Header logo is


2015


no image
Automotive domain wall propagation in ferromagnetic rings

Richter, K., Mawass, M., Krone, A., Krüger, B., Weigand, M., Schütz, G., Stoll, H., Kläui, M.

In IEEE International Magnetics Conference (INTERMAG 2015), IEEE, Beijing, China, 2015 (inproceedings)

mms

DOI [BibTex]

2015


DOI [BibTex]


no image
High resolution, high efficiency mulitlayer Fresnel zone plates for soft and hard X-rays

Sanli, U., Keskinbora, K., Gregorczyk, K., Leister, J., Teeny, N., Grévent, C., Knez, M., Schütz, G.

{Proceedings of SPIE}, 9592, SPIE, Bellingham, Washington, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Macroscopic drift current in the inverse Faraday effect

Hertel, R., Fähnle, M.

{Physical Review B}, 91(2), American Physical Society, Woodbury, NY, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Single-step 3D nanofabrication of kinoform optics via gray-scale focused ion beam lithography for efficient X-ray focusing

Keskinbora, K., Grévent, C., Hirscher, M., Weigand, M., Schütz, G.

{Advanced Optical Materials}, 3, pages: 792-800, WILEY-VCH Verlag GmbH Co. KGaA, Weinheim, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Band structure engineering of two-dimensional magnonic vortex crystals

Behncke, C., Hänze, M., Adolff, C. F., Weigand, M., Meier, G.

{Physical Review B}, 91(22), American Physical Society, Woodbury, NY, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Towards denoising XMCD movies of fast magnetization dynamics using extended Kalman filter

Kopp, M., Harmeling, S., Schütz, G., Schölkopf, B., Fähnle, M.

{Ultramicroscopy}, 148, pages: 115-122, North-Holland, Amsterdam, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Humanoid Momentum Estimation Using Sensed Contact Wrenches

Rotella, N., Herzog, A., Schaal, S., Righetti, L.

In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pages: 556-563, IEEE, Seoul, South Korea, 2015 (inproceedings)

Abstract
This work presents approaches for the estimation of quantities important for the control of the momentum of a humanoid robot. In contrast to previous approaches which use simplified models such as the Linear Inverted Pendulum Model, we present estimators based on the momentum dynamics of the robot. By using this simple yet dynamically-consistent model, we avoid the issues of using simplified models for estimation. We develop an estimator for the center of mass and full momentum which can be reformulated to estimate center of mass offsets as well as external wrenches applied to the robot. The observability of these estimators is investigated and their performance is evaluated in comparison to previous approaches.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A Reward-Maximizing Spiking Neuron as a Bounded Rational Decision Maker

Leibfried, F, Braun, DA

Neural Computation, 27(8):1686-1720, July 2015 (article)

Abstract
Rate distortion theory describes how to communicate relevant information most efficiently over a channel with limited capacity. One of the many applications of rate distortion theory is bounded rational decision making, where decision makers are modeled as information channels that transform sensory input into motor output under the constraint that their channel capacity is limited. Such a bounded rational decision maker can be thought to optimize an objective function that trades off the decision maker's utility or cumulative reward against the information processing cost measured by the mutual information between sensory input and motor output. In this study, we interpret a spiking neuron as a bounded rational decision maker that aims to maximize its expected reward under the computational constraint that the mutual information between the neuron's input and output is upper bounded. This abstract computational constraint translates into a penalization of the deviation between the neuron's instantaneous and average firing behavior. We derive a synaptic weight update rule for such a rate distortion optimizing neuron and show in simulations that the neuron efficiently extracts reward-relevant information from the input by trading off its synaptic strengths against the collected reward.

ei

DOI [BibTex]

DOI [BibTex]


no image
Magnetic moments induce strong phonon renormalization in FeSi

Krannich, S., Sidis, Y., Lamago, D., Heid, R., Mignot, J., von Löhneysen, H., Ivanov, A., Steffens, P., Keller, T., Wang, L., Goering, E., Weber, F.

{Nature Communications}, 6, Nature Publishing Group, London, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Reconstructing Street-Scenes in Real-Time From a Driving Car

Usenko, V., Engel, J., Stueckler, J., Cremers, D.

In Proc. of the Int. Conference on 3D Vision (3DV), October 2015 (inproceedings)

ev

[BibTex]

[BibTex]


no image
Model-based strategy selection learning

Lieder, F., Griffiths, T. L.

The 2nd Multidisciplinary Conference on Reinforcement Learning and Decision Making, 2015 (article)

re

Project Page [BibTex]

Project Page [BibTex]


no image
Cognitive modeling meets instructional design: Exploring Cognitive Load Theory with ACT-R

Wirzberger, M., Rey, G. D.

In Trends in Neuroergonomics. Proceedings of the 11th Berlin Workshop Human-Machine Systems, pages: 190-193, Universitätsverlag der TU Berlin, Berlin, 2015 (inproceedings)

re

DOI [BibTex]

DOI [BibTex]


no image
What is epistemic value in free energy models of learning and acting? A bounded rationality perspective

Ortega, PA, Braun, DA

Cognitive Neuroscience, 6(4):215-216, December 2015 (article)

Abstract
Free energy models of learning and acting do not only care about utility or extrinsic value, but also about intrinsic value, that is, the information value stemming from probability distributions that represent beliefs or strategies. While these intrinsic values can be interpreted as epistemic values or exploration bonuses under certain conditions, the framework of bounded rationality offers a complementary interpretation in terms of information-processing costs that we discuss here.

ei

DOI [BibTex]

DOI [BibTex]


no image
Perpendicular magnetisation from in-plane fields in nano-scaled antidot lattices

Gräfe, J., Haering, F., Tietze, T., Audehm, P., Weigand, M., Wiedwald, U., Ziemann, P., Gawronski, P., Schütz, G., Goering, E. J.

{Nanotechnology}, 26(22), IOP Pub., Bristol, UK, 2015 (article)

mms

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Theory of ultrafast demagnetization after femtosecond laser pulses

Fähnle, M., Illg, C., Haag, M., Teeny, N.

{Acta Physica Polonica A}, 127(2):170-175, Państwowe Wydawnictwo Naukowe, Warszawa, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Non-linear radial spinwave modes in thin magnetic disks

Helsen, M., Gangwar, Ajay, De Clercq, J., Vansteenkiste, A., Weigand, M., Back, C. H., Van Waeyenberge, B.

{Applied Physics Letters}, 106(3), American Institute of Physics, Melville, NY, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Hydrogen isotope separation in metal-organic frameworks: Kinetic or chemical affinity quantum-sieving?

Savchenko, I., Mavrandonakis, A., Heine, T., Oh, H., Teufel, J., Hirscher, M.

{Microporous and Mesoporous Materials}, 216, pages: 133-137, Elsevier, Amsterdam, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
High-resolution dichroic imaging of magnetic flux distributions in superconductors with scanning x-ray microscopy

Ruoß, S., Stahl, C., Weigand, M., Schütz, G., Albrecht, J.

{Applied Physics Letters}, 106, American Institute of Physics, Melville, NY, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
The third dimension: Vortex core reversal by interaction with \textquotesingleflexure modes’

Noske, M., Stoll, H., Fähnle, M., Weigand, M., Dieterle, G., Förster, J., Gangwar, A., Slavin, A., Back, C. H., Schütz, G.

In IEEE International Magnetics Conference (INTERMAG 2015), IEEE, Beijing, China, 2015 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Preparation and characterisation of epitaxial Pt/Cu/FeMn/Co thin films on (100)-oriented MgO single crystals

Schmidt, M., Gräfe, J., Audehm, P., Phillipp, F., Schütz, G., Goering, E.

{Physica Status Solidi A}, 212(10):2114-2123, Wiley-VCH, Weinheim, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Probing the magnetic moments of [MnIII6CrIII]3+ single-molecule magnets - A cross comparison of XMCD and spin-resolved electron spectroscopy

Helmstedt, A., Dohmeier, N., Müller, N., Gryzia, A., Brechling, A., Heinzmann, U., Hoeke, V., Krickemeyer, E., Glaser, T., Leicht, P., Fonin, M., Tietze, T., Joly, L., Kuepper, K.

{Journal of Electron Spectroscopy and Related Phenomena}, 198, pages: 12-19, Elsevier B.V., Amsterdam, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Skyrmions at room temperature in magnetic multilayers

Moreau-Luchaire, C., Reyren, N., Moutafis, C., Sampaio, J., Van Horne, N., Vaz, C. A., Warnicke, P., Garcia, K., Weigand, M., Bouzehouane, K., Deranlot, C., George, J., Raabe, J., Cros, V., Fert, A.

In IEEE International Magnetics Conference (INTERMAG 2015), IEEE, Beijing, China, 2015 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]

2010


no image
Reinforcement learning of full-body humanoid motor skills

Stulp, F., Buchli, J., Theodorou, E., Schaal, S.

In Humanoid Robots (Humanoids), 2010 10th IEEE-RAS International Conference on, pages: 405-410, December 2010, clmc (inproceedings)

Abstract
Applying reinforcement learning to humanoid robots is challenging because humanoids have a large number of degrees of freedom and state and action spaces are continuous. Thus, most reinforcement learning algorithms would become computationally infeasible and require a prohibitive amount of trials to explore such high-dimensional spaces. In this paper, we present a probabilistic reinforcement learning approach, which is derived from the framework of stochastic optimal control and path integrals. The algorithm, called Policy Improvement with Path Integrals (PI2), has a surprisingly simple form, has no open tuning parameters besides the exploration noise, is model-free, and performs numerically robustly in high dimensional learning problems. We demonstrate how PI2 is able to learn full-body motor skills on a 34-DOF humanoid robot. To demonstrate the generality of our approach, we also apply PI2 in the context of variable impedance control, where both planned trajectories and gain schedules for each joint are optimized simultaneously.

am

link (url) [BibTex]

2010


link (url) [BibTex]


no image
Learning Table Tennis with a Mixture of Motor Primitives

Mülling, K., Kober, J., Peters, J.

In Proceedings of the 10th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2010), pages: 411-416, IEEE, Piscataway, NJ, USA, 10th IEEE-RAS International Conference on Humanoid Robots (Humanoids), December 2010 (inproceedings)

Abstract
Table tennis is a sufficiently complex motor task for studying complete skill learning systems. It consists of several elementary motions and requires fast movements, accurate control, and online adaptation. To represent the elementary movements needed for robot table tennis, we rely on dynamic systems motor primitives (DMP). While such DMPs have been successfully used for learning a variety of simple motor tasks, they only represent single elementary actions. In order to select and generalize among different striking movements, we present a new approach, called Mixture of Motor Primitives that uses a gating network to activate appropriate motor primitives. The resulting policy enables us to select among the appropriate motor primitives as well as to generalize between them. In order to obtain a fully learned robot table tennis setup, we also address the problem of predicting the necessary context information, i.e., the hitting point in time and space where we want to hit the ball. We show that the resulting setup was capable of playing rudimentary table tennis using an anthropomorphic robot arm.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Learning an interactive segmentation system

Nickisch, H., Rother, C., Kohli, P., Rhemann, C.

In Proceedings of the Seventh Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP 2010), pages: 274-281, (Editors: Chellapa, R. , P. Anandan, A. N. Rajagopalan, P. J. Narayanan, P. Torr), ACM Press, Nw York, NY, USA, Seventh Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP), December 2010 (inproceedings)

Abstract
Many successful applications of computer vision to image or video manipulation are interactive by nature. However, parameters of such systems are often trained neglecting the user. Traditionally, interactive systems have been treated in the same manner as their fully automatic counterparts. Their performance is evaluated by computing the accuracy of their solutions under some fixed set of user interactions. This paper proposes a new evaluation and learning method which brings the user in the loop. It is based on the use of an active robot user -- a simulated model of a human user. We show how this approach can be used to evaluate and learn parameters of state-of-the-art interactive segmentation systems. We also show how simulated user models can be integrated into the popular max-margin method for parameter learning and propose an algorithm to solve the resulting optimisation problem.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Using an Infinite Von Mises-Fisher Mixture Model to Cluster Treatment Beam Directions in External Radiation Therapy

Bangert, M., Hennig, P., Oelfke, U.

In pages: 746-751 , (Editors: Draghici, S. , T.M. Khoshgoftaar, V. Palade, W. Pedrycz, M.A. Wani, X. Zhu), IEEE, Piscataway, NJ, USA, Ninth International Conference on Machine Learning and Applications (ICMLA), December 2010 (inproceedings)

Abstract
We present a method for fully automated selection of treatment beam ensembles for external radiation therapy. We reformulate the beam angle selection problem as a clustering problem of locally ideal beam orientations distributed on the unit sphere. For this purpose we construct an infinite mixture of von Mises-Fisher distributions, which is suited in general for density estimation from data on the D-dimensional sphere. Using a nonparametric Dirichlet process prior, our model infers probability distributions over both the number of clusters and their parameter values. We describe an efficient Markov chain Monte Carlo inference algorithm for posterior inference from experimental data in this model. The performance of the suggested beam angle selection framework is illustrated for one intra-cranial, pancreas, and prostate case each. The infinite von Mises-Fisher mixture model (iMFMM) creates between 18 and 32 clusters, depending on the patient anatomy. This suggests to use the iMFMM directly for beam ensemble selection in robotic radio surgery, or to generate low-dimensional input for both subsequent optimization of trajectories for arc therapy and beam ensemble selection for conventional radiation therapy.

ei pn

Web DOI [BibTex]

Web DOI [BibTex]


no image
Causal relationships between frequency bands of extracellular signals in visual cortex revealed by an information theoretic analysis

Besserve, M., Schölkopf, B., Logothetis, N., Panzeri, S.

Journal of Computational Neuroscience, 29(3):547-566, December 2010 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Tackling Box-Constrained Optimization via a New Projected Quasi-Newton Approach

Kim, D., Sra, S., Dhillon, I.

SIAM Journal on Scientific Computing, 32(6):3548-3563 , December 2010 (article)

Abstract
Numerous scientific applications across a variety of fields depend on box-constrained convex optimization. Box-constrained problems therefore continue to attract research interest. We address box-constrained (strictly convex) problems by deriving two new quasi-Newton algorithms. Our algorithms are positioned between the projected-gradient [J. B. Rosen, J. SIAM, 8 (1960), pp. 181–217] and projected-Newton [D. P. Bertsekas, SIAM J. Control Optim., 20 (1982), pp. 221–246] methods. We also prove their convergence under a simple Armijo step-size rule. We provide experimental results for two particular box-constrained problems: nonnegative least squares (NNLS), and nonnegative Kullback–Leibler (NNKL) minimization. For both NNLS and NNKL our algorithms perform competitively as compared to well-established methods on medium-sized problems; for larger problems our approach frequently outperforms the competition.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Algorithmen zum Automatischen Erlernen von Motorfähigkeiten

Peters, J., Kober, J., Schaal, S.

at - Automatisierungstechnik, 58(12):688-694, December 2010 (article)

Abstract
Robot learning methods which allow autonomous robots to adapt to novel situations have been a long standing vision of robotics, artificial intelligence, and cognitive sciences. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics. If possible, scaling was usually only achieved in precisely pre-structured domains. In this paper, we investigate the ingredients for a general approach policy learning with the goal of an application to motor skill refinement in order to get one step closer towards human-like performance. For doing so, we study two major components for such an approach, i. e., firstly, we study policy learning algorithms which can be applied in the general setting of motor skill learning, and, secondly, we study a theoretically well-founded general approach to representing the required control structures for task representation and execution.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Online algorithms for submodular minimization with combinatorial constraints

Jegelka, S., Bilmes, J.

In pages: 1-6, NIPS Workshop on Discrete Optimization in Machine Learning: Structures, Algorithms and Applications (DISCML), December 2010 (inproceedings)

Abstract
Building on recent results for submodular minimization with combinatorial constraints, and on online submodular minimization, we address online approximation algorithms for submodular minimization with combinatorial constraints. We discuss two types of algorithms and outline approximation algorithms that integrate into those.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
PAC-Bayesian Analysis of Co-clustering and Beyond

Seldin, Y., Tishby, N.

Journal of Machine Learning Research, 11, pages: 3595-3646, December 2010 (article)

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Multi-agent random walks for local clustering

Alamgir, M., von Luxburg, U.

In Proceedings of the IEEE International Conference on Data Mining (ICDM 2010), pages: 18-27, (Editors: Webb, G. I., B. Liu, C. Zhang, D. Gunopulos, X. Wu), IEEE, Piscataway, NJ, USA, IEEE International Conference on Data Mining (ICDM), December 2010 (inproceedings)

Abstract
We consider the problem of local graph clustering where the aim is to discover the local cluster corresponding to a point of interest. The most popular algorithms to solve this problem start a random walk at the point of interest and let it run until some stopping criterion is met. The vertices visited are then considered the local cluster. We suggest a more powerful alternative, the multi-agent random walk. It consists of several “agents” connected by a fixed rope of length l. All agents move independently like a standard random walk on the graph, but they are constrained to have distance at most l from each other. The main insight is that for several agents it is harder to simultaneously travel over the bottleneck of a graph than for just one agent. Hence, the multi-agent random walk has less tendency to mistakenly merge two different clusters than the original random walk. In our paper we analyze the multi-agent random walk theoretically and compare it experimentally to the major local graph clustering algorithms from the literature. We find that our multi-agent random walk consistently outperforms these algorithms.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Lack of Discriminatory Function for Endoscopy Skills on a Computer-based Simulator

Kim, S., Spencer, G., Makar, G., Ahmad, N., Jaffe, D., Ginsberg, G., Kuchenbecker, K. J., Kochman, M.

Surgical Endoscopy, 24(12):3008-3015, December 2010 (article)

hi

[BibTex]

[BibTex]


no image
Effects of Packet Losses to Stability in Bilateral Teleoperation Systems

Hong, A., Cho, JH., Lee, DY.

In pages: 1043-1044, Korean Society of Mechanical Engineers, Seoul, South Korea, KSME Fall Annual Meeting, November 2010 (inproceedings)

ei

[BibTex]

[BibTex]


no image
Gaussian Processes for Machine Learning (GPML) Toolbox

Rasmussen, C., Nickisch, H.

Journal of Machine Learning Research, 11, pages: 3011-3015, November 2010 (article)

Abstract
The GPML toolbox provides a wide range of functionality for Gaussian process (GP) inference and prediction. GPs are specified by mean and covariance functions; we offer a library of simple mean and covariance functions and mechanisms to compose more complex ones. Several likelihood functions are supported including Gaussian and heavy-tailed for regression as well as others suitable for classification. Finally, a range of inference methods is provided, including exact and variational inference, Expectation Propagation, and Laplace's method dealing with non-Gaussian likelihoods and FITC for dealing with large regression tasks.

ei

Web [BibTex]

Web [BibTex]


no image
Combining Real-Time Brain-Computer Interfacing and Robot Control for Stroke Rehabilitation

Gomez Rodriguez, M., Peters, J., Hill, J., Gharabaghi, A., Schölkopf, B., Grosse-Wentrup, M.

In Proceedings of SIMPAR 2010 Workshops, pages: 59-63, Brain-Computer Interface Workshop at SIMPAR: 2nd International Conference on Simulation, Modeling, and Programming for Autonomous Robots, November 2010 (inproceedings)

Abstract
Brain-Computer Interfaces based on electrocorticography (ECoG) or electroencephalography (EEG), in combination with robot-assisted active physical therapy, may support traditional rehabilitation procedures for patients with severe motor impairment due to cerebrovascular brain damage caused by stroke. In this short report, we briefly review the state-of-the art in this exciting new field, give an overview of the work carried out at the Max Planck Institute for Biological Cybernetics and the University of T{\"u}bingen, and discuss challenges that need to be addressed in order to move from basic research to clinical studies.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-Å resolution

Armache, J-P., Jarasch, A., Anger, AM., Villa, E., Becker, T., Bhushan, S., Jossinet, F., Habeck, M., Dindar, G., Franckenberg, S., Marquez, V., Mielke, T., Thomm, M., Berninghausen, O., Beatrix, B., Söding, J., Westhof, E., Wilson, DN., Beckmann, R.

Proceedings of the National Academy of Sciences of the United States of America, 107(46):19748-19753, November 2010 (article)

Abstract
Protein biosynthesis, the translation of the genetic code into polypeptides, occurs on ribonucleoprotein particles called ribosomes. Although X-ray structures of bacterial ribosomes are available, high-resolution structures of eukaryotic 80S ribosomes are lacking. Using cryoelectron microscopy and single-particle reconstruction, we have determined the structure of a translating plant (Triticum aestivum) 80S ribosome at 5.5-Å resolution. This map, together with a 6.1-Å map of a Saccharomyces cerevisiae 80S ribosome, has enabled us to model ∼98% of the rRNA. Accurate assignment of the rRNA expansion segments (ES) and variable regions has revealed unique ES–ES and r-protein–ES interactions, providing insight into the structure and evolution of the eukaryotic ribosome.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Policy gradient methods

Peters, J.

Scholarpedia, 5(11):3698, November 2010 (article)

Abstract
Policy gradient methods are a type of reinforcement learning techniques that rely upon optimizing parametrized policies with respect to the expected return (long-term cumulative reward) by gradient descent. They do not suffer from many of the problems that have been marring traditional reinforcement learning approaches such as the lack of guarantees of a value function, the intractability problem resulting from uncertain state information and the complexity arising from continuous states & actions.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Localization of eukaryote-specific ribosomal proteins in a 5.5-Å cryo-EM map of the 80S eukaryotic ribosome

Armache, J-P., Jarasch, A., Anger, AM., Villa, E., Becker, T., Bhushan, S., Jossinet, F., Habeck, M., Dindar, G., Franckenberg, S., Marquez, V., Mielke, T., Thomm, M., Berninghausen, O., Beatrix, B., Söding, J., Westhof, E., Wilson, DN., Beckmann, R.

Proceedings of the National Academy of Sciences of the United States of America, 107(46):19754-19759, November 2010 (article)

Abstract
Protein synthesis in all living organisms occurs on ribonucleoprotein particles, called ribosomes. Despite the universality of this process, eukaryotic ribosomes are significantly larger in size than their bacterial counterparts due in part to the presence of 80 r proteins rather than 54 in bacteria. Using cryoelectron microscopy reconstructions of a translating plant (Triticum aestivum) 80S ribosome at 5.5-Å resolution, together with a 6.1-Å map of a translating Saccharomyces cerevisiae 80S ribosome, we have localized and modeled 74/80 (92.5%) of the ribosomal proteins, encompassing 12 archaeal/eukaryote-specific small subunit proteins as well as the complete complement of the ribosomal proteins of the eukaryotic large subunit. Near-complete atomic models of the 80S ribosome provide insights into the structure, function, and evolution of the eukaryotic translational apparatus.

ei

Web DOI [BibTex]

Web DOI [BibTex]


Thumb xl screen shot 2015 08 23 at 15.52.25
Enhanced Visual Scene Understanding through Human-Robot Dialog

Johnson-Roberson, M., Bohg, J., Kragic, D., Skantze, G., Gustafson, J., Carlson, R.

In Proceedings of AAAI 2010 Fall Symposium: Dialog with Robots, November 2010 (inproceedings)

am

pdf [BibTex]

pdf [BibTex]


no image
Spatio-Spectral Remote Sensing Image Classification With Graph Kernels

Camps-Valls, G., Shervashidze, N., Borgwardt, K.

IEEE Geoscience and Remote Sensing Letters, 7(4):741-745, October 2010 (article)

Abstract
This letter presents a graph kernel for spatio-spectral remote sensing image classification with support vector machines (SVMs). The method considers higher order relations in the neighborhood (beyond pairwise spatial relations) to iteratively compute a kernel matrix for SVM learning. The proposed kernel is easy to compute and constitutes a powerful alternative to existing approaches. The capabilities of the method are illustrated in several multi- and hyperspectral remote sensing images acquired over both urban and agricultural areas.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Causal Inference Using the Algorithmic Markov Condition

Janzing, D., Schölkopf, B.

IEEE Transactions on Information Theory, 56(10):5168-5194, October 2010 (article)

Abstract
Inferring the causal structure that links $n$ observables is usually based upon detecting statistical dependences and choosing simple graphs that make the joint measure Markovian. Here we argue why causal inference is also possible when the sample size is one. We develop a theory how to generate causal graphs explaining similarities between single objects. To this end, we replace the notion of conditional stochastic independence in the causal Markov condition with the vanishing of conditional algorithmic mutual information and describe the corresponding causal inference rules. We explain why a consistent reformulation of causal inference in terms of algorithmic complexity implies a new inference principle that takes into account also the complexity of conditional probability densities, making it possible to select among Markov equivalent causal graphs. This insight provides a theoretical foundation of a heuristic principle proposed in earlier work. We also sketch some ideas on how to replace Kolmogorov complexity with decidable complexity criteria. This can be seen as an algorithmic analog of replacing the empirically undecidable question of statistical independence with practical independence tests that are based on implicit or explicit assumptions on the underlying distribution.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Recurrent Policy Gradients

Wierstra, D., Förster, A., Peters, J., Schmidhuber, J.

Logic Journal of the IGPL, 18(5):620-634, October 2010 (article)

Abstract
Reinforcement learning for partially observable Markov decision problems (POMDPs) is a challenge as it requires policies with an internal state. Traditional approaches suffer significantly from this shortcoming and usually make strong assumptions on the problem domain such as perfect system models, state-estimators and a Markovian hidden system. Recurrent neural networks (RNNs) offer a natural framework for dealing with policy learning using hidden state and require only few limiting assumptions. As they can be trained well using gradient descent, they are suited for policy gradient approaches. In this paper, we present a policy gradient method, the Recurrent Policy Gradient which constitutes a model-free reinforcement learning method. It is aimed at training limited-memory stochastic policies on problems which require long-term memories of past observations. The approach involves approximating a policy gradient for a recurrent neural network by backpropagating return-weighted characteristic eligibilities through time. Using a ‘‘Long Short-Term Memory’’ RNN architecture, we are able to outperform previous RL methods on three important benchmark tasks. Furthermore, we show that using history-dependent baselines helps reducing estimation variance significantly, thus enabling our approach to tackle more challenging, highly stochastic environments.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Learning as a key ability for Human-Friendly Robots

Peters, J., Kober, J., Mülling, K., Krömer, O., Nguyen-Tuong, D., Wang, Z., Rodriguez Gomez, M., Grosse-Wentrup, M.

In pages: 1-2, 3rd Workshop for Young Researchers on Human-Friendly Robotics (HFR), October 2010 (inproceedings)

ei

Web [BibTex]

Web [BibTex]


no image
Closing the sensorimotor loop: Haptic feedback facilitates decoding of arm movement imagery

Gomez Rodriguez, M., Peters, J., Hill, J., Schölkopf, B., Gharabaghi, A., Grosse-Wentrup, M.

In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC 2010), pages: 121-126, IEEE, Piscataway, NJ, USA, IEEE International Conference on Systems, Man and Cybernetics (SMC), October 2010 (inproceedings)

Abstract
Brain-Computer Interfaces (BCIs) in combination with robot-assisted physical therapy may become a valuable tool for neurorehabilitation of patients with severe hemiparetic syndromes due to cerebrovascular brain damage (stroke) and other neurological conditions. A key aspect of this approach is reestablishing the disrupted sensorimotor feedback loop, i.e., determining the intended movement using a BCI and helping a human with impaired motor function to move the arm using a robot. It has not been studied yet, however, how artificially closing the sensorimotor feedback loop affects the BCI decoding performance. In this article, we investigate this issue in six healthy subjects, and present evidence that haptic feedback facilitates the decoding of arm movement intention. The results provide evidence of the feasibility of future rehabilitative efforts combining robot-assisted physical therapy with BCIs.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Learning Probabilistic Discriminative Models of Grasp Affordances under Limited Supervision

Erkan, A., Kroemer, O., Detry, R., Altun, Y., Piater, J., Peters, J.

In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), pages: 1586-1591, IEEE, Piscataway, NJ, USA, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2010 (inproceedings)

Abstract
This paper addresses the problem of learning and efficiently representing discriminative probabilistic models of object-specific grasp affordances particularly when the number of labeled grasps is extremely limited. The proposed method does not require an explicit 3D model but rather learns an implicit manifold on which it defines a probability distribution over grasp affordances. We obtain hypothetical grasp configurations from visual descriptors that are associated with the contours of an object. While these hypothetical configurations are abundant, labeled configurations are very scarce as these are acquired via time-costly experiments carried out by the robot. Kernel logistic regression (KLR) via joint kernel maps is trained to map the hypothesis space of grasps into continuous class-conditional probability values indicating their achievability. We propose a soft-supervised extension of KLR and a framework to combine the merits of semi-supervised and active learning approaches to tackle the scarcity of labeled grasps. Experimental evaluation shows that combining active and semi-supervised learning is favorable in the existence of an oracle. Furthermore, semi-supervised learning outperforms supervised learning, particularly when the labeled data is very limited.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Discriminative frequent subgraph mining with optimality guarantees

Thoma, M., Cheng, H., Gretton, A., Han, J., Kriegel, H., Smola, A., Song, L., Yu, P., Yan, X., Borgwardt, K.

Journal of Statistical Analysis and Data Mining, 3(5):302–318, October 2010 (article)

Abstract
The goal of frequent subgraph mining is to detect subgraphs that frequently occur in a dataset of graphs. In classification settings, one is often interested in discovering discriminative frequent subgraphs, whose presence or absence is indicative of the class membership of a graph. In this article, we propose an approach to feature selection on frequent subgraphs, called CORK, that combines two central advantages. First, it optimizes a submodular quality criterion, which means that we can yield a near-optimal solution using greedy feature selection. Second, our submodular quality function criterion can be integrated into gSpan, the state-of-the-art tool for frequent subgraph mining, and help to prune the search space for discriminative frequent subgraphs even during frequent subgraph mining.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
A biomimetic approach to robot table tennis

Mülling, K., Kober, J., Peters, J.

In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), pages: 1921-1926, IEEE, Piscataway, NJ, USA, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2010 (inproceedings)

Abstract
Although human beings see and move slower than table tennis or baseball robots, they manage to outperform such robot systems. One important aspect of this better performance is the human movement generation. In this paper, we study trajectory generation for table tennis from a biomimetic point of view. Our focus lies on generating efficient stroke movements capable of mastering variations in the environmental conditions, such as changing ball speed, spin and position. We study table tennis from a human motor control point of view. To make headway towards this goal, we construct a trajectory generator for a single stroke using the discrete movement stages hypothesis and the virtual hitting point hypothesis to create a model that produces a human-like stroke movement. We verify the functionality of the trajectory generator for a single forehand stroke both in a simulation and using a real Barrett WAM.

ei

Web DOI [BibTex]

Web DOI [BibTex]


Thumb xl screen shot 2015 08 23 at 15.18.17
Scene Representation and Object Grasping Using Active Vision

Gratal, X., Bohg, J., Björkman, M., Kragic, D.

In IROS’10 Workshop on Defining and Solving Realistic Perception Problems in Personal Robotics, October 2010 (inproceedings)

Abstract
Object grasping and manipulation pose major challenges for perception and control and require rich interaction between these two fields. In this paper, we concentrate on the plethora of perceptual problems that have to be solved before a robot can be moved in a controlled way to pick up an object. A vision system is presented that integrates a number of different computational processes, e.g. attention, segmentation, recognition or reconstruction to incrementally build up a representation of the scene suitable for grasping and manipulation of objects. Our vision system is equipped with an active robotic head and a robot arm. This embodiment enables the robot to perform a number of different actions like saccading, fixating, and grasping. By applying these actions, the robot can incrementally build a scene representation and use it for interaction. We demonstrate our system in a scenario for picking up known objects from a table top. We also show the system’s extendibility towards grasping of unknown and familiar objects.

am

video pdf slides [BibTex]

video pdf slides [BibTex]


Thumb xl after250measurementprmgoodlinespec
Strategies for multi-modal scene exploration

Bohg, J., Johnson-Roberson, M., Björkman, M., Kragic, D.

In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages: 4509-4515, October 2010 (inproceedings)

Abstract
We propose a method for multi-modal scene exploration where initial object hypothesis formed by active visual segmentation are confirmed and augmented through haptic exploration with a robotic arm. We update the current belief about the state of the map with the detection results and predict yet unknown parts of the map with a Gaussian Process. We show that through the integration of different sensor modalities, we achieve a more complete scene model. We also show that the prediction of the scene structure leads to a valid scene representation even if the map is not fully traversed. Furthermore, we propose different exploration strategies and evaluate them both in simulation and on our robotic platform.

am

video pdf DOI Project Page [BibTex]

video pdf DOI Project Page [BibTex]