Header logo is


2007


no image
Vortex dynamics in Permalloy disks with artificial defects: suppression of the gyrotropic mode

Kuepper, K., Bischoff, L., Akhmadaliev, C., Fassbinder, J., Stoll, H., Chou, K., Puzic, A., Fauth, K., Dolgos, D., Schütz, G., Van Waeyenberge, B., Tyliszczak, T., Neudecker, I., Woltersdorf, G., Back, C.

{Appplied Physics Letters}, 90, 2007 (article)

mms

[BibTex]

2007


[BibTex]


no image
Vacancy-interstitial annihilation in titanomagnetite by thermal annealing

Walz, F., Brabers, V. A. M., Brabers, J. H. V. J., Kronmüller, H.

{Physica Status Solidi (A)}, 204(10):3514-3525, 2007 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Theory of X-ray absorption spectroscopy in solids: mixing of the core states by the aspherical effective potential

Kostoglou, C., Komelj, M., Fähnle, M.

{Physical Review B}, 75, 2007 (article)

mms

[BibTex]

[BibTex]


no image
Zinc oxide microcapsules obtained via a bio-inspired approach

Lipowsky, P., Hirscher, M., Hoffmann, R. C., Bill, J., Aldinger, F.

{Nanotechnology}, 18, 2007 (article)

mms

[BibTex]

[BibTex]


no image
Grain boundary phase observed in Al-5 at.\textpercent Zn alloy by using HREM

Straumal, B. B., Mazilkin, A. A., Kogtenkova, O. A., Protasova, S. G., Baretzky, B.

{Philosophical Magazine Letters}, 87(6):423-430, 2007 (article)

mms

[BibTex]

[BibTex]


no image
Transport current improvements of in situ MgB2 tapes by the addition of carbon nanotubes, silicon carbide or graphite

Kovac, P., Husek, I., Skakalova, V., Meyer, J., Dobrocka, E., Hirscher, M., Roth, S.

{Superconductor Science and Technology}, 20, pages: 105-111, 2007 (article)

mms

DOI [BibTex]

DOI [BibTex]


Thumb xl alg
A Biologically Inspired System for Action Recognition

Jhuang, H., Serre, T., Wolf, L., Poggio, T.

In International Conference on Computer Vision (ICCV), 2007 (inproceedings)

ps

code pdf [BibTex]

code pdf [BibTex]


no image
Task space control with prioritization for balance and locomotion

Mistry, M., Nakanishi, J., Schaal, S.

In IEEE International Conference on Intelligent Robotics Systems (IROS 2007), San Diego, CA: Oct. 29 Ð Nov. 2, 2007, clmc (inproceedings)

Abstract
This paper addresses locomotion with active balancing, via task space control with prioritization. The center of gravity (COG) and foot of the swing leg are treated as task space control points. Floating base inverse kinematics with constraints is employed, thereby allowing for a mobile platform suitable for locomotion. Different techniques of task prioritization are discussed and we clarify differences and similarities of previous suggested work. Varying levels of prioritization for control are examined with emphasis on singularity robustness and the negative effects of constraint switching. A novel controller for task space control of balance and locomotion is developed which attempts to address singularity robustness, while minimizing discontinuities created by constraint switching. Controllers are evaluated using a quadruped robot simulator engaging in a locomotion task.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Adhesion and anisotropic friction enhancements of angled heterogeneous micro-fiber arrays with spherical and spatula tips

Murphy, M. P., Aksak, B., Sitti, M.

Journal of Adhesion Science and Technology, 21(12-13):1281-1296, Taylor & Francis Group, 2007 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Microrobotically fabricated biological scaffolds for tissue engineering

Nain, A. S., Chung, F., Rule, M., Jadlowiec, J. A., Campbell, P. G., Amon, C., Sitti, M.

In Robotics and Automation, 2007 IEEE International Conference on, pages: 1918-1923, 2007 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Surface-tension-driven biologically inspired water strider robots: Theory and experiments

Song, Y. S., Sitti, M.

IEEE Transactions on robotics, 23(3):578-589, IEEE, 2007 (article)

pi

[BibTex]

[BibTex]


no image
Bacterial flagella assisted propulsion of patterned latex particles: Effect of particle size

Behkam, B., Sitti, M.

In Nanotechnology, 2007. IEEE-NANO 2007. 7th IEEE Conference on, pages: 723-727, 2007 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
A scaled bilateral control system for experimental 1-D teleoperated nanomanipulation applications

Onal, C. D., Pawashe, C., Sitti, M.

In Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, pages: 483-488, 2007 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Guided Self-organisation for Autonomous Robot Development

Martius, G., Herrmann, J. M., Der, R.

In Advances in Artificial Life 9th European Conference, ECAL 2007, 4648, pages: 766-775, LNCS, Springer, 2007 (inproceedings)

al

[BibTex]

[BibTex]


no image
Hierarchical reactive control for a team of humanoid soccer robots

Behnke, S., Stueckler, J., Schreiber, M., Schulz, H., Böhnert, M., Meier, K.

In Proc. of the IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), pages: 622-629, November 2007 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Absorption spectroscopy and XMCD at the Verwey transition of Fe3O4

Goering, E., Lafkioti, M., Gold, S., Schütz, G.

{Journal of Magnetism and Magnetic Materials}, 310, pages: 249-251, 2007 (article)

mms

[BibTex]

[BibTex]


no image
Overcoming the Dipolar Disorder in Dense CoFe Nanoparticle Ensembles: Superferromagnetism

Bedanta, S., Eimüller, T., Kleemann, W., Rhensius, J., Stromberg, F., Amaladass, E., Cardoso, S., Freitas, P. P.

{Physical Review Letters}, 98, 2007 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ultrafast nanomagnetic toggle switching of vortex cores

Hertel, R., Gliga, S., Fähnle, M., Schneider, C. M.

{Physical Review Letters}, 98, 2007 (article)

mms

[BibTex]

[BibTex]


no image
Element-specific spin and orbital momentum dynamics of Fe/Gd multilayers

Bartelt, A. F., Comin, A., Feng, J., Nasiatka, J. R., Eimüller, T., Ludescher, B., Schütz, G., Padmore, H. A., Young, A. T., Scholl, A.

{Applied Physics Letters}, 90, 2007 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Slow relaxation of spin reorientation following ultrafast optical excitation

Eimüller, T., Scholl, A., Ludescher, B., Schütz, G., Thiele, J.

{Applied Physics Letters}, 91, 2007 (article)

mms

[BibTex]

[BibTex]


no image
One-pot synthesis of core-shell FeRh nanoparticles

Ciuculescu, D., Amiens, C., Respaud, M., Falqui, A., Lecante, P., Benfield, R. E., Jiang, L., Fauth, K., Chaudret, B.

{Chemistry of Materials}, 19(19):4624-4626, 2007 (article)

mms

[BibTex]

[BibTex]


no image
Spin-polarized quasiparticles injection effects in the normal state of YBCO thin films

Soltan, S., Albrecht, J., Habermeier, H.-U.

{Physica C}, 460-462, pages: 1088-1089, 2007 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Direct observation of the vortex core magnetization and its dynamics

Chou, K. W., Puzic, A., Stoll, H., Dolgos, D., Schütz, G., Van Waeyenberge, B., Vansteenkiste, A., Tyliszczak, T., Woltersdorf, G., Back, C. H.

{Applied Physics Letters}, 90, 2007 (article)

mms

[BibTex]

[BibTex]


no image
Superparamagnetism in small Fe clusters on Cu(111)

Ballentine, G., He\ssler, M., Kinza, M., Fauth, K.

{The European Physical Journal D}, 45, pages: 535-537, 2007 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
AREADNE Research in Encoding And Decoding of Neural Ensembles

Shakhnarovich, G., Hochberg, L. R., Donoghue, J. P., Stein, J., Brown, R. H., Krivickas, L. S., Friehs, G. M., Black, M. J.

Program No. 517.8. 2007 Abstract Viewer and Itinerary Planner, Society for Neuroscience, San Diego, CA, 2007, Online (conference)

ps

[BibTex]

[BibTex]

2002


no image
Optimized Support Vector Machines for Nonstationary Signal Classification

Davy, M., Gretton, A., Doucet, A., Rayner, P.

IEEE Signal Processing Letters, 9(12):442-445, December 2002 (article)

Abstract
This letter describes an efficient method to perform nonstationary signal classification. A support vector machine (SVM) algorithm is introduced and its parameters optimised in a principled way. Simulations demonstrate that our low complexity method outperforms state-of-the-art nonstationary signal classification techniques.

ei

PostScript Web DOI [BibTex]

2002


PostScript Web DOI [BibTex]


no image
Gender Classification of Human Faces

Graf, A., Wichmann, F.

In Biologically Motivated Computer Vision, pages: 1-18, (Editors: Bülthoff, H. H., S.W. Lee, T. A. Poggio and C. Wallraven), Springer, Berlin, Germany, Second International Workshop on Biologically Motivated Computer Vision (BMCV), November 2002 (inproceedings)

Abstract
This paper addresses the issue of combining pre-processing methods—dimensionality reduction using Principal Component Analysis (PCA) and Locally Linear Embedding (LLE)—with Support Vector Machine (SVM) classification for a behaviorally important task in humans: gender classification. A processed version of the MPI head database is used as stimulus set. First, summary statistics of the head database are studied. Subsequently the optimal parameters for LLE and the SVM are sought heuristically. These values are then used to compare the original face database with its processed counterpart and to assess the behavior of a SVM with respect to changes in illumination and perspective of the face images. Overall, PCA was superior in classification performance and allowed linear separability.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Insect-Inspired Estimation of Self-Motion

Franz, MO., Chahl, JS.

In Biologically Motivated Computer Vision, (2525):171-180, LNCS, (Editors: Bülthoff, H.H. , S.W. Lee, T.A. Poggio, C. Wallraven), Springer, Berlin, Germany, Second International Workshop on Biologically Motivated Computer Vision (BMCV), November 2002 (inproceedings)

Abstract
The tangential neurons in the fly brain are sensitive to the typical optic flow patterns generated during self-motion. In this study, we examine whether a simplified linear model of these neurons can be used to estimate self-motion from the optic flow. We present a theory for the construction of an optimal linear estimator incorporating prior knowledge about the environment. The optimal estimator is tested on a gantry carrying an omnidirectional vision sensor. The experiments show that the proposed approach leads to accurate and robust estimates of rotation rates, whereas translation estimates turn out to be less reliable.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
A New Discriminative Kernel from Probabilistic Models

Tsuda, K., Kawanabe, M., Rätsch, G., Sonnenburg, S., Müller, K.

Neural Computation, 14(10):2397-2414, October 2002 (article)

ei

PDF [BibTex]

PDF [BibTex]


no image
Combining sensory Information to Improve Visualization

Ernst, M., Banks, M., Wichmann, F., Maloney, L., Bülthoff, H.

In Proceedings of the Conference on Visualization ‘02 (VIS ‘02), pages: 571-574, (Editors: Moorhead, R. , M. Joy), IEEE, Piscataway, NJ, USA, IEEE Conference on Visualization (VIS '02), October 2002 (inproceedings)

Abstract
Seemingly effortlessly the human brain reconstructs the three-dimensional environment surrounding us from the light pattern striking the eyes. This seems to be true across almost all viewing and lighting conditions. One important factor for this apparent easiness is the redundancy of information provided by the sensory organs. For example, perspective distortions, shading, motion parallax, or the disparity between the two eyes' images are all, at least partly, redundant signals which provide us with information about the three-dimensional layout of the visual scene. Our brain uses all these different sensory signals and combines the available information into a coherent percept. In displays visualizing data, however, the information is often highly reduced and abstracted, which may lead to an altered perception and therefore a misinterpretation of the visualized data. In this panel we will discuss mechanisms involved in the combination of sensory information and their implications for simulations using computer displays, as well as problems resulting from current display technology such as cathode-ray tubes.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Sampling Techniques for Kernel Methods

Achlioptas, D., McSherry, F., Schölkopf, B.

In Advances in neural information processing systems 14 , pages: 335-342, (Editors: TG Dietterich and S Becker and Z Ghahramani), MIT Press, Cambridge, MA, USA, 15th Annual Neural Information Processing Systems Conference (NIPS), September 2002 (inproceedings)

Abstract
We propose randomized techniques for speeding up Kernel Principal Component Analysis on three levels: sampling and quantization of the Gram matrix in training, randomized rounding in evaluating the kernel expansions, and random projections in evaluating the kernel itself. In all three cases, we give sharp bounds on the accuracy of the obtained approximations.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
The Infinite Hidden Markov Model

Beal, MJ., Ghahramani, Z., Rasmussen, CE.

In Advances in Neural Information Processing Systems 14, pages: 577-584, (Editors: Dietterich, T.G. , S. Becker, Z. Ghahramani), MIT Press, Cambridge, MA, USA, Fifteenth Annual Neural Information Processing Systems Conference (NIPS), September 2002 (inproceedings)

Abstract
We show that it is possible to extend hidden Markov models to have a countably infinite number of hidden states. By using the theory of Dirichlet processes we can implicitly integrate out the infinitely many transition parameters, leaving only three hyperparameters which can be learned from data. These three hyperparameters define a hierarchical Dirichlet process capable of capturing a rich set of transition dynamics. The three hyperparameters control the time scale of the dynamics, the sparsity of the underlying state-transition matrix, and the expected number of distinct hidden states in a finite sequence. In this framework it is also natural to allow the alphabet of emitted symbols to be infinite - consider, for example, symbols being possible words appearing in English text.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
A new discriminative kernel from probabilistic models

Tsuda, K., Kawanabe, M., Rätsch, G., Sonnenburg, S., Müller, K.

In Advances in Neural Information Processing Systems 14, pages: 977-984, (Editors: Dietterich, T.G. , S. Becker, Z. Ghahramani), MIT Press, Cambridge, MA, USA, Fifteenth Annual Neural Information Processing Systems Conference (NIPS), September 2002 (inproceedings)

Abstract
Recently, Jaakkola and Haussler proposed a method for constructing kernel functions from probabilistic models. Their so called \Fisher kernel" has been combined with discriminative classi ers such as SVM and applied successfully in e.g. DNA and protein analysis. Whereas the Fisher kernel (FK) is calculated from the marginal log-likelihood, we propose the TOP kernel derived from Tangent vectors Of Posterior log-odds. Furthermore, we develop a theoretical framework on feature extractors from probabilistic models and use it for analyzing the TOP kernel. In experiments our new discriminative TOP kernel compares favorably to the Fisher kernel.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Incorporating Invariances in Non-Linear Support Vector Machines

Chapelle, O., Schölkopf, B.

In Advances in Neural Information Processing Systems 14, pages: 609-616, (Editors: TG Dietterich and S Becker and Z Ghahramani), MIT Press, Cambridge, MA, USA, 15th Annual Neural Information Processing Systems Conference (NIPS), September 2002 (inproceedings)

Abstract
The choice of an SVM kernel corresponds to the choice of a representation of the data in a feature space and, to improve performance, it should therefore incorporate prior knowledge such as known transformation invariances. We propose a technique which extends earlier work and aims at incorporating invariances in nonlinear kernels. We show on a digit recognition task that the proposed approach is superior to the Virtual Support Vector method, which previously had been the method of choice.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Functional Genomics of Osteoarthritis

Aigner, T., Bartnik, E., Zien, A., Zimmer, R.

Pharmacogenomics, 3(5):635-650, September 2002 (article)

ei

Web [BibTex]

Web [BibTex]


no image
Kernel feature spaces and nonlinear blind source separation

Harmeling, S., Ziehe, A., Kawanabe, M., Müller, K.

In Advances in Neural Information Processing Systems 14, pages: 761-768, (Editors: Dietterich, T. G., S. Becker, Z. Ghahramani), MIT Press, Cambridge, MA, USA, Fifteenth Annual Neural Information Processing Systems Conference (NIPS), September 2002 (inproceedings)

Abstract
In kernel based learning the data is mapped to a kernel feature space of a dimension that corresponds to the number of training data points. In practice, however, the data forms a smaller submanifold in feature space, a fact that has been used e.g. by reduced set techniques for SVMs. We propose a new mathematical construction that permits to adapt to the intrinsic dimension and to find an orthonormal basis of this submanifold. In doing so, computations get much simpler and more important our theoretical framework allows to derive elegant kernelized blind source separation (BSS) algorithms for arbitrary invertible nonlinear mixings. Experiments demonstrate the good performance and high computational efficiency of our kTDSEP algorithm for the problem of nonlinear BSS.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Constructing Boosting algorithms from SVMs: an application to one-class classification.

Rätsch, G., Mika, S., Schölkopf, B., Müller, K.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(9):1184-1199, September 2002 (article)

Abstract
We show via an equivalence of mathematical programs that a support vector (SV) algorithm can be translated into an equivalent boosting-like algorithm and vice versa. We exemplify this translation procedure for a new algorithm—one-class leveraging—starting from the one-class support vector machine (1-SVM). This is a first step toward unsupervised learning in a boosting framework. Building on so-called barrier methods known from the theory of constrained optimization, it returns a function, written as a convex combination of base hypotheses, that characterizes whether a given test point is likely to have been generated from the distribution underlying the training data. Simulations on one-class classification problems demonstrate the usefulness of our approach.

ei

DOI [BibTex]

DOI [BibTex]


no image
Algorithms for Learning Function Distinguishable Regular Languages

Fernau, H., Radl, A.

In Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition, pages: 64-73, (Editors: Caelli, T. , A. Amin, R. P.W. Duin, M. Kamel, D. de Ridder), Springer, Berlin, Germany, Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition, August 2002 (inproceedings)

Abstract
Function distinguishable languages were introduced as a new methodology of defining characterizable subclasses of the regular languages which are learnable from text. Here, we give details on the implementation and the analysis of the corresponding learning algorithms. We also discuss problems which might occur in practical applications.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Forward models in visuomotor control

Mehta, B., Schaal, S.

J Neurophysiol, 88(2):942-53, August 2002, clmc (article)

Abstract
In recent years, an increasing number of research projects investigated whether the central nervous system employs internal models in motor control. While inverse models in the control loop can be identified more readily in both motor behavior and the firing of single neurons, providing direct evidence for the existence of forward models is more complicated. In this paper, we will discuss such an identification of forward models in the context of the visuomotor control of an unstable dynamic system, the balancing of a pole on a finger. Pole balancing imposes stringent constraints on the biological controller, as it needs to cope with the large delays of visual information processing while keeping the pole at an unstable equilibrium. We hypothesize various model-based and non-model-based control schemes of how visuomotor control can be accomplished in this task, including Smith Predictors, predictors with Kalman filters, tapped-delay line control, and delay-uncompensated control. Behavioral experiments with human participants allow exclusion of most of the hypothesized control schemes. In the end, our data support the existence of a forward model in the sensory preprocessing loop of control. As an important part of our research, we will provide a discussion of when and how forward models can be identified and also the possible pitfalls in the search for forward models in control.

am

link (url) [BibTex]

link (url) [BibTex]


Thumb xl bildschirmfoto 2013 01 15 um 09.54.19
Inferring hand motion from multi-cell recordings in motor cortex using a Kalman filter

Wu, W., Black, M. J., Gao, Y., Bienenstock, E., Serruya, M., Donoghue, J. P.

In SAB’02-Workshop on Motor Control in Humans and Robots: On the Interplay of Real Brains and Artificial Devices, pages: 66-73, Edinburgh, Scotland (UK), August 2002 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
Co-Clustering of Biological Networks and Gene Expression Data

Hanisch, D., Zien, A., Zimmer, R., Lengauer, T.

Bioinformatics, (Suppl 1):145S-154S, 18, July 2002 (article)

Abstract
Motivation: Large scale gene expression data are often analysed by clustering genes based on gene expression data alone, though a priori knowledge in the form of biological networks is available. The use of this additional information promises to improve exploratory analysis considerably. Results: We propose constructing a distance function which combines information from expression data and biological networks. Based on this function, we compute a joint clustering of genes and vertices of the network. This general approach is elaborated for metabolic networks. We define a graph distance function on such networks and combine it with a correlation-based distance function for gene expression measurements. A hierarchical clustering and an associated statistical measure is computed to arrive at a reasonable number of clusters. Our method is validated using expression data of the yeast diauxic shift. The resulting clusters are easily interpretable in terms of the biochemical network and the gene expression data and suggest that our method is able to automatically identify processes that are relevant under the measured conditions.

ei

Web [BibTex]

Web [BibTex]


no image
Confidence measures for protein fold recognition

Sommer, I., Zien, A., von Ohsen, N., Zimmer, R., Lengauer, T.

Bioinformatics, 18(6):802-812, June 2002 (article)

ei

[BibTex]

[BibTex]


no image
Decision Boundary Pattern Selection for Support Vector Machines

Shin, H., Cho, S.

In Proc. of the Korean Data Mining Conference, pages: 33-41, Korean Data Mining Conference, May 2002 (inproceedings)

ei

[BibTex]

[BibTex]


no image
The contributions of color to recognition memory for natural scenes

Wichmann, F., Sharpe, L., Gegenfurtner, K.

Journal of Experimental Psychology: Learning, Memory and Cognition, 28(3):509-520, May 2002 (article)

Abstract
The authors used a recognition memory paradigm to assess the influence of color information on visual memory for images of natural scenes. Subjects performed 5-10% better for colored than for black-and-white images independent of exposure duration. Experiment 2 indicated little influence of contrast once the images were suprathreshold, and Experiment 3 revealed that performance worsened when images were presented in color and tested in black and white, or vice versa, leading to the conclusion that the surface property color is part of the memory representation. Experiments 4 and 5 exclude the possibility that the superior recognition memory for colored images results solely from attentional factors or saliency. Finally, the recognition memory advantage disappears for falsely colored images of natural scenes: The improvement in recognition memory depends on the color congruence of presented images with learned knowledge about the color gamut found within natural scenes. The results can be accounted for within a multiple memory systems framework.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
k-NN based Pattern Selection for Support Vector Classifiers

Shin, H., Cho, S.

In Proc. of the Korean Industrial Engineers Conference, pages: 645-651, Korean Industrial Engineers Conference, May 2002 (inproceedings)

ei

[BibTex]

[BibTex]


no image
Microarrays: How Many Do You Need?

Zien, A., Fluck, J., Zimmer, R., Lengauer, T.

In RECOMB 2002, pages: 321-330, ACM Press, New York, NY, USA, Sixth Annual International Conference on Research in Computational Molecular Biology, April 2002 (inproceedings)

Abstract
We estimate the number of microarrays that is required in order to gain reliable results from a common type of study: the pairwise comparison of different classes of samples. Current knowlegde seems to suffice for the construction of models that are realistic with respect to searches for individual differentially expressed genes. Such models allow to investigate the dependence of the required number of samples on the relevant parameters: the biological variability of the samples within each class; the fold changes in expression; the detection sensitivity of the microarrays; and the acceptable error rates of the results. We supply experimentalists with general conclusions as well as a freely accessible Java applet at http://cartan.gmd.de/~zien/classsize/ for fine tuning simulations to their particular actualities. Since the situation can be assumed to be very similar for large scale proteomics and metabolomics studies, our methods and results might also apply there.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Pattern Selection for Support Vector Classifiers

Shin, H., Cho, S.

In Ideal 2002, pages: 97-103, (Editors: Yin, H. , N. Allinson, R. Freeman, J. Keane, S. Hubbard), Springer, Berlin, Germany, Third International Conference on Intelligent Data Engineering and Automated Learning, January 2002 (inproceedings)

Abstract
SVMs tend to take a very long time to train with a large data set. If "redundant" patterns are identified and deleted in pre-processing, the training time could be reduced significantly. We propose a k-nearest neighbors(k-NN) based pattern selection method. The method tries to select the patterns that are near the decision boundary and that are correctly labeled. The simulations over synthetic data sets showed promising results: (1) By converting a non-separable problem to a separable one, the search for an optimal error tolerance parameter became unnecessary. (2) SVM training time decreased by two orders of magnitude without any loss of accuracy. (3) The redundant SVs were substantially reduced.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Training invariant support vector machines

DeCoste, D., Schölkopf, B.

Machine Learning, 46(1-3):161-190, January 2002 (article)

Abstract
Practical experience has shown that in order to obtain the best possible performance, prior knowledge about invariances of a classification problem at hand ought to be incorporated into the training procedure. We describe and review all known methods for doing so in support vector machines, provide experimental results, and discuss their respective merits. One of the significant new results reported in this work is our recent achievement of the lowest reported test error on the well-known MNIST digit recognition benchmark task, with SVM training times that are also significantly faster than previous SVM methods.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Model Selection for Small Sample Regression

Chapelle, O., Vapnik, V., Bengio, Y.

Machine Learning, 48(1-3):9-23, 2002 (article)

Abstract
Model selection is an important ingredient of many machine learning algorithms, in particular when the sample size in small, in order to strike the right trade-off between overfitting and underfitting. Previous classical results for linear regression are based on an asymptotic analysis. We present a new penalization method for performing model selection for regression that is appropriate even for small samples. Our penalization is based on an accurate estimator of the ratio of the expected training error and the expected generalization error, in terms of the expected eigenvalues of the input covariance matrix.

ei

PostScript [BibTex]

PostScript [BibTex]


no image
The leave-one-out kernel

Tsuda, K., Kawanabe, M.

In Artificial Neural Networks -- ICANN 2002, 2415, pages: 727-732, LNCS, (Editors: Dorronsoro, J. R.), Artificial Neural Networks -- ICANN, 2002 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]