Header logo is


2010


no image
Physisorption in porous materials

Hirscher, M., Panella, B.

In Handbook of Hydrogen Storage, pages: 39-62, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010 (incollection)

mms

[BibTex]

2010


[BibTex]


no image
Formation and mobility of protonic charge carriers in methyl sulfonic acid-water mixtures: A model for sulfonic acid based ionomers at low degree of hydration

Telfah, A., Majer, G., Kreuer, K. D., Schuster, M., Maier, J.

{Solid State Ionics}, 181, pages: 461-465, 2010 (article)

mms

[BibTex]

[BibTex]


no image
Continuous photobleaching to study the growth modes of focal adhesions

de Beer, A. G. F., Majer, G., Roke, S., Spatz, J. P.

{Journal of Adhesion Science and Technology}, 24, pages: 2323-2334, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic antivortex-core reversal by circular-rotational spin currents

Kamionka, T., Martens, M., Chou, K. W., Curcic, M., Drews, A., Schütz, G., Tyliszczak, T., Stoll, H., Van Waeyenberge, B., Meier, G.

{Physical Review Letters}, 105, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Extension of Yafet\textquotesingles theory of spin relaxation to ferromagnets

Steiauf, D., Illg, C., Fähnle, M.

{Journal of Magnetism and Magnetic Materials}, 322, pages: L5-L7, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Stochastic Differential Dynamic Programming

Theodorou, E., Tassa, Y., Todorov, E.

In the proceedings of American Control Conference (ACC 2010) , 2010, clmc (article)

Abstract
We present a generalization of the classic Differential Dynamic Programming algorithm. We assume the existence of state- and control-dependent process noise, and proceed to derive the second-order expansion of the cost-to-go. Despite having quartic and cubic terms in the initial expression, we show that these vanish, leaving us with the same quadratic structure as standard DDP.

am

PDF [BibTex]

PDF [BibTex]


no image
Enhanced wet adhesion and shear of elastomeric micro-fiber arrays with mushroom tip geometry and a photopolymerized p (DMA-co-MEA) tip coating

Glass, P., Chung, H., Washburn, N. R., Sitti, M.

Langmuir, 26(22):17357-17362, American Chemical Society, 2010 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


Visual Object-Action Recognition: Inferring Object Affordances from Human Demonstration
Visual Object-Action Recognition: Inferring Object Affordances from Human Demonstration

Kjellström, H., Romero, J., Kragic, D.

Computer Vision and Image Understanding, pages: 81-90, 2010 (article)

ps

Pdf [BibTex]

Pdf [BibTex]


no image
Lateral transport of thermal capillary waves

Smith, T. H. R., Vasilyev, O., Maciolek, A., Schmidt, M.

{Europhysics Letters}, 89(1), 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
The formation and propagation of flux avalanches in tailored MgB2 films

Treiber, S., Albrecht, J.

{New Journal of Physics}, 12, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Direct imaging of current induced magnetic vortex gyration in an asymmetric potential well

Bisig, A., Rhensius, J., Kammerer, M., Curcic, M., Stoll, H., Schütz, G., Van Waeyenberge, B., Chou, K. W., Tyliszczak, T., Heyderman, L. J., Krzyk, S., von Bieren, A., Kläui, M.

{Applied Physics Letters}, 96, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Induced magnetism of carbon atoms at the graphene/Ni(111) interface

Weser, M., Rehder, Y., Horn, K., Sicot, M., Fonin, M., Preobrajenski, A. B., Voloshina, E. N., Goering, E., Dedkov, Y. S.

{Applied Physics Letters}, 96, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Photon counting system for time-resolved experiments in multibunch mode

Puzic, A., Korhonen, T., Kalantari, B., Raabe, J., Quitmann, C., Jüllig, P., Bommer, L., Goll, D., Schütz, G., Wintz, S., Strache, T., Körner, M., Markó, D., Bunce, C., Fassbender, J.

{Synchrotron Radiation News}, 23(2):26-32, 2010 (article)

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Coupling of Fe and uncompensated Mn moments in exchange-biased Fe/MnPd

Brück, S., Macke, S., Goering, E., Ji, X., Zhan, Q., Krishnan, K. M.

{Physical Review B}, 81(13), 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Remarks about spillover and hydrogen adsorption - Comments on the contributions of A.V. Talyzin and R.T. Yang

Hirscher, M.

{Microporous and Mesoporous Materials}, 135, pages: 209-210, 2010 (article)

mms

DOI [BibTex]


no image
Grain boundary ridges and triple lines

Straumal, B. B., Sursaeva, V. G., Baretzky, B.

{Scripta Materialia}, 62(12):924-927, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Expanding micelle nanolithography to the self-assembly of multicomponent core-shell nanoparticles

Mbenkum, B. N., D\’\iaz-Ortiz, A., Gu, L., van Aken, P. A., Schütz, G.

{Journal of the American Chemical Society}, 132(31):10671-10673, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Learning control in robotics – trajectory-based opitimal control techniques

Schaal, S., Atkeson, C. G.

Robotics and Automation Magazine, 17(2):20-29, 2010, clmc (article)

Abstract
In a not too distant future, robots will be a natural part of daily life in human society, providing assistance in many areas ranging from clinical applications, education and care giving, to normal household environments [1]. It is hard to imagine that all possible tasks can be preprogrammed in such robots. Robots need to be able to learn, either by themselves or with the help of human supervision. Additionally, wear and tear on robots in daily use needs to be automatically compensated for, which requires a form of continuous self-calibration, another form of learning. Finally, robots need to react to stochastic and dynamic environments, i.e., they need to learn how to optimally adapt to uncertainty and unforeseen changes. Robot learning is going to be a key ingredient for the future of autonomous robots. While robot learning covers a rather large field, from learning to perceive, to plan, to make decisions, etc., we will focus this review on topics of learning control, in particular, as it is concerned with learning control in simulated or actual physical robots. In general, learning control refers to the process of acquiring a control strategy for a particular control system and a particular task by trial and error. Learning control is usually distinguished from adaptive control [2] in that the learning system can have rather general optimization objectivesâ??not just, e.g., minimal tracking errorâ??and is permitted to fail during the process of learning, while adaptive control emphasizes fast convergence without failure. Thus, learning control resembles the way that humans and animals acquire new movement strategies, while adaptive control is a special case of learning control that fulfills stringent performance constraints, e.g., as needed in life-critical systems like airplanes. Learning control has been an active topic of research for at least three decades. However, given the lack of working robots that actually use learning components, more work needs to be done before robot learning will make it beyond the laboratory environment. This article will survey some ongoing and past activities in robot learning to assess where the field stands and where it is going. We will largely focus on nonwheeled robots and less on topics of state estimation, as typically explored in wheeled robots [3]â??6], and we emphasize learning in continuous state-action spaces rather than discrete state-action spaces [7], [8]. We will illustrate the different topics of robot learning with examples from our own research with anthropomorphic and humanoid robots.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Learning, planning, and control for quadruped locomotion over challenging terrain

Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., Schaal, S.

International Journal of Robotics Research, 30(2):236-258, 2010, clmc (article)

Abstract
We present a control architecture for fast quadruped locomotion over rough terrain. We approach the problem by decomposing it into many sub-systems, in which we apply state-of-the-art learning, planning, optimization, and control techniques to achieve robust, fast locomotion. Unique features of our control strategy include: (1) a system that learns optimal foothold choices from expert demonstration using terrain templates, (2) a body trajectory optimizer based on the Zero- Moment Point (ZMP) stability criterion, and (3) a floating-base inverse dynamics controller that, in conjunction with force control, allows for robust, compliant locomotion over unperceived obstacles. We evaluate the performance of our controller by testing it on the LittleDog quadruped robot, over a wide variety of rough terrains of varying difficulty levels. The terrain that the robot was tested on includes rocks, logs, steps, barriers, and gaps, with obstacle sizes up to the leg length of the robot. We demonstrate the generalization ability of this controller by presenting results from testing performed by an independent external test team on terrain that has never been shown to us.

am

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Teleoperated 3-D force feedback from the nanoscale with an atomic force microscope

Onal, C. D., Sitti, M.

IEEE Transactions on nanotechnology, 9(1):46-54, IEEE, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Roll and pitch motion analysis of a biologically inspired quadruped water runner robot

Park, H. S., Floyd, S., Sitti, M.

The International Journal of Robotics Research, 29(10):1281-1297, SAGE Publications Sage UK: London, England, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing

Kim, Seok, Wu, Jian, Carlson, Andrew, Jin, Sung Hun, Kovalsky, Anton, Glass, Paul, Liu, Zhuangjian, Ahmed, Numair, Elgan, Steven L, Chen, Weiqiu, others

Proceedings of the National Academy of Sciences, 107(40):17095-17100, National Acad Sciences, 2010 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Tankbot: A palm-size, tank-like climbing robot using soft elastomer adhesive treads

Unver, O., Sitti, M.

The International Journal of Robotics Research, 29(14):1761-1777, SAGE Publications Sage UK: London, England, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Entnetzung verspannter Filme

Reindl, A.

Universität Stuttgart, Stuttgart, 2010 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Advanced ferromagnetic nanostructures

Goll, D.

Universität Stuttgart, Stuttgart, 2010 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Wasserstoff in funktionellen Dünnschichtsystemen

Honert, J.

Universität Stuttgart, Stuttgart, 2010 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Hydrogen spillover measurements of unbridged and bridged metal-organic frameworks - revisited

Campesi, R., Cuevas, F., Latroche, M., Hirscher, M.

{Physical Chemistry Chemical Physics}, 12, pages: 10457-10459, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Relating Gilbert damping and ultrafast laser-induced demagnetization

Fähnle, M., Seib, J., Illg, C.

{Physical Review B}, 82, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ferromagnetic properties of the Mn-doped nanograined ZnO films

Straumal, B. B., Protasova, S. G., Mazilkin, A. A., Myatiev, A. A., Straumal, P. B., Schütz, G., Goering, E., Baretzky, B.

{Journal of Applied Physics}, 108, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ubiquity of ferromagnetic signals in common diamagnetic oxide crystals

Khalid, M., Setzer, A., Ziese, M., Esquinazi, P., Spemann, D., Pöppl, A., Goering, E.

{Physical Review B}, 81(21), 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Calculation of the Gilbert damping matrix at low scattering rates in Gd

Seib, J., Fähnle, M.

{Physical Review B}, 82, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Adsorption technologies

Schmitz, B., Hirscher, M.

In Hydrogen and Fuel Cells, pages: 431-445, WILEY-VCH, Weinheim, 2010 (incollection)

mms

[BibTex]

[BibTex]


no image
Swift heavy ions for controlled modification of soft magnetic properties of Fe0.85N0.15 thin film

Gupta, R., Gupta, A., Bhatt, R., Rüffer, R., Avasthi, D. K.

{Journal of Physics: Condensed Matter}, 22(22), 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Note: Aligned deposition and modal characterization of micron and submicron poly (methyl methacyrlate) fiber cantilevers

Nain, A. S., Filiz, S., Burak Ozdoganlar, O., Sitti, M., Amon, C.

Review of Scientific Instruments, 81(1):016102, AIP, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Atomic-Force-Microscopy-Based Nanomanipulation Systems

Onal, C. D., Ozcan, O., Sitti, M.

In Handbook of Nanophysics: Nanomedicine and Nanorobotics, pages: 1-15, CRC Press, 2010 (incollection)

pi

[BibTex]

[BibTex]


no image
Enhanced adhesion of dopamine methacrylamide elastomers via viscoelasticity tuning

Chung, H., Glass, P., Pothen, J. M., Sitti, M., Washburn, N. R.

Biomacromolecules, 12(2):342-347, American Chemical Society, 2010 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Taming the Beast: Guided Self-organization of Behavior in Autonomous Robots

Martius, G., Herrmann, J. M.

In From Animals to Animats 11, 6226, pages: 50-61, LNCS, Springer, 2010 (incollection)

al

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Laterally driven interfaces in the three-dimensional Ising lattice gas

Smith, T. H. R., Vasilyev, O., Maciolek, A., Schmidt, M.

{Physical Review E}, 82(2), 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Samarium-cobalt 2:17 magnets: identifying Smn+1Co5n-1 phases stabilized by Zr

Stadelmaier, H. H., Kronmüller, H., Goll, D.

{Scripta Materialia}, 63, pages: 843-846, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Planar metamaterial analogue of electromagnetically induced transparancy for plasmonic sensing

Liu, N., Weiss, T., Mesch, M., Langguth, L., Eigenthaler, U., Hirscher, M., Sönnichsen, C., Giessen, H.

{Nano Letters}, 10, pages: 1103-1107, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Explaining the paradoxical diversity of ultrafast last-induced demagnetization

Koopmans, B., Malinowski, G., Dalla Longa, F., Steiauf, D., Fähnle, M., Roth, T., Cinchetti, M., Aeschlimann, M.

{Nature Materials}, 9, pages: 259-265, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
A high heat of adsorption for hydrogen in magnesium formate

Schmitz, B., Krkljus, I., Leung, E., Höffken, H. W., Müller, U., Hirscher, M.

{ChemSusChem}, 3, pages: 758-761, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Force induced destabilization of adhesion complexes at defined integrin spacings on nanostructured surfaces

de Beer, A. G. F., Cavalcanti-Adam, E. A., Majer, G., López-Garc\’\ia, M., Kessler, H., Spatz, J. P.

{Physical Review E}, 81, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Anisotropic damping of the magnetization dynamics in Ni, Co, and Fe

Gilmore, K., Stiles, M. D., Seib, J., Steiauf, D., Fähnle, M.

{Physical Review B}, 81, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Influence of [Mo6Br8F6]2- cluster inclusion within the mesoporous solid MIL-101 on hydrogen storage performance

Dybtsev, D., Serre, C., Schmitz, B., Panella, B., Hirscher, M., Latroche, M., Llewellyn, P. L., Cordier, S., Molard, Y., Haouas, M., Taulelle, F., Férey, G.

{Langmuir}, 26(13):11283-11290, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Grain boundary layers in nanocrystalline ferromagnetic zinc oxide

Straumal, B. B., Myatiev, A. A., Straumal, P. B., Mazilkin, A. A., Protasova, S. G., Goering, E., Baretzky, B.

{JETP Letters}, 92(6):396-400, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]

2009


no image
Machine Learning for Brain-Computer Interfaces

Hill, NJ.

Mini-Symposia on Assistive Machine Learning for People with Disabilities at NIPS (AMD), December 2009 (talk)

Abstract
Brain-computer interfaces (BCI) aim to be the ultimate in assistive technology: decoding a user‘s intentions directly from brain signals without involving any muscles or peripheral nerves. Thus, some classes of BCI potentially offer hope for users with even the most extreme cases of paralysis, such as in late-stage Amyotrophic Lateral Sclerosis, where nothing else currently allows communication of any kind. Other lines in BCI research aim to restore lost motor function in as natural a way as possible, reconnecting and in some cases re-training motor-cortical areas to control prosthetic, or previously paretic, limbs. Research and development are progressing on both invasive and non-invasive fronts, although BCI has yet to make a breakthrough to widespread clinical application. The high-noise high-dimensional nature of brain-signals, particularly in non-invasive approaches and in patient populations, make robust decoding techniques a necessity. Generally, the approach has been to use relatively simple feature extraction techniques, such as template matching and band-power estimation, coupled to simple linear classifiers. This has led to a prevailing view among applied BCI researchers that (sophisticated) machine-learning is irrelevant since "it doesn‘t matter what classifier you use once you‘ve done your preprocessing right and extracted the right features." I shall show a few examples of how this runs counter to both the empirical reality and the spirit of what needs to be done to bring BCI into clinical application. Along the way I‘ll highlight some of the interesting problems that remain open for machine-learners.

ei

PDF Web Web [BibTex]

2009


PDF Web Web [BibTex]


no image
Efficient Subwindow Search: A Branch and Bound Framework for Object Localization

Lampert, C., Blaschko, M., Hofmann, T.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(12):2129-2142, December 2009 (article)

Abstract
Most successful object recognition systems rely on binary classification, deciding only if an object is present or not, but not providing information on the actual object location. To estimate the object‘s location, one can take a sliding window approach, but this strongly increases the computational cost because the classifier or similarity function has to be evaluated over a large set of candidate subwindows. In this paper, we propose a simple yet powerful branch and bound scheme that allows efficient maximization of a large class of quality functions over all possible subimages. It converges to a globally optimal solution typically in linear or even sublinear time, in contrast to the quadratic scaling of exhaustive or sliding window search. We show how our method is applicable to different object detection and image retrieval scenarios. The achieved speedup allows the use of classifiers for localization that formerly were considered too slow for this task, such as SVMs with a spatial pyramid kernel or nearest-neighbor classifiers based on the chi^2 distance. We demonstrate state-of-the-art localization performance of the resulting systems on the UIUC Cars data set, the PASCAL VOC 2006 data set, and in the PASCAL VOC 2007 competition.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]