Header logo is


2019


no image
Bistability of magnetic states in Fe-Pd nanocap arrays

Aravind, P. B., Heigl, M., Fix, M., Groß, F., Gräfe, J., Mary, A., Rajgowrav, C. R., Krupiński, M., Marszałek, M., Thomas, S., Anantharaman, M. R., Albrecht, M.

Nanotechnology, 30, pages: 405705, 2019 (article)

Abstract
Magnetic bistability between vortex and single domain states in nanostructures are of great interest from both fundamental and technological perspectives. In soft magnetic nanostructures, the transition from a uniform collinear magnetic state to a vortex state (or vice versa) induced by a magnetic field involves an energy barrier. If the thermal energy is large enough for overcoming this energy barrier, magnetic bistability with a hysteresis-free switching occurs between the two magnetic states. In this work, we tune this energy barrier by tailoring the composition of FePd alloys, which were deposited onto self-assembled particle arrays forming magnetic vortex structures on top of the particles. The bifurcation temperature, where a hysteresis-free transition occurs, was extracted from the temperature dependence of the annihilation and nucleation field which increases almost linearly with Fe content of the magnetic alloy. This study provides insights into the magnetization reversal process associated with magnetic bistability, which allows adjusting the bifurcation temperature range by the material properties of the nanosystem.

mms

link (url) [BibTex]

2019


link (url) [BibTex]


no image
Learning to Disentangle Latent Physical Factors for Video Prediction

Zhu, D., Munderloh, M., Rosenhahn, B., Stückler, J.

In German Conference on Pattern Recognition (GCPR), 2019, to appear (inproceedings)

ev

dataset & evaluation code video preprint [BibTex]

dataset & evaluation code video preprint [BibTex]


no image
An international laboratory comparison study of volumetric and gravimetric hydrogen adsorption measurements

Hurst, K. E., Gennett, T., Adams, J., Allendorf, M. D., Balderas-Xicohténcatl, R., Bielewski, M., Edwards, B., Espinal, L., Fultz, B., Hirscher, M., Hudson, M. S. L., Hulvey, Z., Latroche, M., Liu, D., Kapelewski, M., Napolitano, E., Perry, Z. T., Purewal, J., Stavila, V., Veenstra, M., White, J. L., Yuan, Y., Zhou, H., Zlotea, C., Parilla, P.

{ChemPhysChem}, 20(15):1997-2009, Wiley-VCH, Weinheim, Germany, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Superior magnetic performance in FePt L10 nanomaterials

Son, K., Ryu, G. H., Jeong, H., Fink, L., Merz, M., Nagel, P., Schuppler, S., Richter, G., Goering, E., Schütz, G.

{Small}, 15(34), Wiley, Weinheim, Germany, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


Thumb xl adtp201800064 fig 0004 m
Mobile microrobots for active therapeutic delivery

Erkoc, P., Yasa, I. C., Ceylan, H., Yasa, O., Alapan, Y., Sitti, M.

Advanced Therapeutics, Wiley Online Library, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl adom201801313 fig 0001 m
Microfluidics Integrated Lithography‐Free Nanophotonic Biosensor for the Detection of Small Molecules

Sreekanth, K. V., Sreejith, S., Alapan, Y., Sitti, M., Lim, C. T., Singh, R.

Advanced Optical Materials, 2019 (article)

pi

[BibTex]

[BibTex]


no image
Gecko-inspired composite microfibers for reversible adhesion on smooth and rough surfaces

Drotlef, D., Dayan, C., Sitti, M.

In INTEGRATIVE AND COMPARATIVE BIOLOGY, pages: E58-E58, OXFORD UNIV PRESS INC JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA, 2019 (inproceedings)

pi

[BibTex]

[BibTex]


Thumb xl 201904010817153241
ENGINEERING Bio-inspired robotic collectives

Sitti, M.

Nature, 567, pages: 314-315, Macmillan Publishers Ltd., London, England, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl model
Resisting Adversarial Attacks using Gaussian Mixture Variational Autoencoders

Ghosh, P., Losalka, A., Black, M. J.

In Proc. AAAI, 2019 (inproceedings)

Abstract
Susceptibility of deep neural networks to adversarial attacks poses a major theoretical and practical challenge. All efforts to harden classifiers against such attacks have seen limited success till now. Two distinct categories of samples against which deep neural networks are vulnerable, ``adversarial samples" and ``fooling samples", have been tackled separately so far due to the difficulty posed when considered together. In this work, we show how one can defend against them both under a unified framework. Our model has the form of a variational autoencoder with a Gaussian mixture prior on the latent variable, such that each mixture component corresponds to a single class. We show how selective classification can be performed using this model, thereby causing the adversarial objective to entail a conflict. The proposed method leads to the rejection of adversarial samples instead of misclassification, while maintaining high precision and recall on test data. It also inherently provides a way of learning a selective classifier in a semi-supervised scenario, which can similarly resist adversarial attacks. We further show how one can reclassify the detected adversarial samples by iterative optimization.

ps

link (url) Project Page [BibTex]


no image
A meta-analysis of the segmenting effect

Rey, G. D., Beege, M., Nebel, S., Wirzberger, M., Schmitt, T., Schneider, S.

Educational Psychology Review, 2019 (article)

Abstract
The segmenting effect states that people learn better when multimedia instructions are presented in (meaningful and coherent) learner-paced segments, rather than as continuous units. This meta-analysis contains 56 investigations including 88 pairwise comparisons and reveals a significant segmenting effect with small to medium effects for retention and transfer performance. Segmentation also reduces the overall cognitive load and increases learning time. These four effects are confirmed for a system-paced segmentation. The meta-analysis tests different explanations for the segmenting effect that concern facilitating chunking and structuring due to segmenting the multimedia instruction by the instructional designer, providing more time for processing the instruction and allowing the learners to adapt the presentation pace to their individual needs. Moderation analyses indicate that learners with high prior knowledge benefitted more from segmenting instructional material than learners with no or low prior knowledge in terms of retention performance.

re

DOI [BibTex]

DOI [BibTex]


no image
Electromechanical actuation of dielectric liquid crystal elastomers for soft robotics

Davidson, Z., Shahsavan, H., Guo, Y., Hines, L., Xia, Y., Yang, S., Sitti, M.

Bulletin of the American Physical Society, APS, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl teaser website
Occupancy Networks: Learning 3D Reconstruction in Function Space

Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, 2019 (inproceedings)

Abstract
With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learning-based 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose Occupancy Networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.

avg

Code Video pdf suppmat Project Page [BibTex]

Code Video pdf suppmat Project Page [BibTex]


Thumb xl rae
From Variational to Deterministic Autoencoders

Ghosh*, P., Sajjadi*, M. S. M., Vergari, A., Black, M. J., Schölkopf, B.

2019, *equal contribution (conference) Submitted

Abstract
Variational Autoencoders (VAEs) provide a theoretically-backed framework for deep generative models. However, they often produce “blurry” images, which is linked to their training objective. Sampling in the most popular implementation, the Gaussian VAE, can be interpreted as simply injecting noise to the input of a deterministic decoder. In practice, this simply enforces a smooth latent space structure. We challenge the adoption of the full VAE framework on this specific point in favor of a simpler, deterministic one. Specifically, we investigate how substituting stochasticity with other explicit and implicit regularization schemes can lead to a meaningful latent space without having to force it to conform to an arbitrarily chosen prior. To retrieve a generative mechanism for sampling new data points, we propose to employ an efficient ex-post density estimation step that can be readily adopted both for the proposed deterministic autoencoders as well as to improve sample quality of existing VAEs. We show in a rigorous empirical study that regularized deterministic autoencoding achieves state-of-the-art sample quality on the common MNIST, CIFAR-10 and CelebA datasets.

ei ps

arXiv [BibTex]


no image
A rational reinterpretation of dual process theories

Milli, S., Lieder, F., Griffiths, T.

2019 (article)

re

DOI [BibTex]

DOI [BibTex]


Thumb xl linear solvers stco figure7 1
Probabilistic Linear Solvers: A Unifying View

Bartels, S., Cockayne, J., Ipsen, I. C. F., Hennig, P.

Statistics and Computing, 2019 (article) Accepted

pn

link (url) [BibTex]

link (url) [BibTex]


no image
3D Birds-Eye-View Instance Segmentation

Elich, C., Engelmann, F., Kontogianni, T., Leibe, B.

In German Conference on Pattern Recognition (GCPR), 2019, arXiv:1904.02199, to appear (inproceedings)

ev

[BibTex]

[BibTex]


no image
Fisher Efficient Inference of Intractable Models

Liu, S., Kanamori, T., Jitkrittum, W., Chen, Y.

Advances in Neural Information Processing Systems 32, 33rd Annual Conference on Neural Information Processing Systems, 2019 (conference) To be published

ei

arXiv [BibTex]

arXiv [BibTex]


Thumb xl nova
NoVA: Learning to See in Novel Viewpoints and Domains

Coors, B., Condurache, A. P., Geiger, A.

In 2019 International Conference on 3D Vision (3DV), 2019 International Conference on 3D Vision (3DV), 2019 (inproceedings)

Abstract
Domain adaptation techniques enable the re-use and transfer of existing labeled datasets from a source to a target domain in which little or no labeled data exists. Recently, image-level domain adaptation approaches have demonstrated impressive results in adapting from synthetic to real-world environments by translating source images to the style of a target domain. However, the domain gap between source and target may not only be caused by a different style but also by a change in viewpoint. This case necessitates a semantically consistent translation of source images and labels to the style and viewpoint of the target domain. In this work, we propose the Novel Viewpoint Adaptation (NoVA) model, which enables unsupervised adaptation to a novel viewpoint in a target domain for which no labeled data is available. NoVA utilizes an explicit representation of the 3D scene geometry to translate source view images and labels to the target view. Experiments on adaptation to synthetic and real-world datasets show the benefit of NoVA compared to state-of-the-art domain adaptation approaches on the task of semantic segmentation.

avg

pdf suppmat poster video [BibTex]

pdf suppmat poster video [BibTex]


no image
Systematic experimental study on quantum sieving of hydrogen isotopes in metal-amide-imidazolate frameworks with narrow 1-D channels

Mondal, S. S., Kreuzer, A., Behrens, K., Schütz, G., Holdt, H., Hirscher, M.

{ChemPhysChem}, 20(10):1311-1315, Wiley-VCH, Weinheim, Germany, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
The route to supercurrent transparent ferromagnetic barriers in superconducting matrix

Ivanov, Y. P., Soltan, S., Albrecht, J., Goering, E., Schütz, G., Zhang, Z., Chuvilin, A.

{ACS Nano}, 13(5):5655-5661, American Chemical Society, Washington, DC, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Artifacts from manganese reduction in rock samples prepared by focused ion beam (FIB) slicing for X-ray microspectroscopy

Macholdt, D. S., Förster, J., Müller, M., Weber, B., Kappl, M., Kilcoyne, A. L. D., Weigand, M., Leitner, J., Jochum, K. P., Pöhlker, C., Andreae, M. O.

{Geoscientific instrumentation, methods and data systems}, 8(1):97-111, Copernicus Publ., Göttingen, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Mixed-state magnetotransport properties of MgB2 thin film prepared by pulsed laser deposition on an Al2O3 substrate

Alzayed, N. S., Shahabuddin, M., Ramey, S. M., Soltan, S.

{Journal of Materials Science: Materials in Electronics}, 30(2):1547-1552, Springer, Norwell, MA, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Comparison of theories of fast and ultrafast magnetization dynamics

Fähnle, M.

{Journal of Magnetism and Magnetic Materials}, 469, pages: 28-29, NH, Elsevier, Amsterdam, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Concepts for improving hydrogen storage in nanoporous materials

Broom, D. P., Webb, C. J., Fanourgakis, G. S., Froudakis, G. E., Trikalitis, P. N., Hirscher, M.

{International Journal of Hydrogen Energy}, 44(15):7768-7779, Elsevier, Amsterdam, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Controlling dislocation nucleation-mediatd plasticity in nanostructures via surface modification

Shin, J., Chen, L. Y., Sanli, U. T., Richter, G., Labat, S., Richard, M., Cornelius, T., Thomas, O., Gianola, D. S.

{Acta Materialia}, 166, pages: 572-586, Elsevier Science, Kidlington, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Reprogrammability and scalability of magnonic Fibonacci quasicrystals

Lisiecki, F., Rychly, J., Kuswik, P., Glowinski, H., Klos, J. W., Groß, F., Bykova, I., Weigand, M., Zelent, M., Goering, E. J., Schütz, G., Gubbiotti, G., Krawczyk, M., Stobiecki, F., Dubowik, J., Gräfe, J.

{Physical Review Applied}, 11(5), American Physical Society, College Park, Md. [u.a.], 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]

2016


no image
Consistent Kernel Mean Estimation for Functions of Random Variables

Simon-Gabriel*, C. J., Ścibior*, A., Tolstikhin, I., Schölkopf, B.

Advances in Neural Information Processing Systems 29, pages: 1732-1740, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems, December 2016, *joint first authors (conference)

ei

link (url) Project Page Project Page Project Page [BibTex]

2016


link (url) Project Page Project Page Project Page [BibTex]


Thumb xl nonlinear approximate vs exact
A New Perspective and Extension of the Gaussian Filter

Wüthrich, M., Trimpe, S., Garcia Cifuentes, C., Kappler, D., Schaal, S.

The International Journal of Robotics Research, 35(14):1731-1749, December 2016 (article)

Abstract
The Gaussian Filter (GF) is one of the most widely used filtering algorithms; instances are the Extended Kalman Filter, the Unscented Kalman Filter and the Divided Difference Filter. The GF represents the belief of the current state by a Gaussian distribution, whose mean is an affine function of the measurement. We show that this representation can be too restrictive to accurately capture the dependences in systems with nonlinear observation models, and we investigate how the GF can be generalized to alleviate this problem. To this end, we view the GF as the solution to a constrained optimization problem. From this new perspective, the GF is seen as a special case of a much broader class of filters, obtained by relaxing the constraint on the form of the approximate posterior. On this basis, we outline some conditions which potential generalizations have to satisfy in order to maintain the computational efficiency of the GF. We propose one concrete generalization which corresponds to the standard GF using a pseudo measurement instead of the actual measurement. Extending an existing GF implementation in this manner is trivial. Nevertheless, we show that this small change can have a major impact on the estimation accuracy.

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
Understanding Probabilistic Sparse Gaussian Process Approximations

Bauer, M., van der Wilk, M., Rasmussen, C. E.

Advances in Neural Information Processing Systems 29, pages: 1533-1541, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems, December 2016 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Minimax Estimation of Maximum Mean Discrepancy with Radial Kernels

Tolstikhin, I., Sriperumbudur, B. K., Schölkopf, B.

Advances in Neural Information Processing Systems 29, pages: 1930-1938, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems, December 2016 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Local-utopia Policy Selection for Multi-objective Reinforcement Learning

Parisi, S., Blank, A., Viernickel, T., Peters, J.

In IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), pages: 1-7, IEEE, December 2016 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Lifelong Learning with Weighted Majority Votes

Pentina, A., Urner, R.

Advances in Neural Information Processing Systems 29, pages: 3612-3620, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems, December 2016 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Active Nearest-Neighbor Learning in Metric Spaces

Kontorovich, A., Sabato, S., Urner, R.

Advances in Neural Information Processing Systems 29, pages: 856-864, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems, December 2016 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Predictive and Self Triggering for Event-based State Estimation

Trimpe, S.

In Proceedings of the 55th IEEE Conference on Decision and Control (CDC), pages: 3098-3105, Las Vegas, NV, USA, December 2016 (inproceedings)

am ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


no image
Catching heuristics are optimal control policies

Belousov, B., Neumann, G., Rothkopf, C., Peters, J.

Advances in Neural Information Processing Systems 29, pages: 1426-1434, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems, December 2016 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb xl toc image
Wireless actuation with functional acoustic surfaces

Qiu, T., Palagi, S., Mark, A. G., Melde, K., Adams, F., Fischer, P.

Appl. Phys. Lett., 109(19):191602, November 2016, APL Editor's pick. APL News. (article)

Abstract
Miniaturization calls for micro-actuators that can be powered wirelessly and addressed individually. Here, we develop functional surfaces consisting of arrays of acoustically resonant microcavities, and we demonstrate their application as two-dimensional wireless actuators. When remotely powered by an acoustic field, the surfaces provide highly directional propulsive forces in fluids through acoustic streaming. A maximal force of similar to 0.45mN is measured on a 4 x 4 mm(2) functional surface. The response of the surfaces with bubbles of different sizes is characterized experimentally. This shows a marked peak around the micro-bubbles' resonance frequency, as estimated by both an analytical model and numerical simulations. The strong frequency dependence can be exploited to address different surfaces with different acoustic frequencies, thus achieving wireless actuation with multiple degrees of freedom. The use of the functional surfaces as wireless ready-to-attach actuators is demonstrated by implementing a wireless and bidirectional miniaturized rotary motor, which is 2.6 x 2.6 x 5 mm(3) in size and generates a stall torque of similar to 0.5 mN.mm. The adoption of micro-structured surfaces as wireless actuators opens new possibilities in the development of miniaturized devices and tools for fluidic environments that are accessible by low intensity ultrasound fields.

pf

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Thumb xl 1 00000
Bioengineered and biohybrid bacteria-based systems for drug delivery

Hosseinidoust, Z., Mostaghaci, B., Yasa, O., Park, B., Singh, A. V., Sitti, M.

Advanced Drug Delivery Reviews, 106, pages: 27-44, Elsevier, November 2016 (article)

Abstract
The use of bacterial cells as agents of medical therapy has a long history. Research that was ignited over a century ago with the accidental infection of cancer patients has matured into a platform technology that offers the promise of opening up new potential frontiers in medical treatment. Bacterial cells exhibit unique characteristics that make them well-suited as smart drug delivery agents. Our ability to genetically manipulate the molecular machinery of these cells enables the customization of their therapeutic action as well as its precise tuning and spatio-temporal control, allowing for the design of unique, complex therapeutic functions, unmatched by current drug delivery systems. Early results have been promising, but there are still many important challenges that must be addressed. We present a review of promises and challenges of employing bioengineered bacteria in drug delivery systems and introduce the biohybrid design concept as a new additional paradigm in bacteria-based drug delivery.

pi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Incremental Imitation Learning of Context-Dependent Motor Skills

Ewerton, M., Maeda, G., Kollegger, G., Wiemeyer, J., Peters, J.

IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pages: 351-358, IEEE, November 2016 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Using Probabilistic Movement Primitives for Striking Movements

Gomez-Gonzalez, S., Neumann, G., Schölkopf, B., Peters, J.

16th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pages: 502-508, November 2016 (conference)

am ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Demonstration Based Trajectory Optimization for Generalizable Robot Motions

Koert, D., Maeda, G., Lioutikov, R., Neumann, G., Peters, J.

IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pages: 351-358, IEEE, November 2016 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl screen shot 2019 01 07 at 11.54.16
Jointly Learning Trajectory Generation and Hitting Point Prediction in Robot Table Tennis

Huang, Y., Büchler, D., Koc, O., Schölkopf, B., Peters, J.

16th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pages: 650-655, November 2016 (conference)

am ei

final link (url) DOI Project Page [BibTex]

final link (url) DOI Project Page [BibTex]


Thumb xl toc image
Nanomotors

Alarcon-Correa, M., Walker (Schamel), D., Qiu, T., Fischer, P.

Eur. Phys. J.-Special Topics, 225(11-12):2241-2254, November 2016 (article)

Abstract
This minireview discusses whether catalytically active macromolecules and abiotic nanocolloids, that are smaller than motile bacteria, can self-propel. Kinematic reversibility at low Reynolds number demands that self-propelling colloids must break symmetry. Methods that permit the synthesis and fabrication of Janus nanocolloids are therefore briefly surveyed, as well as means that permit the analysis of the nanocolloids' motion. Finally, recent work is reviewed which shows that nanoagents are small enough to penetrate the complex inhomogeneous polymeric network of biological fluids and gels, which exhibit diverse rheological behaviors.

pf

DOI [BibTex]

DOI [BibTex]


no image
Deep Spiking Networks for Model-based Planning in Humanoids

Tanneberg, D., Paraschos, A., Peters, J., Rueckert, E.

IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pages: 656-661, IEEE, November 2016 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Anticipative Interaction Primitives for Human-Robot Collaboration

Maeda, G., Maloo, A., Ewerton, M., Lioutikov, R., Peters, J.

AAAI Fall Symposium Series. Shared Autonomy in Research and Practice, pages: 325-330, November 2016 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]