirzberger, M., Beege, M., Schneider, S., Nebel, S., Rey, G. D.

Computers {\&} Education, 100, pages: 18-31, Elsevier BV, 2016 (article)

Abstract
In multimedia learning settings, limitations in learners' mental resource capacities need to be considered to avoid impairing effects on learning performance. Based on the prominent and often quoted Cognitive Load Theory, this study investigates the potential of a single experimental approach to provide simultaneous and separate measures for the postulated load-inducing factors. Applying a basal letter-learning task related to the process of working memory updating, intrinsic cognitive load (by varying task complexity), extraneous cognitive load (via inducing split-attention demands) and germane cognitive load (by varying the presence of schemata) were manipulated within a 3 × 2 × 2-factorial full repeated-measures design. The performance of a student sample (N = 96) was inspected regarding reaction times and errors in updating and recall steps. Approaching the results with linear mixed models, the effect of complexity gained substantial strength, whereas the other factors received at least partial significant support. Additionally, interactions between two or all load-inducing factors occurred. Despite various open questions, the study comprises a promising step for the empirical investigation of existing construction yards in cognitive load research.

re

DOI [BibTex]

DOI [BibTex]


no image
The population of long-period transiting exoplanets

Foreman-Mackey, D., Morton, T. D., Hogg, D. W., Agol, E., Schölkopf, B.

The Astronomical Journal, 152(6):206, 2016 (article)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Event-based Sampling for Reducing Communication Load in Realtime Human Motion Analysis by Wireless Inertial Sensor Networks

Laidig, D., Trimpe, S., Seel, T.

Current Directions in Biomedical Engineering, 2(1):711-714, De Gruyter, 2016 (article)

am ics

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
An overview of quantitative approaches in Gestalt perception

Jäkel, F., Singh, M., Wichmann, F. A., Herzog, M. H.

Vision Research, 126, pages: 3-8, 2016 (article)

ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Confronting uncertainties in stellar physics. II. Exploring differences in main-sequence stellar evolution tracks

Stancliffe, R., Fossati, L., Passy, J., Schneider, F.

Astronomy and Astrophysics , 586, pages: A119, 2016 (article)

DOI [BibTex]

DOI [BibTex]


no image
Touch uses frictional cues to discriminate flat materials

Gueorguiev, D., Bochereau, S., Mouraux, A., Hayward, V., Thonnard, J.

Scientific reports, 6, pages: 25553, Nature Publishing Group, 2016 (article)

hi

[BibTex]

[BibTex]


no image
Bootstrat: Population Informed Bootstrapping for Rare Variant Tests

Huang, H., Peloso, G. M., Howrigan, D., Rakitsch, B., Simon-Gabriel, C. J., Goldstein, J. I., Daly, M. J., Borgwardt, K., Neale, B. M.

bioRxiv, 2016, preprint (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Probabilistic Movement Models Show that Postural Control Precedes and Predicts Volitional Motor Control

Rueckert, E., Camernik, J., Peters, J., Babic, J.

Nature PG: Scientific Reports, 6(Article number: 28455), 2016 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Learning Taxonomy Adaptation in Large-scale Classification

Babbar, R., Partalas, I., Gaussier, E., Amini, M., Amblard, C.

Journal of Machine Learning Research, 17(98):1-37, 2016 (article)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb xl screen shot 2016 02 22 at 11.46.41
The GRASP Taxonomy of Human Grasp Types

Feix, T., Romero, J., Schmiedmayer, H., Dollar, A., Kragic, D.

Human-Machine Systems, IEEE Transactions on, 46(1):66-77, 2016 (article)

ps

publisher website pdf DOI Project Page [BibTex]

publisher website pdf DOI Project Page [BibTex]


Thumb xl fundusphotoanthal
Deep Learning for Diabetic Retinopathy Diagnostics

Balles, L.

Heidelberg University, 2016, in cooperation with Bosch Corporate Research (mastersthesis)

[BibTex]

[BibTex]


no image
Multi-view learning on multiparametric PET/MRI quantifies intratumoral heterogeneity and determines therapy efficacy

Katiyar, P., Divine, M. R., Kohlhofer, U., Quintanilla-Martinez, L., Siegemund, M., Pfizenmaier, K., Kontermann, R., Pichler, B. J., Disselhorst, J. A.

World Molecular Imaging Conference, 2016 (talk)

ei

link (url) [BibTex]

link (url) [BibTex]