Header logo is


2007


no image
A scaled bilateral control system for experimental 1-D teleoperated nanomanipulation applications

Onal, C. D., Pawashe, C., Sitti, M.

In Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, pages: 483-488, 2007 (inproceedings)

pi

[BibTex]

2007


[BibTex]


no image
Guided Self-organisation for Autonomous Robot Development

Martius, G., Herrmann, J. M., Der, R.

In Advances in Artificial Life 9th European Conference, ECAL 2007, 4648, pages: 766-775, LNCS, Springer, 2007 (inproceedings)

al

[BibTex]

[BibTex]


no image
Hierarchical reactive control for a team of humanoid soccer robots

Behnke, S., Stueckler, J., Schreiber, M., Schulz, H., Böhnert, M., Meier, K.

In Proc. of the IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), pages: 622-629, November 2007 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Absorption spectroscopy and XMCD at the Verwey transition of Fe3O4

Goering, E., Lafkioti, M., Gold, S., Schütz, G.

{Journal of Magnetism and Magnetic Materials}, 310, pages: 249-251, 2007 (article)

mms

[BibTex]

[BibTex]


no image
Overcoming the Dipolar Disorder in Dense CoFe Nanoparticle Ensembles: Superferromagnetism

Bedanta, S., Eimüller, T., Kleemann, W., Rhensius, J., Stromberg, F., Amaladass, E., Cardoso, S., Freitas, P. P.

{Physical Review Letters}, 98, 2007 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ultrafast nanomagnetic toggle switching of vortex cores

Hertel, R., Gliga, S., Fähnle, M., Schneider, C. M.

{Physical Review Letters}, 98, 2007 (article)

mms

[BibTex]

[BibTex]


no image
Element-specific spin and orbital momentum dynamics of Fe/Gd multilayers

Bartelt, A. F., Comin, A., Feng, J., Nasiatka, J. R., Eimüller, T., Ludescher, B., Schütz, G., Padmore, H. A., Young, A. T., Scholl, A.

{Applied Physics Letters}, 90, 2007 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Slow relaxation of spin reorientation following ultrafast optical excitation

Eimüller, T., Scholl, A., Ludescher, B., Schütz, G., Thiele, J.

{Applied Physics Letters}, 91, 2007 (article)

mms

[BibTex]

[BibTex]


no image
One-pot synthesis of core-shell FeRh nanoparticles

Ciuculescu, D., Amiens, C., Respaud, M., Falqui, A., Lecante, P., Benfield, R. E., Jiang, L., Fauth, K., Chaudret, B.

{Chemistry of Materials}, 19(19):4624-4626, 2007 (article)

mms

[BibTex]

[BibTex]


no image
Spin-polarized quasiparticles injection effects in the normal state of YBCO thin films

Soltan, S., Albrecht, J., Habermeier, H.-U.

{Physica C}, 460-462, pages: 1088-1089, 2007 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Direct observation of the vortex core magnetization and its dynamics

Chou, K. W., Puzic, A., Stoll, H., Dolgos, D., Schütz, G., Van Waeyenberge, B., Vansteenkiste, A., Tyliszczak, T., Woltersdorf, G., Back, C. H.

{Applied Physics Letters}, 90, 2007 (article)

mms

[BibTex]

[BibTex]


no image
Superparamagnetism in small Fe clusters on Cu(111)

Ballentine, G., He\ssler, M., Kinza, M., Fauth, K.

{The European Physical Journal D}, 45, pages: 535-537, 2007 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
AREADNE Research in Encoding And Decoding of Neural Ensembles

Shakhnarovich, G., Hochberg, L. R., Donoghue, J. P., Stein, J., Brown, R. H., Krivickas, L. S., Friehs, G. M., Black, M. J.

Program No. 517.8. 2007 Abstract Viewer and Itinerary Planner, Society for Neuroscience, San Diego, CA, 2007, Online (conference)

ps

[BibTex]

[BibTex]

2004


no image
Attentional Modulation of Auditory Event-Related Potentials in a Brain-Computer Interface

Hill, J., Lal, T., Bierig, K., Birbaumer, N., Schölkopf, B.

In BioCAS04, (S3/5/INV- S3/17-20):4, IEEE Computer Society, Los Alamitos, CA, USA, 2004 IEEE International Workshop on Biomedical Circuits and Systems, December 2004 (inproceedings)

Abstract
Motivated by the particular problems involved in communicating with "locked-in" paralysed patients, we aim to develop a brain-computer interface that uses auditory stimuli. We describe a paradigm that allows a user to make a binary decision by focusing attention on one of two concurrent auditory stimulus sequences. Using Support Vector Machine classification and Recursive Channel Elimination on the independent components of averaged event-related potentials, we show that an untrained user‘s EEG data can be classified with an encouragingly high level of accuracy. This suggests that it is possible for users to modulate EEG signals in a single trial by the conscious direction of attention, well enough to be useful in BCI.

ei

PDF Web DOI [BibTex]

2004


PDF Web DOI [BibTex]


no image
On the representation, learning and transfer of spatio-temporal movement characteristics

Ilg, W., Bakir, GH., Mezger, J., Giese, M.

International Journal of Humanoid Robotics, 1(4):613-636, December 2004 (article)

ei

[BibTex]

[BibTex]


no image
Insect-inspired estimation of egomotion

Franz, MO., Chahl, JS., Krapp, HG.

Neural Computation, 16(11):2245-2260, November 2004 (article)

Abstract
Tangential neurons in the fly brain are sensitive to the typical optic flow patterns generated during egomotion. In this study, we examine whether a simplified linear model based on the organization principles in tangential neurons can be used to estimate egomotion from the optic flow. We present a theory for the construction of an estimator consisting of a linear combination of optic flow vectors that incorporates prior knowledge both about the distance distribution of the environment, and about the noise and egomotion statistics of the sensor. The estimator is tested on a gantry carrying an omnidirectional vision sensor. The experiments show that the proposed approach leads to accurate and robust estimates of rotation rates, whereas translation estimates are of reasonable quality, albeit less reliable.

ei

PDF PostScript Web DOI [BibTex]

PDF PostScript Web DOI [BibTex]


no image
Efficient face detection by a cascaded support-vector machine expansion

Romdhani, S., Torr, P., Schölkopf, B., Blake, A.

Proceedings of The Royal Society of London A, 460(2501):3283-3297, A, November 2004 (article)

Abstract
We describe a fast system for the detection and localization of human faces in images using a nonlinear ‘support-vector machine‘. We approximate the decision surface in terms of a reduced set of expansion vectors and propose a cascaded evaluation which has the property that the full support-vector expansion is only evaluated on the face-like parts of the image, while the largest part of typical images is classified using a single expansion vector (a simpler and more efficient classifier). As a result, only three reduced-set vectors are used, on average, to classify an image patch. Hence, the cascaded evaluation, presented in this paper, offers a thirtyfold speed-up over an evaluation using the full set of reduced-set vectors, which is itself already thirty times faster than classification using all the support vectors.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Canceling Induced Master Motion in Force-Reflecting Teleoperation

Kuchenbecker, K. J., Niemeyer, G.

In Proc. ASME International Mechanical Engineering Congress and Exposition, Symposium on Advances in Robot Dynamics and Control, 2, paper number 60049, Anaheim, California, USA, November 2004, Oral presentation given by Kuchenbecker. {B}est Student Paper Award (inproceedings)

hi

[BibTex]

[BibTex]


no image
Discrete vs. Continuous: Two Sides of Machine Learning

Zhou, D.

October 2004 (talk)

Abstract
We consider the problem of transductive inference. In many real-world problems, unlabeled data is far easier to obtain than labeled data. Hence transductive inference is very significant in many practical problems. According to Vapnik's point of view, one should predict the function value only on the given points directly rather than a function defined on the whole space, the latter being a more complicated problem. Inspired by this idea, we develop discrete calculus on finite discrete spaces, and then build discrete regularization. A family of transductive algorithms is naturally derived from this regularization framework. We validate the algorithms on both synthetic and real-world data from text/web categorization to bioinformatics problems. A significant by-product of this work is a powerful way of ranking data based on examples including images, documents, proteins and many other kinds of data. This talk is mainly based on the followiing contribution: (1) D. Zhou and B. Sch{\"o}lkopf: Transductive Inference with Graphs, MPI Technical report, August, 2004; (2) D. Zhou, B. Sch{\"o}lkopf and T. Hofmann. Semi-supervised Learning on Directed Graphs. NIPS 2004; (3) D. Zhou, O. Bousquet, T.N. Lal, J. Weston and B. Sch{\"o}lkopf. Learning with Local and Global Consistency. NIPS 2003.

ei

PDF [BibTex]


no image
Using kernel PCA for Initialisation of Variational Bayesian Nonlinear Blind Source Separation Method

Honkela, A., Harmeling, S., Lundqvist, L., Valpola, H.

In ICA 2004, pages: 790-797, (Editors: Puntonet, C. G., A. Prieto), Springer, Berlin, Germany, Fifth International Conference on Independent Component Analysis and Blind Signal Separation, October 2004 (inproceedings)

Abstract
The variational Bayesian nonlinear blind source separation method introduced by Lappalainen and Honkela in 2000 is initialised with linear principal component analysis (PCA). Because of the multilayer perceptron (MLP) network used to model the nonlinearity, the method is susceptible to local minima and therefore sensitive to the initialisation used. As the method is used for nonlinear separation, the linear initialisation may in some cases lead it astray. In this paper we study the use of kernel PCA (KPCA) in the initialisation. KPCA is a rather straightforward generalisation of linear PCA and it is much faster to compute than the variational Bayesian method. The experiments show that it can produce significantly better initialisations than linear PCA. Additionally, the model comparison methods provided by the variational Bayesian framework can be easily applied to compare different kernels.

ei

DOI [BibTex]

DOI [BibTex]


no image
S-cones contribute to flicker brightness in human vision

Wehrhahn, C., Hill, NJ., Dillenburger, B.

34(174.12), 34th Annual Meeting of the Society for Neuroscience (Neuroscience), October 2004 (poster)

Abstract
In the retina of primates three cone types sensitive to short, middle and long wavelengths of light convert photons into electrical signals. Many investigators have presented evidence that, in color normal observers, the signals of cones sensitive to short wavelengths of light (S-cones) do not contribute to the perception of brightness of a colored surface when this is alternated with an achromatic reference (flicker brightness). Other studies indicate that humans do use S-cone signals when performing this task. Common to all these studies is the small number of observers, whose performance data are reported. Considerable variability in the occurrence of cone types across observers has been found, but, to our knowledge, no cone counts exist from larger populations of humans. We reinvestigated how much the S-cones contribute to flicker brightness. 76 color normal observers were tested in a simple psychophysical procedure neutral to the cone type occurence (Teufel & Wehrhahn (2000), JOSA A 17: 994 - 1006). The data show that, in the majority of our observers, S-cones provide input with a negative sign - relative to L- and M-cone contribution - in the task in question. There is indeed considerable between-subject variability such that for 20 out of 76 observers the magnitude of this input does not differ significantly from 0. Finally, we argue that the sign of S-cone contribution to flicker brightness perception by an observer cannot be used to infer the relative sign their contributions to the neuronal signals carrying the information leading to the perception of flicker brightness. We conclude that studies which use only a small number of observers may easily fail to find significant evidence for the small but significant population tendency for the S-cones to contribute to flicker brightness. Our results confirm all earlier results and reconcile their contradictory interpretations.

ei

Web [BibTex]

Web [BibTex]


no image
Robust ICA for Super-Gaussian Sources

Meinecke, F., Harmeling, S., Müller, K.

In ICA 2004, pages: 217-224, (Editors: Puntonet, C. G., A. Prieto), Springer, Berlin, Germany, Fifth International Conference on Independent Component Analysis and Blind Signal Separation, October 2004 (inproceedings)

Abstract
Most ICA algorithms are sensitive to outliers. Instead of robustifying existing algorithms by outlier rejection techniques, we show how a simple outlier index can be used directly to solve the ICA problem for super-Gaussian source signals. This ICA method is outlier-robust by construction and can be used for standard ICA as well as for over-complete ICA (i.e. more source signals than observed signals (mixtures)).

ei

DOI [BibTex]

DOI [BibTex]


no image
Learning Motor Primitives with Reinforcement Learning

Peters, J., Schaal, S.

AAAI Fall Symposium on Real-Life Reinforcement Learning 2004, 2004, pages: 1, October 2004 (poster)

ei

Web [BibTex]

Web [BibTex]


no image
Modelling Spikes with Mixtures of Factor Analysers

Görür, D., Rasmussen, C., Tolias, A., Sinz, F., Logothetis, N.

In Pattern Recognition, pages: 391-398, LNCS 3175, (Editors: Rasmussen, C. E. , H.H. Bülthoff, B. Schölkopf, M.A. Giese), Springer, Berlin, Germany, 26th DAGM Symposium, September 2004 (inproceedings)

Abstract
Identifying the action potentials of individual neurons from extracellular recordings, known as spike sorting, is a challenging problem. We consider the spike sorting problem using a generative model,mixtures of factor analysers, which concurrently performs clustering and feature extraction. The most important advantage of this method is that it quantifies the certainty with which the spikes are classified. This can be used as a means for evaluating the quality of clustering and therefore spike isolation. Using this method, nearly simultaneously occurring spikes can also be modelled which is a hard task for many of the spike sorting methods. Furthermore, modelling the data with a generative model allows us to generate simulated data.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Learning Depth From Stereo

Sinz, F., Candela, J., BakIr, G., Rasmussen, C., Franz, M.

In 26th DAGM Symposium, pages: 245-252, LNCS 3175, (Editors: Rasmussen, C. E., H. H. Bülthoff, B. Schölkopf, M. A. Giese), Springer, Berlin, Germany, 26th DAGM Symposium, September 2004 (inproceedings)

Abstract
We compare two approaches to the problem of estimating the depth of a point in space from observing its image position in two different cameras: 1.~The classical photogrammetric approach explicitly models the two cameras and estimates their intrinsic and extrinsic parameters using a tedious calibration procedure; 2.~A generic machine learning approach where the mapping from image to spatial coordinates is directly approximated by a Gaussian Process regression. Our results show that the generic learning approach, in addition to simplifying the procedure of calibration, can lead to higher depth accuracies than classical calibration although no specific domain knowledge is used.

ei

PDF PostScript Web [BibTex]

PDF PostScript Web [BibTex]


no image
Grundlagen von Support Vector Maschinen und Anwendungen in der Bildverarbeitung

Eichhorn, J.

September 2004 (talk)

Abstract
Invited talk at the workshop "Numerical, Statistical and Discrete Methods in Image Processing" at the TU M{\"u}nchen (in GERMAN)

ei

PDF [BibTex]


no image
Stability of Hausdorff-based Distance Measures

Shapiro, MD., Blaschko, MB.

In VIIP, pages: 1-6, VIIP, September 2004 (inproceedings)

ei

[BibTex]

[BibTex]


no image
Automatic spike sorting for neural decoding

Wood, F. D., Fellows, M., Donoghue, J. P., Black, M. J.

In Proc. IEEE Engineering in Medicine and Biology Society, pages: 4009-4012, September 2004 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl wuembs2004
Closed-loop neural control of cursor motion using a Kalman filter

Wu, W., Shaikhouni, A., Donoghue, J. P., Black, M. J.

In Proc. IEEE Engineering in Medicine and Biology Society, pages: 4126-4129, September 2004 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
Learning kernels from biological networks by maximizing entropy

Tsuda, K., Noble, W.

Bioinformatics, 20(Suppl. 1):i326-i333, August 2004 (article)

Abstract
Motivation: The diffusion kernel is a general method for computing pairwise distances among all nodes in a graph, based on the sum of weighted paths between each pair of nodes. This technique has been used successfully, in conjunction with kernel-based learning methods, to draw inferences from several types of biological networks. Results: We show that computing the diffusion kernel is equivalent to maximizing the von Neumann entropy, subject to a global constraint on the sum of the Euclidean distances between nodes. This global constraint allows for high variance in the pairwise distances. Accordingly, we propose an alternative, locally constrained diffusion kernel, and we demonstrate that the resulting kernel allows for more accurate support vector machine prediction of protein functional classifications from metabolic and protein–protein interaction networks.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
The benefit of liquid Helium cooling for Cryo-Electron Tomography: A quantitative comparative study

Schweikert, G., Luecken, U., Pfeifer, G., Baumeister, W., Plitzko, J.

The thirteenth European Microscopy Congress, August 2004 (talk)

ei

[BibTex]

[BibTex]


no image
Learning to Find Graph Pre-Images

BakIr, G., Zien, A., Tsuda, K.

In Pattern Recognition, pages: 253-261, (Editors: Rasmussen, C. E., H. H. Bülthoff, B. Schölkopf, M. A. Giese), Springer, Berlin, Germany, 26th DAGM Symposium, August 2004 (inproceedings)

Abstract
The recent development of graph kernel functions has made it possible to apply well-established machine learning methods to graphs. However, to allow for analyses that yield a graph as a result, it is necessary to solve the so-called pre-image problem: to reconstruct a graph from its feature space representation induced by the kernel. Here, we suggest a practical solution to this problem.

ei

PostScript PDF DOI [BibTex]

PostScript PDF DOI [BibTex]


no image
Masking effect produced by Mach bands on the detection of narrow bars of random polarity

Henning, GB., Hoddinott, KT., Wilson-Smith, ZJ., Hill, NJ.

Journal of the Optical Society of America, 21(8):1379-1387, A, August 2004 (article)

ei

[BibTex]

[BibTex]


no image
Gaussian Process Classification for Segmenting and Annotating Sequences

Altun, Y., Hofmann, T., Smola, A.

In Proceedings of the 21st International Conference on Machine Learning (ICML 2004), pages: 25-32, (Editors: Greiner, R. , D. Schuurmans), ACM Press, New York, USA, 21st International Conference on Machine Learning (ICML), July 2004 (inproceedings)

Abstract
Many real-world classification tasks involve the prediction of multiple, inter-dependent class labels. A prototypical case of this sort deals with prediction of a sequence of labels for a sequence of observations. Such problems arise naturally in the context of annotating and segmenting observation sequences. This paper generalizes Gaussian Process classification to predict multiple labels by taking dependencies between neighboring labels into account. Our approach is motivated by the desire to retain rigorous probabilistic semantics, while overcoming limitations of parametric methods like Conditional Random Fields, which exhibit conceptual and computational difficulties in high-dimensional input spaces. Experiments on named entity recognition and pitch accent prediction tasks demonstrate the competitiveness of our approach.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Learning with Non-Positive Kernels

Ong, CS., Mary, X., Canu, S., Smola, AJ.

In ICML 2004, pages: 81-81, ACM Press, New York, NY, USA, Twenty-First International Conference on Machine Learning, July 2004 (inproceedings)

Abstract
n this paper we show that many kernel methods can be adapted to deal with indefinite kernels, that is, kernels which are not positive semidefinite. They do not satisfy Mercer‘s condition and they induce associated functional spaces called Reproducing Kernel Kre&icaron;n Spaces (RKKS), a generalization of Reproducing Kernel Hilbert Spaces (RKHS).Machine learning in RKKS shares many "nice" properties of learning in RKHS, such as orthogonality and projection. However, since the kernels are indefinite, we can no longer minimize the loss, instead we stabilize it. We show a general representer theorem for constrained stabilization and prove generalization bounds by computing the Rademacher averages of the kernel class. We list several examples of indefinite kernels and investigate regularization methods to solve spline interpolation. Some preliminary experiments with indefinite kernels for spline smoothing are reported for truncated spectral factorization, Landweber-Fridman iterations, and MR-II.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Exponential Families for Conditional Random Fields

Altun, Y., Smola, A., Hofmann, T.

In Proceedings of the 20th Annual Conference on Uncertainty in Artificial Intelligence (UAI 2004), pages: 2-9, (Editors: Chickering, D.M. , J.Y. Halpern), Morgan Kaufmann, San Francisco, CA, USA, 20th Annual Conference on Uncertainty in Artificial Intelligence (UAI), July 2004 (inproceedings)

Abstract
In this paper we define conditional random fields in reproducing kernel Hilbert spaces and show connections to Gaussian Process classification. More specifically, we prove decomposition results for undirected graphical models and we give constructions for kernels. Finally we present efficient means of solving the optimization problem using reduced rank decompositions and we show how stationarity can be exploited efficiently in the optimization process.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Using Conditional Random Fields to Predict Pitch Accent in Conversational Speech

Gregory, M., Altun, Y.

In pages: 677-684, (Editors: Scott, D. , W. Daelemans, M. Walker), ACL, East Stroudsburg, PA, USA, 42nd Annual Meeting of the Association for Computational Linguistics (ACL), July 2004 (inproceedings)

Abstract
The detection of prosodic characteristics is an important aspect of both speech synthesis and speech recognition. Correct placement of pitch accents aids in more natural sounding speech, while automatic detection of accents can contribute to better wordlevel recognition and better textual understanding. In this paper we investigate probabilistic, contextual, and phonological factors that influence pitch accent placement in natural, conversational speech in a sequence labeling setting. We introduce Conditional Random Fields (CRFs) to pitch accent prediction task in order to incorporate these factors efficiently in a sequence model. We demonstrate the usefulness and the incremental effect of these factors in a sequence model by performing experiments on hand labeled data from the Switchboard Corpus. Our model outperforms the baseline and previous models of pitch accent prediction on the Switchboard Corpus.

ei

Web [BibTex]

Web [BibTex]


no image
Support vector machine learning for interdependent and structured output spaces

Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.

In pages: 1-8, (Editors: Greiner, R. , D. Schuurmans), AAAI Press, Menlo Park, CA, USA, Twenty-first International Conference on Machine Learning (ICML), July 2004 (inproceedings)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Riemannian Geometry on Graphs and its Application to Ranking and Classification

Zhou, D.

June 2004 (talk)

Abstract
We consider the problem of transductive inference. In many real-world problems, unlabeled data is far easier to obtain than labeled data. Hence transductive inference is very significant in many practical problems. According to Vapnik's point of view, one should predict the function value only on the given points directly rather than a function defined on the whole space, the latter being a more complicated problem. Inspired by this idea, we develop discrete calculus on finite discrete spaces, and then build discrete regularization. A family of transductive algorithms is naturally derived from this regularization framework. We validate the algorithms on both synthetic and real-world data from text/web categorization to bioinformatics problems. A significant by-product of this work is a powerful way of ranking data based on examples including images, documents, proteins and many other kinds of data.

ei

PDF [BibTex]


no image
PAC-Bayesian Generic Chaining

Audibert, J., Bousquet, O.

In Advances in Neural Information Processing Systems 16, pages: 1125-1132 , (Editors: Thrun, S., L.K. Saul, B. Schölkopf), MIT Press, Cambridge, MA, USA, Seventeenth Annual Conference on Neural Information Processing Systems (NIPS), June 2004 (inproceedings)

Abstract
There exist many different generalization error bounds for classification. Each of these bounds contains an improvement over the others for certain situations. Our goal is to combine these different improvements into a single bound. In particular we combine the PAC-Bayes approach introduced by McAllester, which is interesting for averaging classifiers, with the optimal union bound provided by the generic chaining technique developed by Fernique and Talagrand. This combination is quite natural since the generic chaining is based on the notion of majorizing measures, which can be considered as priors on the set of classifiers, and such priors also arise in the PAC-bayesian setting.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Prediction on Spike Data Using Kernel Algorithms

Eichhorn, J., Tolias, A., Zien, A., Kuss, M., Rasmussen, C., Weston, J., Logothetis, N., Schölkopf, B.

In Advances in Neural Information Processing Systems 16, pages: 1367-1374, (Editors: S Thrun and LK Saul and B Schölkopf), MIT Press, Cambridge, MA, USA, 17th Annual Conference on Neural Information Processing Systems (NIPS), June 2004 (inproceedings)

Abstract
We report and compare the performance of different learning algorithms based on data from cortical recordings. The task is to predict the orientation of visual stimuli from the activity of a population of simultaneously recorded neurons. We compare several ways of improving the coding of the input (i.e., the spike data) as well as of the output (i.e., the orientation), and report the results obtained using different kernel algorithms.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Warped Gaussian Processes

Snelson, E., Rasmussen, CE., Ghahramani, Z.

In Advances in Neural Information Processing Systems 16, pages: 337-344, (Editors: Thrun, S., L.K. Saul, B. Schölkopf), MIT Press, Cambridge, MA, USA, Seventeenth Annual Conference on Neural Information Processing Systems (NIPS), June 2004 (inproceedings)

Abstract
We generalise the Gaussian process (GP) framework for regression by learning a nonlinear transformation of the GP outputs. This allows for non-Gaussian processes and non-Gaussian noise. The learning algorithm chooses a nonlinear transformation such that transformed data is well-modelled by a GP. This can be seen as including a preprocessing transformation as an integral part of the probabilistic modelling problem, rather than as an ad-hoc step. We demonstrate on several real regression problems that learning the transformation can lead to significantly better performance than using a regular GP, or a GP with a fixed transformation.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Ranking on Data Manifolds

Zhou, D., Weston, J., Gretton, A., Bousquet, O., Schölkopf, B.

In Advances in neural information processing systems 16, pages: 169-176, (Editors: S Thrun and L Saul and B Schölkopf), MIT Press, Cambridge, MA, USA, 17th Annual Conference on Neural Information Processing Systems (NIPS), June 2004 (inproceedings)

Abstract
The Google search engine has enjoyed a huge success with its web page ranking algorithm, which exploits global, rather than local, hyperlink structure of the web using random walks. Here we propose a simple universal ranking algorithm for data lying in the Euclidean space, such as text or image data. The core idea of our method is to rank the data with respect to the intrinsic manifold structure collectively revealed by a great amount of data. Encouraging experimental results from synthetic, image, and text data illustrate the validity of our method.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Support Vector Channel Selection in BCI

Lal, T., Schröder, M., Hinterberger, T., Weston, J., Bogdan, M., Birbaumer, N., Schölkopf, B.

IEEE Transactions on Biomedical Engineering, 51(6):1003-1010, June 2004 (article)

Abstract
Designing a Brain Computer Interface (BCI) system one can choose from a variety of features that may be useful for classifying brain activity during a mental task. For the special case of classifying EEG signals we propose the usage of the state of the art feature selection algorithms Recursive Feature Elimination and Zero-Norm Optimization which are based on the training of Support Vector Machines (SVM). These algorithms can provide more accurate solutions than standard filter methods for feature selection. We adapt the methods for the purpose of selecting EEG channels. For a motor imagery paradigm we show that the number of used channels can be reduced significantly without increasing the classification error. The resulting best channels agree well with the expected underlying cortical activity patterns during the mental tasks. Furthermore we show how time dependent task specific information can be visualized.

ei

DOI [BibTex]

DOI [BibTex]


no image
Distance-Based Classification with Lipschitz Functions

von Luxburg, U., Bousquet, O.

Journal of Machine Learning Research, 5, pages: 669-695, June 2004 (article)

Abstract
The goal of this article is to develop a framework for large margin classification in metric spaces. We want to find a generalization of linear decision functions for metric spaces and define a corresponding notion of margin such that the decision function separates the training points with a large margin. It will turn out that using Lipschitz functions as decision functions, the inverse of the Lipschitz constant can be interpreted as the size of a margin. In order to construct a clean mathematical setup we isometrically embed the given metric space into a Banach space and the space of Lipschitz functions into its dual space. To analyze the resulting algorithm, we prove several representer theorems. They state that there always exist solutions of the Lipschitz classifier which can be expressed in terms of distance functions to training points. We provide generalization bounds for Lipschitz classifiers in terms of the Rademacher complexities of some Lipschitz function classes. The generality of our approach can be seen from the fact that several well-known algorithms are special cases of the Lipschitz classifier, among them the support vector machine, the linear programming machine, and the 1-nearest neighbor classifier.

ei

PDF PostScript PDF [BibTex]

PDF PostScript PDF [BibTex]


no image
Gaussian Processes in Reinforcement Learning

Rasmussen, C., Kuss, M.

In Advances in Neural Information Processing Systems 16, pages: 751-759, (Editors: Thrun, S., L. K. Saul, B. Schölkopf), MIT Press, Cambridge, MA, USA, Seventeenth Annual Conference on Neural Information Processing Systems (NIPS), June 2004 (inproceedings)

Abstract
We exploit some useful properties of Gaussian process (GP) regression models for reinforcement learning in continuous state spaces and discrete time. We demonstrate how the GP model allows evaluation of the value function in closed form. The resulting policy iteration algorithm is demonstrated on a simple problem with a two dimensional state space. Further, we speculate that the intrinsic ability of GP models to characterise distributions of functions would allow the method to capture entire distributions over future values instead of merely their expectation, which has traditionally been the focus of much of reinforcement learning.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning with Local and Global Consistency

Zhou, D., Bousquet, O., Lal, T., Weston, J., Schölkopf, B.

In Advances in Neural Information Processing Systems 16, pages: 321-328, (Editors: S Thrun and LK Saul and B Schölkopf), MIT Press, Cambridge, MA, USA, 17th Annual Conference on Neural Information Processing Systems (NIPS), June 2004 (inproceedings)

Abstract
We consider the general problem of learning from labeled and unlabeled data, which is often called semi-supervised learning or transductive inference. A principled approach to semi-supervised learning is to design a classifying function which is sufficiently smooth with respect to the intrinsic structure collectively revealed by known labeled and unlabeled points. We present a simple algorithm to obtain such a smooth solution. Our method yields encouraging experimental results on a number of classification problems and demonstrates effective use of unlabeled data.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning to Find Pre-Images

Bakir, G., Weston, J., Schölkopf, B.

In Advances in Neural Information Processing Systems 16, pages: 449-456, (Editors: S Thrun and LK Saul and B Schölkopf), MIT Press, Cambridge, MA, USA, 17th Annual Conference on Neural Information Processing Systems (NIPS), June 2004 (inproceedings)

Abstract
We consider the problem of reconstructing patterns from a feature map. Learning algorithms using kernels to operate in a reproducing kernel Hilbert space (RKHS) express their solutions in terms of input points mapped into the RKHS. We introduce a technique based on kernel principal component analysis and regression to reconstruct corresponding patterns in the input space (aka pre-images) and review its performance in several applications requiring the construction of pre-images. The introduced technique avoids difficult and/or unstable numerical optimization, is easy to implement and, unlike previous methods, permits the computation of pre-images in discrete input spaces.

ei

PDF Web [BibTex]

PDF Web [BibTex]