Header logo is


2018


Thumb xl sab
Robust Affordable 3D Haptic Sensation via Learning Deformation Patterns

Sun, H., Martius, G.

Proceedings International Conference on Humanoid Robots, pages: 846-853, IEEE, New York, NY, USA, 2018 IEEE-RAS International Conference on Humanoid Robots, 2018, Oral Presentation (conference)

Abstract
Haptic sensation is an important modality for interacting with the real world. This paper proposes a general framework of inferring haptic forces on the surface of a 3D structure from internal deformations using a small number of physical sensors instead of employing dense sensor arrays. Using machine learning techniques, we optimize the sensor number and their placement and are able to obtain high-precision force inference for a robotic limb using as few as 9 sensors. For the optimal and sparse placement of the measurement units (strain gauges), we employ data-driven methods based on data obtained by finite element simulation. We compare data-driven approaches with model-based methods relying on geometric distance and information criteria such as Entropy and Mutual Information. We validate our approach on a modified limb of the “Poppy” robot [1] and obtain 8 mm localization precision.

al

DOI Project Page [BibTex]

2018


DOI Project Page [BibTex]


no image
Sublabel-accurate convex relaxation with total generalized variation regularization

(DAGM Best Master's Thesis Award)

Strecke, M., Goldluecke, B.

In German Conference on Pattern Recognition (Proc. GCPR), 2018 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Poincaré GloVe: Hyperbolic Word Embeddings

Tifrea*, A., Becigneul*, G., Ganea*, O.

ICLR 2019, 2018, *equal contribution (conference) Submitted

ei

[BibTex]

[BibTex]


no image
CoLoSS: Cognitive load corpus with speech and performance data from a symbol-digit dual-task

Herms, R., Wirzberger, M., Eibl, M., Rey, G. D.

In Proceedings of the 11th International Language Resources and Evaluation Conference (LREC 2018), pages: 4312-4317, European Language Resource Association (ELRA), Miyazaki, Japan, 2018 (inproceedings)

re

link (url) [BibTex]

link (url) [BibTex]


no image
Direct observations of sub-100 nm spin wave propagation in magnonic wave-guides

Träger, N., Gruszecki, P., Lisiecki, F., Förster, J., Weigand, M., Kuswik, P., Dubowik, J., Schütz, G., Krawczyk, M., Gräfe, J.

In 2018 IEEE International Magnetics Conference (INTERMAG 2018), IEEE, Singapore, 2018 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Influences of system response delay on elderly participants’ performance in a virtual memory training

Wirzberger, M., Schmidt, R., Georgi, M., Hardt, W., Brunnett, G., Rey, G. D.

In Annual Meeting of the Europe Chapter of the Human Factors and Ergonomics Society2018, Technology for an Aging Society, Book of Abstracts, pages: 42, Berlin, 2018 (inproceedings)

re

link (url) [BibTex]

link (url) [BibTex]


no image
Cognitive load influences performance, speech and physiological parameters in a multimodal dual-task setting

Wirzberger, M., Herms, R., Esmaeili Bijarsari, S., Rey, G. D., Eibl, M.

In Abstracts of the 60th Conference of Experimental Psychologists, pages: 296, Pabst Science Publishers, Lengerich, 2018 (inproceedings)

re

[BibTex]

[BibTex]


no image
PoTion: Pose MoTion Representation for Action Recognition

Choutas, Vasileios, Weinzaepfel, Philippe, Revaud, Jérôme, Schmid, Cordelia

In CVPR 2018 - IEEE Conference on Computer Vision and Pattern Recognition, pages: 1-10, IEEE, Salt Lake City, United States, June 2018 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Guidance or Setting? Exploring the learnability of computer-based instructions in a construction task

Esmaeili Bijarsari, S., Wirzberger, M., Rey, G. D.

In Abstracts of the 60th Conference of Experimental Psychologists, pages: 69, Pabst Science Publishers, Lengerich, 2018 (inproceedings)

re

[BibTex]

[BibTex]


no image
Unsupervised Contact Learning for Humanoid Estimation and Control

Rotella, N., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 411-417, IEEE, Brisbane, Australia, 2018 (inproceedings)

Abstract
This work presents a method for contact state estimation using fuzzy clustering to learn contact probability for full, six-dimensional humanoid contacts. The data required for training is solely from proprioceptive sensors - endeffector contact wrench sensors and inertial measurement units (IMUs) - and the method is completely unsupervised. The resulting cluster means are used to efficiently compute the probability of contact in each of the six endeffector degrees of freedom (DoFs) independently. This clustering-based contact probability estimator is validated in a kinematics-based base state estimator in a simulation environment with realistic added sensor noise for locomotion over rough, low-friction terrain on which the robot is subject to foot slip and rotation. The proposed base state estimator which utilizes these six DoF contact probability estimates is shown to perform considerably better than that which determines kinematic contact constraints purely based on measured normal force.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Task-Specific Dynamics to Improve Whole-Body Control

Gams, A., Mason, S., Ude, A., Schaal, S., Righetti, L.

In Hua, IEEE, Beijing, China, November 2018 (inproceedings)

Abstract
In task-based inverse dynamics control, reference accelerations used to follow a desired plan can be broken down into feedforward and feedback trajectories. The feedback term accounts for tracking errors that are caused from inaccurate dynamic models or external disturbances. On underactuated, free-floating robots, such as humanoids, high feedback terms can be used to improve tracking accuracy; however, this can lead to very stiff behavior or poor tracking accuracy due to limited control bandwidth. In this paper, we show how to reduce the required contribution of the feedback controller by incorporating learned task-space reference accelerations. Thus, we i) improve the execution of the given specific task, and ii) offer the means to reduce feedback gains, providing for greater compliance of the system. With a systematic approach we also reduce heuristic tuning of the model parameters and feedback gains, often present in real-world experiments. In contrast to learning task-specific joint-torques, which might produce a similar effect but can lead to poor generalization, our approach directly learns the task-space dynamics of the center of mass of a humanoid robot. Simulated and real-world results on the lower part of the Sarcos Hermes humanoid robot demonstrate the applicability of the approach.

am mg

link (url) [BibTex]

link (url) [BibTex]


no image
A resource-rational analysis of human planning

Callaway, F., Lieder, F., Das, P., Gul, S., Krueger, P. M., Griffiths, T. L.

In Proceedings of the 40th Annual Conference of the Cognitive Science Society, 2018 (inproceedings)

re

[BibTex]

[BibTex]


no image
Guidance or Setting? Exploring the learnability of computer-based instructions in a construction task

Esmaeili Bijarsari, S., Wirzberger, M., Rey, G. D.

In 51st Conference of the German Psychological Society. Abstracts, pages: 509, Pabst Science Publishers, Lengerich, 2018 (inproceedings)

re

[BibTex]

[BibTex]


no image
An MPC Walking Framework With External Contact Forces

Mason, S., Rotella, N., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1785-1790, IEEE, Brisbane, Australia, May 2018 (inproceedings)

Abstract
In this work, we present an extension to a linear Model Predictive Control (MPC) scheme that plans external contact forces for the robot when given multiple contact locations and their corresponding friction cone. To this end, we set up a two-step optimization problem. In the first optimization, we compute the Center of Mass (CoM) trajectory, foot step locations, and introduce slack variables to account for violating the imposed constraints on the Zero Moment Point (ZMP). We then use the slack variables to trigger the second optimization, in which we calculate the optimal external force that compensates for the ZMP tracking error. This optimization considers multiple contacts positions within the environment by formulating the problem as a Mixed Integer Quadratic Program (MIQP) that can be solved at a speed between 100-300 Hz. Once contact is created, the MIQP reduces to a single Quadratic Program (QP) that can be solved in real-time ({\textless}; 1kHz). Simulations show that the presented walking control scheme can withstand disturbances 2-3× larger with the additional force provided by a hand contact.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Interpreting FORC diagrams beyond the Preisach model: an experimental permalloy micro array investigation

Gross, F., Ilse, S., Schütz, G., Gräfe, J., Goering, E.

In 2018 IEEE International Magnetics Conference (INTERMAG 2018), IEEE, Singapore, 2018 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]

2016


no image
Consistent Kernel Mean Estimation for Functions of Random Variables

Simon-Gabriel*, C. J., Ścibior*, A., Tolstikhin, I., Schölkopf, B.

Advances in Neural Information Processing Systems 29, pages: 1732-1740, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems, December 2016, *joint first authors (conference)

ei

link (url) Project Page Project Page Project Page [BibTex]

2016


link (url) Project Page Project Page Project Page [BibTex]


no image
Understanding Probabilistic Sparse Gaussian Process Approximations

Bauer, M., van der Wilk, M., Rasmussen, C. E.

Advances in Neural Information Processing Systems 29, pages: 1533-1541, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems, December 2016 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Minimax Estimation of Maximum Mean Discrepancy with Radial Kernels

Tolstikhin, I., Sriperumbudur, B. K., Schölkopf, B.

Advances in Neural Information Processing Systems 29, pages: 1930-1938, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems, December 2016 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Local-utopia Policy Selection for Multi-objective Reinforcement Learning

Parisi, S., Blank, A., Viernickel, T., Peters, J.

In IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), pages: 1-7, IEEE, December 2016 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Lifelong Learning with Weighted Majority Votes

Pentina, A., Urner, R.

Advances in Neural Information Processing Systems 29, pages: 3612-3620, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems, December 2016 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Active Nearest-Neighbor Learning in Metric Spaces

Kontorovich, A., Sabato, S., Urner, R.

Advances in Neural Information Processing Systems 29, pages: 856-864, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems, December 2016 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Predictive and Self Triggering for Event-based State Estimation

Trimpe, S.

In Proceedings of the 55th IEEE Conference on Decision and Control (CDC), pages: 3098-3105, Las Vegas, NV, USA, December 2016 (inproceedings)

am ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


no image
Catching heuristics are optimal control policies

Belousov, B., Neumann, G., Rothkopf, C., Peters, J.

Advances in Neural Information Processing Systems 29, pages: 1426-1434, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems, December 2016 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Incremental Imitation Learning of Context-Dependent Motor Skills

Ewerton, M., Maeda, G., Kollegger, G., Wiemeyer, J., Peters, J.

IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pages: 351-358, IEEE, November 2016 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Using Probabilistic Movement Primitives for Striking Movements

Gomez-Gonzalez, S., Neumann, G., Schölkopf, B., Peters, J.

16th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pages: 502-508, November 2016 (conference)

am ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Demonstration Based Trajectory Optimization for Generalizable Robot Motions

Koert, D., Maeda, G., Lioutikov, R., Neumann, G., Peters, J.

IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pages: 351-358, IEEE, November 2016 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl screen shot 2019 01 07 at 11.54.16
Jointly Learning Trajectory Generation and Hitting Point Prediction in Robot Table Tennis

Huang, Y., Büchler, D., Koc, O., Schölkopf, B., Peters, J.

16th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pages: 650-655, November 2016 (conference)

am ei

final link (url) DOI Project Page [BibTex]

final link (url) DOI Project Page [BibTex]


no image
Deep Spiking Networks for Model-based Planning in Humanoids

Tanneberg, D., Paraschos, A., Peters, J., Rueckert, E.

IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pages: 656-661, IEEE, November 2016 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Anticipative Interaction Primitives for Human-Robot Collaboration

Maeda, G., Maloo, A., Ewerton, M., Lioutikov, R., Peters, J.

AAAI Fall Symposium Series. Shared Autonomy in Research and Practice, pages: 325-330, November 2016 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
The Role of Measurement Uncertainty in Optimal Control for Contact Interactions
Workshop on the Algorithmic Foundations of Robotics, pages: 22, November 2016 (conference)

Abstract
Stochastic Optimal Control (SOC) typically considers noise only in the process model, i.e. unknown disturbances. However, in many robotic applications that involve interaction with the environment, such as locomotion and manipulation, uncertainty also comes from lack of pre- cise knowledge of the world, which is not an actual disturbance. We de- velop a computationally efficient SOC algorithm, based on risk-sensitive control, that takes into account uncertainty in the measurements. We include the dynamics of an observer in such a way that the control law explicitly depends on the current measurement uncertainty. We show that high measurement uncertainty leads to low impedance behaviors, a result in contrast with the effects of process noise variance that creates stiff behaviors. Simulation results on a simple 2D manipulator show that our controller can create better interaction with the environment under uncertain contact locations than traditional SOC approaches.

am

arXiv [BibTex]

arXiv [BibTex]


no image
Unifying distillation and privileged information

Lopez-Paz, D., Schölkopf, B., Bottou, L., Vapnik, V.

International Conference on Learning Representations (ICLR), November 2016 (conference)

ei

Arxiv Project Page [BibTex]

Arxiv Project Page [BibTex]


no image
Qualitative User Reactions to a Hand-Clapping Humanoid Robot

Fitter, N. T., Kuchenbecker, K. J.

In Social Robotics: 8th International Conference, ICSR 2016, Kansas City, MO, USA, November 1-3, 2016 Proceedings, 9979, pages: 317-327, Lecture Notes in Artificial Intelligence, Springer International Publishing, November 2016, Oral presentation given by Fitter (inproceedings)

hi

[BibTex]

[BibTex]


no image
Designing and Assessing Expressive Open-Source Faces for the Baxter Robot

Fitter, N. T., Kuchenbecker, K. J.

In Social Robotics: 8th International Conference, ICSR 2016, Kansas City, MO, USA, November 1-3, 2016 Proceedings, 9979, pages: 340-350, Lecture Notes in Artificial Intelligence, Springer International Publishing, November 2016, Oral presentation given by Fitter (inproceedings)

hi

[BibTex]

[BibTex]


no image
Rhythmic Timing in Playful Human-Robot Social Motor Coordination

Fitter, N. T., Hawkes, D. T., Kuchenbecker, K. J.

In Social Robotics: 8th International Conference, ICSR 2016, Kansas City, MO, USA, November 1-3, 2016 Proceedings, 9979, pages: 296-305, Lecture Notes in Artificial Intelligence, Springer International Publishing, November 2016, Oral presentation given by Fitter (inproceedings)

hi

[BibTex]

[BibTex]


Thumb xl 07759726
Steering control of a water-running robot using an active tail

Kim, H., Jeong, K., Sitti, M., Seo, T.

In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on, pages: 4945-4950, October 2016 (inproceedings)

Abstract
Many highly dynamic novel mobile robots have been developed being inspired by animals. In this study, we are inspired by a basilisk lizard's ability to run and steer on water surface for a hexapedal robot. The robot has an active tail with a circular plate, which the robot rotates to steer on water. We dynamically modeled the platform and conducted simulations and experiments on steering locomotion with a bang-bang controller. The robot can steer on water by rotating the tail, and the controlled steering locomotion is stable. The dynamic modelling approximates the robot's steering locomotion and the trends of the simulations and experiments are similar, although there are errors between the desired and actual angles. The robot's maneuverability on water can be improved through further research.

pi

DOI [BibTex]

DOI [BibTex]


no image
Learning High-Order Filters for Efficient Blind Deconvolution of Document Photographs

Xiao, L., Wang, J., Heidrich, W., Hirsch, M.

Computer Vision - ECCV 2016, Lecture Notes in Computer Science, LNCS 9907, Part III, pages: 734-749, (Editors: Bastian Leibe, Jiri Matas, Nicu Sebe and Max Welling), Springer, October 2016 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Adaptive Training Strategies for BCIs

Sharma, D., Tanneberg, D., Grosse-Wentrup, M., Peters, J., Rueckert, E.

Cybathlon Symposium, October 2016 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl img
Learning Where to Search Using Visual Attention

Kloss, A., Kappler, D., Lensch, H. P. A., Butz, M. V., Schaal, S., Bohg, J.

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, IEEE, IROS, October 2016 (conference)

Abstract
One of the central tasks for a household robot is searching for specific objects. It does not only require localizing the target object but also identifying promising search locations in the scene if the target is not immediately visible. As computation time and hardware resources are usually limited in robotics, it is desirable to avoid expensive visual processing steps that are exhaustively applied over the entire image. The human visual system can quickly select those image locations that have to be processed in detail for a given task. This allows us to cope with huge amounts of information and to efficiently deploy the limited capacities of our visual system. In this paper, we therefore propose to use human fixation data to train a top-down saliency model that predicts relevant image locations when searching for specific objects. We show that the learned model can successfully prune bounding box proposals without rejecting the ground truth object locations. In this aspect, the proposed model outperforms a model that is trained only on the ground truth segmentations of the target object instead of fixation data.

am

Project Page [BibTex]

PDF Project Page [BibTex]


Thumb xl oxfordlight
Parameter Learning for Improving Binary Descriptor Matching

Sankaran, B., Ramalingam, S., Taguchi, Y.

In International Conference on Intelligent Robots and Systems (IROS) 2016, IEEE/RSJ International Conference on Intelligent Robots and Systems, October 2016 (inproceedings)

Abstract
Binary descriptors allow fast detection and matching algorithms in computer vision problems. Though binary descriptors can be computed at almost two orders of magnitude faster than traditional gradient based descriptors, they suffer from poor matching accuracy in challenging conditions. In this paper we propose three improvements for binary descriptors in their computation and matching that enhance their performance in comparison to traditional binary and non-binary descriptors without compromising their speed. This is achieved by learning some weights and threshold parameters that allow customized matching under some variations such as lighting and viewpoint. Our suggested improvements can be easily applied to any binary descriptor. We demonstrate our approach on the ORB (Oriented FAST and Rotated BRIEF) descriptor and compare its performance with the traditional ORB and SIFT descriptors on a wide variety of datasets. In all instances, our enhancements outperform standard ORB and is comparable to SIFT.

am

[BibTex]

[BibTex]


no image
Experiments with Hierarchical Reinforcement Learning of Multiple Grasping Policies

Osa, T., Peters, J., Neumann, G.

International Symposium on Experimental Robotics (ISER), 1, pages: 160-172, Springer Proceedings in Advanced Robotics, (Editors: Dana Kulic, Yoshihiko Nakamura, Oussama Khatib and Gentiane Venture), Springer, October 2016 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Stable Reinforcement Learning with Autoencoders for Tactile and Visual Data

van Hoof, H., Chen, N., Karl, M., van der Smagt, P., Peters, J.

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), pages: 3928-3934, IEEE, October 2016 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl smplify
Keep it SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image

Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M. J.

In Computer Vision – ECCV 2016, pages: 561-578, Lecture Notes in Computer Science, Springer International Publishing, 14th European Conference on Computer Vision, October 2016 (inproceedings)

Abstract
We describe the first method to automatically estimate the 3D pose of the human body as well as its 3D shape from a single unconstrained image. We estimate a full 3D mesh and show that 2D joints alone carry a surprising amount of information about body shape. The problem is challenging because of the complexity of the human body, articulation, occlusion, clothing, lighting, and the inherent ambiguity in inferring 3D from 2D. To solve this, we fi rst use a recently published CNN-based method, DeepCut, to predict (bottom-up) the 2D body joint locations. We then fit (top-down) a recently published statistical body shape model, called SMPL, to the 2D joints. We do so by minimizing an objective function that penalizes the error between the projected 3D model joints and detected 2D joints. Because SMPL captures correlations in human shape across the population, we are able to robustly fi t it to very little data. We further leverage the 3D model to prevent solutions that cause interpenetration. We evaluate our method, SMPLify, on the Leeds Sports, HumanEva, and Human3.6M datasets, showing superior pose accuracy with respect to the state of the art.

ps

pdf Video Sup Mat video Code Project Project Page [BibTex]

pdf Video Sup Mat video Code Project Project Page [BibTex]


no image
A New Trajectory Generation Framework in Robotic Table Tennis

Koc, O., Maeda, G., Peters, J.

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), pages: 3750-3756, October 2016 (conference)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl qualitative topic 1
Fast Supervised LDA for Discovering Micro-Events in Large-Scale Video Datasets

Katharopoulos, A., Paschalidou, D., Diou, C., Delopoulos, A.

In Proceedings of the 2016 ACM on Multimedia Conference, pages: 332,336, ACM Multimedia Conference, October 2016 (inproceedings)

Abstract
This paper introduces fsLDA, a fast variational inference method for supervised LDA, which overcomes the computational limitations of the original supervised LDA and enables its application in large-scale video datasets. In addition to its scalability, our method also overcomes the drawbacks of standard, unsupervised LDA for video, including its focus on dominant but often irrelevant video information (e.g. background, camera motion). As a result, experiments in the UCF11 and UCF101 datasets show that our method consistently outperforms unsupervised LDA in every metric. Furthermore, analysis shows that class-relevant topics of fsLDA lead to sparse video representations and encapsulate high-level information corresponding to parts of video events, which we denote "micro-events".

pdf Project page code poster link (url) DOI [BibTex]

pdf Project page code poster link (url) DOI [BibTex]


Thumb xl gadde
Superpixel Convolutional Networks using Bilateral Inceptions

Gadde, R., Jampani, V., Kiefel, M., Kappler, D., Gehler, P.

In European Conference on Computer Vision (ECCV), Lecture Notes in Computer Science, Springer, 14th European Conference on Computer Vision, October 2016 (inproceedings)

Abstract
In this paper we propose a CNN architecture for semantic image segmentation. We introduce a new “bilateral inception” module that can be inserted in existing CNN architectures and performs bilateral filtering, at multiple feature-scales, between superpixels in an image. The feature spaces for bilateral filtering and other parameters of the module are learned end-to-end using standard backpropagation techniques. The bilateral inception module addresses two issues that arise with general CNN segmentation architectures. First, this module propagates information between (super) pixels while respecting image edges, thus using the structured information of the problem for improved results. Second, the layer recovers a full resolution segmentation result from the lower resolution solution of a CNN. In the experiments, we modify several existing CNN architectures by inserting our inception modules between the last CNN (1 × 1 convolution) layers. Empirical results on three different datasets show reliable improvements not only in comparison to the baseline networks, but also in comparison to several dense-pixel prediction techniques such as CRFs, while being competitive in time.

am ps

pdf supplementary poster Project Page Project Page [BibTex]

pdf supplementary poster Project Page Project Page [BibTex]


no image
Probabilistic Decomposition of Sequential Force Interaction Tasks into Movement Primitives

Manschitz, S., Gienger, M., Kober, J., Peters, J.

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 3920-3927, IEEE, October 2016 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl thumb
Barrista - Caffe Well-Served

Lassner, C., Kappler, D., Kiefel, M., Gehler, P.

In ACM Multimedia Open Source Software Competition, ACM OSSC16, October 2016 (inproceedings)

Abstract
The caffe framework is one of the leading deep learning toolboxes in the machine learning and computer vision community. While it offers efficiency and configurability, it falls short of a full interface to Python. With increasingly involved procedures for training deep networks and reaching depths of hundreds of layers, creating configuration files and keeping them consistent becomes an error prone process. We introduce the barrista framework, offering full, pythonic control over caffe. It separates responsibilities and offers code to solve frequently occurring tasks for pre-processing, training and model inspection. It is compatible to all caffe versions since mid 2015 and can import and export .prototxt files. Examples are included, e.g., a deep residual network implemented in only 172 lines (for arbitrary depths), comparing to 2320 lines in the official implementation for the equivalent model.

am ps

pdf link (url) DOI Project Page [BibTex]

pdf link (url) DOI Project Page [BibTex]


no image
Multi-task logistic regression in brain-computer interfaces

Fiebig, K., Jayaram, V., Peters, J., Grosse-Wentrup, M.

6th Workshop on Brain-Machine Interface Systems at IEEE International Conference on Systems, Man, and Cybernetics (SMC 2016), pages: 002307-002312, IEEE, October 2016 (conference)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Active Tactile Object Exploration with Gaussian Processes

Yi, Z., Calandra, R., Veiga, F., van Hoof, H., Hermans, T., Zhang, Y., Peters, J.

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 4925-4930, IEEE, October 2016 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Using IMU Data to Demonstrate Hand-Clapping Games to a Robot

Fitter, N. T., Kuchenbecker, K. J.

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 851 - 856, October 2016, Interactive presentation given by Fitter (inproceedings)

hi

[BibTex]

[BibTex]