Header logo is


2005


no image
Proton magnetic resonance spectra of YH3 and LuH3

Brady, S. K., Conradi, M. S., Majer, G., Barnes, R. G.

{Physical Review B}, 72, 2005 (article)

mms

[BibTex]

2005


[BibTex]


no image
Hydrogen storage in spherical nanoporous carbons

Terres, E., Panella, B., Hayashi, T., Kim, Y. A., Endo, M., Dominguez, J. M., Hirscher, M., Terrones, H., Terrones, H.

{Chemical Physics Letters}, 403(4-6):363-366, 2005 (article)

mms

[BibTex]

[BibTex]


no image
Faceting and migration of twin grain boundaries in zinc

Straumal, B. B., Rabkin, E., Sursaeva, V. G., Goruakova, A. S.

{Zeitschrift f\"ur Metallkunde}, 96(2):161-166, 2005 (article)

mms

[BibTex]

[BibTex]


no image
Nanostructures with high surface area for hydrogen storage

Hirscher, M., Panella, B.

{Journal of Alloys and Compounds}, 404, pages: 399-401, 2005 (article)

mms

[BibTex]

[BibTex]


no image
Timescale settling and nature of electron transport in magnetite - General considerations in view of new magnetic after-effect results on dilutely Ti4+-doped Fe3O4

Walz, F., Brabers, V. A. M., Brabers, J. H. V. J., Kronmüller, H.

{Journal of Physics: Condensed Matter}, 17(42):6763-6781, 2005 (article)

mms

[BibTex]

[BibTex]


no image
Topological k-space refinement of the configurational energy of alloys

Shchyglo, O., Bugaev, V. N., Drautz, R., Udyansky, A., Reichert, H., Dosch, H.

{Physical Review B}, 72(14), 2005 (article)

mms

[BibTex]

[BibTex]


no image
Large surface area nanostructures for hydrogen storage

Hirscher, M., Panella, B.

{Annales de Chimie}, 30(5):519-529, 2005 (article)

mms

[BibTex]

[BibTex]


no image
Electronic and magnetic properties of ligand-free FePt nanoparticles

Boyen, H., Fauth, K., Stahl, B., Ziemann, P., Kästle, G., Weigl, F., Banhart, F., He\ssler, M., Schütz, G., Gajbhiye, N. S., Ellrich, J., Hahn, H., Büttner, M., Garnier, M. G., Oelhafen, P.

{Advanced Materials}, 17(5):574-578, 2005 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Identification of extrinsic Mn contributions in Ga1-xMnxAs by field-dependent magnetic circular X-ray dichroism

Rader, O., Fauth, K., Gould, C., Rüster, C., Schott, G. M., Schmidt, G., Brunner, K., Molenkamp, L. W., Schütz, G., Kronast, F., Dürr, H. A., Eberhardt, W., Gudat, W.

{Journal of Electron Spectroscopy and Related Phenomena}, 144(Sp. issue):789-792, 2005 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Fundamentals of interface phenomena in advanced bulk nanoscale materials

Baretzky, B., Baró, M. D., Grabovetskaya, G. P., Gubicza, J., Ivanov, M. B., Kolobov, Y. R., Langdon, T. G., Lendvai, J., Lipnitskii, A. G., Mazilkin, A. A., Nazarov, A. A., Nogués, J., Ovidko, I. A., Protasova, S. G., Raab, G. I., Révész, Á., Skiba, N. V., Sort, J., Starink, M. J., Straumal, B. B., Suriñach, S., Ungár, T., Zhilyaev, A. P.

{Reviews on Advanced Materials Science}, 9(1):45-108, 2005 (article)

mms

[BibTex]

[BibTex]


no image
Formation of nanostructure during high-pressure torsion of Al-Zn, Al-Mg and Al-Zn-Mg alloys

Mazilkin, A. A., Kogtenkova, O. A., Straumal, B. B., Ruslan, Z, Valiev, Z., Baretzky, B.

{Defect and Diffusion Forum}, 237-240, pages: 739-744, 2005 (article)

mms

[BibTex]

[BibTex]


no image
Micromagnetic simulation as a bridge between magnetic-force and magnetic-transmission X-ray microscopy

Bolte, M., Eiselt, R., Eimüller, T.

{Journal of Magnetism and Magnetic Materials}, 290, pages: 723-726, 2005 (article)

mms

[BibTex]

[BibTex]


no image
Grain-boundary melting phase transition in the Cu-Bi system

Divinski, S., Lohmann, M., Herzig, C., Straumal, B., Baretzky, B., Gust, W.

{Physical Review B}, 71, 2005 (article)

mms

[BibTex]

[BibTex]

2004


no image
On the representation, learning and transfer of spatio-temporal movement characteristics

Ilg, W., Bakir, GH., Mezger, J., Giese, M.

International Journal of Humanoid Robotics, 1(4):613-636, December 2004 (article)

ei

[BibTex]

2004


[BibTex]


no image
Insect-inspired estimation of egomotion

Franz, MO., Chahl, JS., Krapp, HG.

Neural Computation, 16(11):2245-2260, November 2004 (article)

Abstract
Tangential neurons in the fly brain are sensitive to the typical optic flow patterns generated during egomotion. In this study, we examine whether a simplified linear model based on the organization principles in tangential neurons can be used to estimate egomotion from the optic flow. We present a theory for the construction of an estimator consisting of a linear combination of optic flow vectors that incorporates prior knowledge both about the distance distribution of the environment, and about the noise and egomotion statistics of the sensor. The estimator is tested on a gantry carrying an omnidirectional vision sensor. The experiments show that the proposed approach leads to accurate and robust estimates of rotation rates, whereas translation estimates are of reasonable quality, albeit less reliable.

ei

PDF PostScript Web DOI [BibTex]

PDF PostScript Web DOI [BibTex]


no image
Efficient face detection by a cascaded support-vector machine expansion

Romdhani, S., Torr, P., Schölkopf, B., Blake, A.

Proceedings of The Royal Society of London A, 460(2501):3283-3297, A, November 2004 (article)

Abstract
We describe a fast system for the detection and localization of human faces in images using a nonlinear ‘support-vector machine‘. We approximate the decision surface in terms of a reduced set of expansion vectors and propose a cascaded evaluation which has the property that the full support-vector expansion is only evaluated on the face-like parts of the image, while the largest part of typical images is classified using a single expansion vector (a simpler and more efficient classifier). As a result, only three reduced-set vectors are used, on average, to classify an image patch. Hence, the cascaded evaluation, presented in this paper, offers a thirtyfold speed-up over an evaluation using the full set of reduced-set vectors, which is itself already thirty times faster than classification using all the support vectors.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Discrete vs. Continuous: Two Sides of Machine Learning

Zhou, D.

October 2004 (talk)

Abstract
We consider the problem of transductive inference. In many real-world problems, unlabeled data is far easier to obtain than labeled data. Hence transductive inference is very significant in many practical problems. According to Vapnik's point of view, one should predict the function value only on the given points directly rather than a function defined on the whole space, the latter being a more complicated problem. Inspired by this idea, we develop discrete calculus on finite discrete spaces, and then build discrete regularization. A family of transductive algorithms is naturally derived from this regularization framework. We validate the algorithms on both synthetic and real-world data from text/web categorization to bioinformatics problems. A significant by-product of this work is a powerful way of ranking data based on examples including images, documents, proteins and many other kinds of data. This talk is mainly based on the followiing contribution: (1) D. Zhou and B. Sch{\"o}lkopf: Transductive Inference with Graphs, MPI Technical report, August, 2004; (2) D. Zhou, B. Sch{\"o}lkopf and T. Hofmann. Semi-supervised Learning on Directed Graphs. NIPS 2004; (3) D. Zhou, O. Bousquet, T.N. Lal, J. Weston and B. Sch{\"o}lkopf. Learning with Local and Global Consistency. NIPS 2003.

ei

PDF [BibTex]


no image
Pattern detection methods and systems and face detection methods and systems

Blake, A., Romdhani, S., Schölkopf, B., Torr, P. H. S.

United States Patent, No 6804391, October 2004 (patent)

ei

[BibTex]

[BibTex]


no image
Grundlagen von Support Vector Maschinen und Anwendungen in der Bildverarbeitung

Eichhorn, J.

September 2004 (talk)

Abstract
Invited talk at the workshop "Numerical, Statistical and Discrete Methods in Image Processing" at the TU M{\"u}nchen (in GERMAN)

ei

PDF [BibTex]


no image
Learning kernels from biological networks by maximizing entropy

Tsuda, K., Noble, W.

Bioinformatics, 20(Suppl. 1):i326-i333, August 2004 (article)

Abstract
Motivation: The diffusion kernel is a general method for computing pairwise distances among all nodes in a graph, based on the sum of weighted paths between each pair of nodes. This technique has been used successfully, in conjunction with kernel-based learning methods, to draw inferences from several types of biological networks. Results: We show that computing the diffusion kernel is equivalent to maximizing the von Neumann entropy, subject to a global constraint on the sum of the Euclidean distances between nodes. This global constraint allows for high variance in the pairwise distances. Accordingly, we propose an alternative, locally constrained diffusion kernel, and we demonstrate that the resulting kernel allows for more accurate support vector machine prediction of protein functional classifications from metabolic and protein–protein interaction networks.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
The benefit of liquid Helium cooling for Cryo-Electron Tomography: A quantitative comparative study

Schweikert, G., Luecken, U., Pfeifer, G., Baumeister, W., Plitzko, J.

The thirteenth European Microscopy Congress, August 2004 (talk)

ei

[BibTex]

[BibTex]


no image
Masking effect produced by Mach bands on the detection of narrow bars of random polarity

Henning, GB., Hoddinott, KT., Wilson-Smith, ZJ., Hill, NJ.

Journal of the Optical Society of America, 21(8):1379-1387, A, August 2004 (article)

ei

[BibTex]

[BibTex]


no image
Analysis of differential gene expression in healthy and osteoarthritic cartilage and isolated chondrocytes by microarray analysis

Aigner, T., Saas, J., Zien, A., Zimmer, R., Gebhard, P., Knorr, T.

In Volume 1: Cellular and Molecular Tools, pages: 109-128, (Editors: Sabatini, M., P. Pastoureau and F. De Ceuninck), Humana Press, July 2004 (inbook)

Abstract
The regulation of chondrocytes in osteoarthritic cartilage and the expression of specific gene products by these cells during early-onset and late-stage osteoarthritis are not well characterized. With the introduction of cDNA array technology, the measurement of thousands of different genes in one small tissue sample can be carried out. Interpretation of gene expression analyses in articular cartilage is aided by the fact that this tissue contains only one cell type in both normal and diseased conditions. However, care has to be taken not to over- and misinterpret results, and some major challenges must be overcome in order to utilize the potential of this technology properly in the field of osteoarthritis.

ei

Web [BibTex]

Web [BibTex]


no image
Riemannian Geometry on Graphs and its Application to Ranking and Classification

Zhou, D.

June 2004 (talk)

Abstract
We consider the problem of transductive inference. In many real-world problems, unlabeled data is far easier to obtain than labeled data. Hence transductive inference is very significant in many practical problems. According to Vapnik's point of view, one should predict the function value only on the given points directly rather than a function defined on the whole space, the latter being a more complicated problem. Inspired by this idea, we develop discrete calculus on finite discrete spaces, and then build discrete regularization. A family of transductive algorithms is naturally derived from this regularization framework. We validate the algorithms on both synthetic and real-world data from text/web categorization to bioinformatics problems. A significant by-product of this work is a powerful way of ranking data based on examples including images, documents, proteins and many other kinds of data.

ei

PDF [BibTex]


no image
Support Vector Channel Selection in BCI

Lal, T., Schröder, M., Hinterberger, T., Weston, J., Bogdan, M., Birbaumer, N., Schölkopf, B.

IEEE Transactions on Biomedical Engineering, 51(6):1003-1010, June 2004 (article)

Abstract
Designing a Brain Computer Interface (BCI) system one can choose from a variety of features that may be useful for classifying brain activity during a mental task. For the special case of classifying EEG signals we propose the usage of the state of the art feature selection algorithms Recursive Feature Elimination and Zero-Norm Optimization which are based on the training of Support Vector Machines (SVM). These algorithms can provide more accurate solutions than standard filter methods for feature selection. We adapt the methods for the purpose of selecting EEG channels. For a motor imagery paradigm we show that the number of used channels can be reduced significantly without increasing the classification error. The resulting best channels agree well with the expected underlying cortical activity patterns during the mental tasks. Furthermore we show how time dependent task specific information can be visualized.

ei

DOI [BibTex]

DOI [BibTex]


no image
Distance-Based Classification with Lipschitz Functions

von Luxburg, U., Bousquet, O.

Journal of Machine Learning Research, 5, pages: 669-695, June 2004 (article)

Abstract
The goal of this article is to develop a framework for large margin classification in metric spaces. We want to find a generalization of linear decision functions for metric spaces and define a corresponding notion of margin such that the decision function separates the training points with a large margin. It will turn out that using Lipschitz functions as decision functions, the inverse of the Lipschitz constant can be interpreted as the size of a margin. In order to construct a clean mathematical setup we isometrically embed the given metric space into a Banach space and the space of Lipschitz functions into its dual space. To analyze the resulting algorithm, we prove several representer theorems. They state that there always exist solutions of the Lipschitz classifier which can be expressed in terms of distance functions to training points. We provide generalization bounds for Lipschitz classifiers in terms of the Rademacher complexities of some Lipschitz function classes. The generality of our approach can be seen from the fact that several well-known algorithms are special cases of the Lipschitz classifier, among them the support vector machine, the linear programming machine, and the 1-nearest neighbor classifier.

ei

PDF PostScript PDF [BibTex]

PDF PostScript PDF [BibTex]


Thumb xl woodtransbme04
On the variability of manual spike sorting

Wood, F., Black, M. J., Vargas-Irwin, C., Fellows, M., Donoghue, J. P.

IEEE Trans. Biomedical Engineering, 51(6):912-918, June 2004 (article)

ps

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


Thumb xl wutransbme04
Modeling and decoding motor cortical activity using a switching Kalman filter

Wu, W., Black, M. J., Mumford, D., Gao, Y., Bienenstock, E., Donoghue, J. P.

IEEE Trans. Biomedical Engineering, 51(6):933-942, June 2004 (article)

Abstract
We present a switching Kalman filter model for the real-time inference of hand kinematics from a population of motor cortical neurons. Firing rates are modeled as a Gaussian mixture where the mean of each Gaussian component is a linear function of hand kinematics. A “hidden state” models the probability of each mixture component and evolves over time in a Markov chain. The model generalizes previous encoding and decoding methods, addresses the non-Gaussian nature of firing rates, and can cope with crudely sorted neural data common in on-line prosthetic applications.

ps

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


no image
Distributed Command Execution

Stark, S., Berlin, M.

In BSD Hacks: 100 industrial-strength tips & tools, pages: 152-152, (Editors: Lavigne, Dru), O’Reilly, Beijing, May 2004 (inbook)

Abstract
Often you want to execute a command not only on one computer, but on several at once. For example, you might want to report the current statistics on a group of managed servers or update all of your web servers at once.

ei

[BibTex]

[BibTex]


no image
cDNA-Microarray Technology in Cartilage Research - Functional Genomics of Osteoarthritis [in German]

Aigner, T., Finger, F., Zien, A., Bartnik, E.

Zeitschrift f{\"u}r Orthop{\"a}die und ihre Grenzgebiete, 142(2):241-247, April 2004 (article)

Abstract
Functional genomics represents a new challenging approach in order to analyze complex diseases such as osteoarthritis on a molecular level. The characterization of the molecular changes of the cartilage cells, the chondrocytes, enables a better understanding of the pathomechanisms of the disease. In particular, the identification and characterization of new target molecules for therapeutic intervention is of interest. Also, potential molecular markers for diagnosis and monitoring of osteoarthritis contribute to a more appropriate patient management. The DNA-microarray technology complements (but does not replace) biochemical and biological research in new disease-relevant genes. Large-scale functional genomics will identify molecular networks such as yet identified players in the anabolic-catabolic balance of articular cartilage as well as disease-relevant intracellular signaling cascades so far rather unknown in articular chondrocytes. However, at the moment it is also important to recognize the limitations of the microarray technology in order to avoid over-interpretation of the results. This might lead to misleading results and prevent to a significant extent a proper use of the potential of this technology in the field of osteoarthritis.

ei

[BibTex]

[BibTex]


no image
A Compression Approach to Support Vector Model Selection

von Luxburg, U., Bousquet, O., Schölkopf, B.

Journal of Machine Learning Research, 5, pages: 293-323, April 2004 (article)

Abstract
In this paper we investigate connections between statistical learning theory and data compression on the basis of support vector machine (SVM) model selection. Inspired by several generalization bounds we construct "compression coefficients" for SVMs which measure the amount by which the training labels can be compressed by a code built from the separating hyperplane. The main idea is to relate the coding precision to geometrical concepts such as the width of the margin or the shape of the data in the feature space. The so derived compression coefficients combine well known quantities such as the radius-margin term R^2/rho^2, the eigenvalues of the kernel matrix, and the number of support vectors. To test whether they are useful in practice we ran model selection experiments on benchmark data sets. As a result we found that compression coefficients can fairly accurately predict the parameters for which the test error is minimized.

ei

PDF [BibTex]

PDF [BibTex]


no image
Injecting noise for analysing the stability of ICA components

Harmeling, S., Meinecke, F., Müller, K.

Signal Processing, 84(2):255-266, February 2004 (article)

Abstract
Usually, noise is considered to be destructive. We present a new method that constructively injects noise to assess the reliability and the grouping structure of empirical ICA component estimates. Our method can be viewed as a Monte-Carlo-style approximation of the curvature of some performance measure at the solution. Simulations show that the true root-mean-squared angle distances between the real sources and the source estimates can be approximated well by our method. In a toy experiment, we see that we are also able to reveal the underlying grouping structure of the extracted ICA components. Furthermore, an experiment with fetal ECG data demonstrates that our approach is useful for exploratory data analysis of real-world data.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Independent component analysis and beyond

Oja, E., Harmeling, S., Almeida, L.

Signal Processing, 84(2):215-216, February 2004 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking

Zhou, D.

January 2004 (talk)

Abstract
We consider the general problem of learning from labeled and unlabeled data, which is often called semi-supervised learning or transductive inference. A principled approach to semi-supervised learning is to design a classifying function which is sufficiently smooth with respect to the intrinsic structure collectively revealed by known labeled and unlabeled points. We present a simple algorithm to obtain such a smooth solution. Our method yields encouraging experimental results on a number of classification problems and demonstrates effective use of unlabeled data.

ei

PDF [BibTex]


no image
Experimentally optimal v in support vector regression for different noise models and parameter settings

Chalimourda, A., Schölkopf, B., Smola, A.

Neural Networks, 17(1):127-141, January 2004 (article)

Abstract
In Support Vector (SV) regression, a parameter ν controls the number of Support Vectors and the number of points that come to lie outside of the so-called var epsilon-insensitive tube. For various noise models and SV parameter settings, we experimentally determine the values of ν that lead to the lowest generalization error. We find good agreement with the values that had previously been predicted by a theoretical argument based on the asymptotic efficiency of a simplified model of SV regression. As a side effect of the experiments, valuable information about the generalization behavior of the remaining SVM parameters and their dependencies is gained. The experimental findings are valid even for complex ‘real-world’ data sets. Based on our results on the role of the ν-SVM parameters, we discuss various model selection methods.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Introduction to Category Theory

Bousquet, O.

Internal Seminar, January 2004 (talk)

Abstract
A brief introduction to the general idea behind category theory with some basic definitions and examples. A perspective on higher dimensional categories is given.

ei

PDF [BibTex]

PDF [BibTex]


no image
Constant infusion H215O PET and acetazolamide challenge in the assessment of the cerebral perfusion status

Weber, B., Westera, G., Treyer, V., Burger, C., Kahn, N., Buck, A.

Journal of Nuclear Medicine, (45):1344-1349, 2004 (article)

ei

[BibTex]

[BibTex]


no image
Local Alignment Kernels for Biological Sequences

Vert, J., Saigo, H., Akutsu, T.

In Kernel Methods in Computational Biology, pages: 131-153, MIT Press, Cambridge, MA,, 2004 (inbook)

ei

Web [BibTex]

Web [BibTex]


no image
Protein ranking: from local to global structure in the protein similarity network

Weston, J., Elisseeff, A., Zhou, D., Leslie, C., Noble, W.

Proceedings of the National Academy of Science, 101(17):6559-6563, 2004 (article)

Abstract
Biologists regularly search databases of DNA or protein sequences for evolutionary or functional relationships to a given query sequence. We describe a ranking algorithm that exploits the entire network structure of similarity relationships among proteins in a sequence database by performing a diffusion operation on a pre-computed, weighted network. The resulting ranking algorithm, evaluated using a human-curated database of protein structures, is efficient and provides significantly better rankings than a local network search algorithm such as PSI-BLAST.

ei

Web [BibTex]

Web [BibTex]


no image
Gaussian Processes in Machine Learning

Rasmussen, CE.

In 3176, pages: 63-71, Lecture Notes in Computer Science, (Editors: Bousquet, O., U. von Luxburg and G. Rätsch), Springer, Heidelberg, 2004, Copyright by Springer (inbook)

Abstract
We give a basic introduction to Gaussian Process regression models. We focus on understanding the role of the stochastic process and how it is used to define a distribution over functions. We present the simple equations for incorporating training data and examine how to learn the hyperparameters using the marginal likelihood. We explain the practical advantages of Gaussian Process and end with conclusions and a look at the current trends in GP work.

ei

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Statistical Performance of Support Vector Machines

Blanchard, G., Bousquet, O., Massart, P.

2004 (article)

ei

PostScript [BibTex]


no image
Asymptotic Properties of the Fisher Kernel

Tsuda, K., Akaho, S., Kawanabe, M., Müller, K.

Neural Computation, 16(1):115-137, 2004 (article)

ei

PDF [BibTex]

PDF [BibTex]


no image
Some observations on the effects of slant and texture type on slant-from-texture

Rosas, P., Wichmann, F., Wagemans, J.

Vision Research, 44(13):1511-1535, 2004 (article)

Abstract
We measure the performance of five subjects in a slant-discrimination task for differently textured planes. As textures we used uniform lattices, randomly displaced lattices, circles (polka dots), Voronoi tessellations, plaids, 1/f noise, “coherent” noise and a leopard skin-like texture. Our results show: (1) Improving performance with larger slants for all textures. (2) Thus, following from (1), cases of “non-symmetrical” performance around a particular orientation. (3) For orientations sufficiently slanted, the different textures do not elicit major differences in performance, (4) while for orientations closer to the vertical plane there are marked differences between them. (5) These differences allow a rank-order of textures to be formed according to their “helpfulness”– that is, how easy the discrimination task is when a particular texture is mapped on the plane. Polka dots tend to allow the best slant discrimination performance, noise patterns the worst. Two additional experiments were conducted to test the generality of the obtained rank-order. First, the tilt of the planes was rotated to break the axis of gravity present in the original discrimination experiment. Second, the task was changed to a slant report task via probe adjustment. The results of both control experiments confirmed the texture-based rank-order previously obtained. We comment on the importance of these results for depth perception research in general, and in particular the implications our results have for studies of cue combination (sensor fusion) using texture as one of the cues involved.

ei

PDF [BibTex]

PDF [BibTex]


no image
Protein homology detection using string alignment kernels

Saigo, H., Vert, J., Ueda, N., Akutsu, T.

Bioinformatics, 20(11):1682-1689, 2004 (article)

Abstract
Remote homology detection between protein sequences is a central problem in computational biology. Discriminative methods involving support vector machines (SVM) are currently the most effective methods for the problem of superfamily recognition in the SCOP database. The performance of SVMs depend critically on the kernel function used to quantify the similarity between sequences. We propose new kernels for strings adapted to biological sequences, which we call local alignment kernels. These kernels measure the similarity between two sequences by summing up scores obtained from local alignments with gaps of the sequences. When tested in combination with SVM on their ability to recognize SCOP superfamilies on a benchmark dataset, the new kernels outperform state-of-the art methods for remote homology detection.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Minimizing the Cross Validation Error to Mix Kernel Matrices of Heterogeneous Biological Data

Tsuda, K., Uda, S., Kin, T., Asai, K.

Neural Processing Letters, 19, pages: 63-72, 2004 (article)

ei

PDF [BibTex]

PDF [BibTex]


no image
A Tutorial on Support Vector Regression

Smola, A., Schölkopf, B.

Statistics and Computing, 14(3):199-222, 2004 (article)

ei

Web [BibTex]

Web [BibTex]


no image
Protein Classification via Kernel Matrix Completion

Kin, T., Kato, T., Tsuda, K.

In pages: 261-274, (Editors: Schoelkopf, B., K. Tsuda and J.P. Vert), MIT Press, Cambridge, MA; USA, 2004 (inbook)

ei

PDF [BibTex]

PDF [BibTex]