Header logo is


2014


no image
IM3SHAPE: Maximum likelihood galaxy shear measurement code for cosmic gravitational lensing

Zuntz, J., Kacprzak, T., Voigt, L., Hirsch, M., Rowe, B., Bridle, S.

Astrophysics Source Code Library, 1, pages: 09013, 2014 (article)

ei

link (url) [BibTex]

2014


link (url) [BibTex]


Thumb xl toc image
Shape control in wafer-based aperiodic 3D nanostructures

Hyeon-Ho, J., Mark, A. G., Gibbs, J. G., Reindl, T., Waizmann, U., Weis, J., Fischer, P.

NANOTECHNOLOGY, 25(23), 2014, Cover article. (article)

Abstract
Controlled local fabrication of three-dimensional (3D) nanostructures is important to explore and enhance the function of single nanodevices, but is experimentally challenging. We present a scheme based on e-beam lithography (EBL) written seeds, and glancing angle deposition (GLAD) grown structures to create nanoscale objects with defined shapes but in aperiodic arrangements. By using a continuous sacrificial corral surrounding the features of interest we grow isolated 3D nanostructures that have complex cross-sections and sidewall morphology that are surrounded by zones of clean substrate.

Cover article.

pf

DOI [BibTex]

DOI [BibTex]


no image
Event-Based State Estimation With Variance-Based Triggering

Trimpe, S., D’Andrea, R.

IEEE Transactions on Automatic Control, 59(12):3266-3281, 2014 (article)

am ics

PDF Supplementary material DOI Project Page [BibTex]

PDF Supplementary material DOI Project Page [BibTex]


no image
Efficient nearest neighbors via robust sparse hashing

Cherian, A., Sra, S., Morellas, V., Papanikolopoulos, N.

IEEE Transactions on Image Processing, 23(8):3646-3655, 2014 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl freelymoving2
A freely-moving monkey treadmill model

Foster, J., Nuyujukian, P., Freifeld, O., Gao, H., Walker, R., Ryu, S., Meng, T., Murmann, B., Black, M., Shenoy, K.

J. of Neural Engineering, 11(4):046020, 2014 (article)

Abstract
Objective: Motor neuroscience and brain-machine interface (BMI) design is based on examining how the brain controls voluntary movement, typically by recording neural activity and behavior from animal models. Recording technologies used with these animal models have traditionally limited the range of behaviors that can be studied, and thus the generality of science and engineering research. We aim to design a freely-moving animal model using neural and behavioral recording technologies that do not constrain movement. Approach: We have established a freely-moving rhesus monkey model employing technology that transmits neural activity from an intracortical array using a head-mounted device and records behavior through computer vision using markerless motion capture. We demonstrate the excitability and utility of this new monkey model, including the fi rst recordings from motor cortex while rhesus monkeys walk quadrupedally on a treadmill. Main results: Using this monkey model, we show that multi-unit threshold-crossing neural activity encodes the phase of walking and that the average ring rate of the threshold crossings covaries with the speed of individual steps. On a population level, we find that neural state-space trajectories of walking at diff erent speeds have similar rotational dynamics in some dimensions that evolve at the step rate of walking, yet robustly separate by speed in other state-space dimensions. Significance: Freely-moving animal models may allow neuroscientists to examine a wider range of behaviors and can provide a flexible experimental paradigm for examining the neural mechanisms that underlie movement generation across behaviors and environments. For BMIs, freely-moving animal models have the potential to aid prosthetic design by examining how neural encoding changes with posture, environment, and other real-world context changes. Understanding this new realm of behavior in more naturalistic settings is essential for overall progress of basic motor neuroscience and for the successful translation of BMIs to people with paralysis.

ps

pdf Supplementary DOI Project Page [BibTex]

pdf Supplementary DOI Project Page [BibTex]


no image
Sérsic galaxy models in weak lensing shape measurement: model bias, noise bias and their interaction

Kacprzak, T., Bridle, S., Rowe, B., Voigt, L., Zuntz, J., Hirsch, M., MacCrann, N.

Monthly Notices of the Royal Astronomical Society, 441(3):2528-2538, Oxford University Press, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl pictire scallop
Swimming by reciprocal motion at low Reynolds number

Qiu, T., Lee, T., Mark, A. G., Morozov, K. I., Muenster, R., Mierka, O., Turek, S., Leshansky, A. M., Fischer, P.

NATURE COMMUNICATIONS, 5, 2014, Max Planck Press Release. (article)

Abstract
Biological microorganisms swim with flagella and cilia that execute nonreciprocal motions for low Reynolds number (Re) propulsion in viscous fluids. This symmetry requirement is a consequence of Purcell's scallop theorem, which complicates the actuation scheme needed by microswimmers. However, most biomedically important fluids are non-Newtonian where the scallop theorem no longer holds. It should therefore be possible to realize a microswimmer that moves with reciprocal periodic body-shape changes in non-Newtonian fluids. Here we report a symmetric `micro-scallop', a single-hinge microswimmer that can propel in shear thickening and shear thinning (non-Newtonian) fluids by reciprocal motion at low Re. Excellent agreement between our measurements and both numerical and analytical theoretical predictions indicates that the net propulsion is caused by modulation of the fluid viscosity upon varying the shear rate. This reciprocal swimming mechanism opens new possibilities in designing biomedical microdevices that can propel by a simple actuation scheme in non-Newtonian biological fluids.

Max Planck Press Release.

pf

Video - A Swimming Micro-Scallop Video - Winner of the Micro-robotic Design Challenge in Hamlyn Symposium on Medical Robotics DOI [BibTex]

Video - A Swimming Micro-Scallop Video - Winner of the Micro-robotic Design Challenge in Hamlyn Symposium on Medical Robotics DOI [BibTex]


Thumb xl toc image
Nanohelices by shadow growth

Gibbs, J. G., Mark, A. G., Lee, T., Eslami, S., Schamel, D., Fischer, P.

NANOSCALE, 6(16):9457-9466, 2014 (article)

Abstract
The helix has remarkable qualities and is prevalent in many fields including mathematics, physics, chemistry, and biology. This shape, which is chiral by nature, is ubiquitous in biology with perhaps the most famous example being DNA. Other naturally occurring helices are common at the nanoscale in the form of protein secondary structures and in various macromolecules. Nanoscale helices exhibit a wide range of interesting mechanical, optical, and electrical properties which can be intentionally engineered into the structure by choosing the correct morphology and material. As technology advances, these fabrication parameters can be fine-tuned and matched to the application of interest. Herein, we focus on the fabrication and properties of nanohelices grown by a dynamic shadowing growth method combined with fast wafer-scale substrate patterning which has a number of distinct advantages. We review the fabrication methodology and provide several examples that illustrate the generality and utility of nanohelices shadow-grown on nanopatterns.

pf

Video - Fabrication of Designer Nanostructures DOI [BibTex]


no image
Perspective: Intelligent Systems: Bits and Bots

Spatz, J. P., Schaal, S.

Nature, (509), 2014, clmc (article)

Abstract
What is intelligence, and can we create it? Animals can perceive, reason, react and learn, but they are just one example of an intelligent system. Intelligent systems could be robots as large as humans, helping with search-and- rescue operations in dangerous places, or smart devices as tiny as a cell, delivering drugs to a target within the body. Even computing systems can be intelligent, by perceiving the world, crawling the web and processing â??big dataâ?? to extract and learn from complex information.Understanding not only how intelligence can be reproduced, but also how to build systems that put these ideas into practice, will be a challenge. Small intelligent systems will require new materials and fabrication methods, as well as com- pact information processors and power sources. And for nano-sized systems, the rules change altogether. The laws of physics operate very differently at tiny scales: for a nanorobot, swimming through water is like struggling through treacle.Researchers at the Max Planck Institute for Intelligent Systems have begun to solve these problems by developing new computational methods, experiment- ing with unique robotic systems and fabricating tiny, artificial propellers, like bacterial flagella, to propel nanocreations through their environment.

am

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Diminished White Matter Integrity in Patients with Systemic Lupus Erythematosus

Schmidt-Wilcke, T., Cagnoli, P., Wang, P., Schultz, T., Lotz, A., Mccune, W. J., Sundgren, P. C.

NeuroImage: Clinical, 5, pages: 291-297, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl publications toccontinuously distributed
Continuously distributed magnetization profile for millimeter-scale elastomeric undulatory swimming

Diller, E., Zhuang, J., Zhan Lum, G., Edwards, M. R., Sitti, M.

Applied Physics Letters, 104(17):174101, AIP, 2014 (article)

Abstract
We have developed a millimeter-scale magnetically driven swimming robot for untethered motion at mid to low Reynolds numbers. The robot is propelled by continuous undulatory deformation, which is enabled by the distributed magnetization profile of a flexible sheet. We demonstrate control of a prototype device and measure deformation and speed as a function of magnetic field strength and frequency. Experimental results are compared with simple magnetoelastic and fluid propulsion models. The presented mechanism provides an efficient remote actuation method at the millimeter scale that may be suitable for further scaling down in size for microrobotics applications in biotechnology and healthcare

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl toc image
Chiral Nanomagnets

Eslami, S., Gibbs, J. G., Rechkemmer, Y., van Slageren, J., Alarcon-Correa, M., Lee, T., Mark, A. G., Rikken, G. L. J. A., Fischer, P.

ACS PHOTONICS, 1(11):1231-1236, 2014 (article)

Abstract
We report on the enhanced optical properties of chiral magnetic nanohelices with critical dimensions comparable to the ferromagnetic domain size. They are shown to be ferromagnetic at room temperature, have defined chirality, and exhibit large optical activity in the visible as verified by electron microscopy, superconducting quantum interference device (SQUID) magnetometry, natural circular dichroism (NCD), and magnetic circular dichroism (MCD) measurements. The structures exhibit magneto-chiral dichroism (MChD), which directly demonstrates coupling between their structural chirality and magnetism. A chiral nickel (Ni) film consisting of an array of nanohelices similar to 100 nm in length exhibits an MChD anisotropy factor g(MChD) approximate to 10(-4) T-1 at room temperature in a saturation field of similar to 0.2 T, permitting polarization-independent control of the film's absorption properties through magnetic field modulation. This is also the first report of MChD in a material with structural chirality on the order of the wavelength of light, and therefore the Ni nanohelix array is a metamaterial with magnetochiral properties that can be tailored through a dynamic deposition process.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Wireless powering of e-swimmers

Roche, J., Carrara, S., Sanchez, J., Lannelongue, J., Loget, G., Bouffier, L., Fischer, P., Kuhn, A.

SCIENTIFIC REPORTS, 4, 2014 (article)

Abstract
Miniaturized structures that can move in a controlled way in solution and integrate various functionalities are attracting considerable attention due to the potential applications in fields ranging from autonomous micromotors to roving sensors. Here we introduce a concept which allows, depending on their specific design, the controlled directional motion of objects in water, combined with electronic functionalities such as the emission of light, sensing, signal conversion, treatment and transmission. The approach is based on electric field-induced polarization, which triggers different chemical reactions at the surface of the object and thereby its propulsion. This results in a localized electric current that can power in a wireless way electronic devices in water, leading to a new class of electronic swimmers (e-swimmers).

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Swelling and shrinking behaviour of photoresponsive phosphonium-based ionogel microstructures

Czugala, M., O’Connell, C., Blin, C., Fischer, P., Fraser, K. J., Benito-Lopez, F., Diamond, D.

SENSORS AND ACTUATORS B-CHEMICAL, 194, pages: 105-113, 2014 (article)

Abstract
Photoresponsive N-isopropylacrylamide ionogel microstructures are presented in this study. These ionogels are synthesised using phosphonium based room temperature ionic liquids, together with the photochromic compound benzospiropyran. The microstructures can be actuated using light irradiation, facilitating non-contact and non-invasive operation. For the first time, the characterisation of the swelling and shrinking behaviour of several photopatterned ionogel microstructures is presented and the influence of surface-area-to-volume ratio on the swelling kinetics is evaluated. It was found that the swelling and shrinking behaviour of the ionogels is strongly dependent on the nature of the ionic liquid. In particular, the {[}P-6,P-6,P-6,P-14]{[}NTf2] ionogel exhibits the greatest degree of swelling, reaching up to 180\% of its initial size, and the fastest shrinkage rate (k(sh) = 29 +/- 4 x 10(-2) s(-1)). (C) 2014 Elsevier B. V. All rights reserved.

pf

DOI [BibTex]

DOI [BibTex]


no image
Bio-Hybrid Cell-Based Actuators for Microsystems

Carlsen, Rika Wright, Sitti, Metin

Small, 10(19):3831-3851, 2014 (article)

Abstract
As we move towards the miniaturization of devices to perform tasks at the nano and microscale, it has become increasingly important to develop new methods for actuation, sensing, and control. Over the past decade, bio-hybrid methods have been investigated as a promising new approach to overcome the challenges of scaling down robotic and other functional devices. These methods integrate biological cells with artificial components and therefore, can take advantage of the intrinsic actuation and sensing functionalities of biological cells. Here, the recent advancements in bio-hybrid actuation are reviewed, and the challenges associated with the design, fabrication, and control of bio-hybrid microsystems are discussed. As a case study, focus is put on the development of bacteria-driven microswimmers, which has been investigated as a targeted drug delivery carrier. Finally, a future outlook for the development of these systems is provided. The continued integration of biological and artificial components is envisioned to enable the performance of tasks at a smaller and smaller scale in the future, leading to the parallel and distributed operation of functional systems at the microscale.

pi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Biopsy using a Magnetic Capsule Endoscope Carrying, Releasing and Retrieving Untethered Micro-Grippers

Yim, S., Gultepe, E., Gracias, D. H., Sitti, M.

IEEE Trans. on Biomedical Engineering, 61(2):513-521, IEEE, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Investigation of tip current and normal force measured simultaneously during local oxidation of titanium using dual-mode scanning probe microscopy

Ozcan, O., Hu, W., Sitti, M., Bain, J., Ricketts, D.

IET Micro \& Nano Letters, 9(5):332-336, IET, 2014 (article)

pi

[BibTex]

[BibTex]


no image
SoftCubes: Stretchable and self-assembling three-dimensional soft modular matter

Yim, S., Sitti, M.

The International Journal of Robotics Research, 33(8):1083-1097, SAGE Publications Sage UK: London, England, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Efflorescence upon humidification? X-ray microspectroscopic in situ observation of changes in aerosol microstructure and phase state upon hydration

Pöhlker, C., Saturno, J., Krüger, M. L., Förster, J. D., Weigand, M., Wiedemann, K. T., Bechtel, M., Artaxo, P., Andreae, M. O.

{Geophysical Research Letters}, 41(10):3681-3689, American Geophysical Union, Washington, D.C., 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Investigation of cellular microstructure and enhanced coercivity in sputtered Sm2(CoCuFeZr)17 film

Bhatt, R., Bhatt, P., Schütz, G.

{Journal of Applied Physics}, 115(10), American Institute of Physics, New York, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Detecting magnetic flux distributions in superconductors with polarized x-rays

Stahl, C., Audehm, P., Gräfe, J., Ruoß, S., Weigand, M., Schmidt, M., Treiber, S., Bechtel, M., Goering, E., Schütz, G., Albrecht, J.

{Physical Review B}, 90(10), American Physical Society, Woodbury, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Spatial degradation mapping and component-wise degradation tracking in polymer-fullerene blends

Pedersen, E. B. B., Tromholt, T., Madsen, M. V., Böttiger, A. P. L., Weigand, M., Krebs, F. C., Andreasen, J. W.

{Journal of Materials Chemistry C}, 2(26):5176-5182, Royal Society of Chemistry, Cambridge, UK, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Vortex core reversal due to spin wave interference

Bauer, H. G., Sproll, M., Back, C. H., Woltersdorf, G.

{Physical Review Letters}, 112, American Physical Society, Woodbury, N.Y., 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Understanding the adsorption mechanism of noble gases Kr and Xe in CPO-27-Ni, CPO-27-Mg, and ZIF-8

Magdysyuk, O. V., Adams, F., Liermann, H., Spanopoulos, I., Trikalitis, P. N., Hirscher, M., Morris, R. E., Duncan, M. J., McCormick, L. J., Dinnebier, R. E.

{Physical Chemistry Chemical Physics}, 16(43):23908-23914, Royal Society of Chemistry, Cambridge, England, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Information-Theoretic Bounded Rationality and ϵ-Optimality

Braun, DA, Ortega, PA

Entropy, 16(8):4662-4676, August 2014 (article)

Abstract
Bounded rationality concerns the study of decision makers with limited information processing resources. Previously, the free energy difference functional has been suggested to model bounded rational decision making, as it provides a natural trade-off between an energy or utility function that is to be optimized and information processing costs that are measured by entropic search costs. The main question of this article is how the information-theoretic free energy model relates to simple \(\epsilon\)-optimality models of bounded rational decision making, where the decision maker is satisfied with any action in an \(\epsilon\)-neighborhood of the optimal utility. We find that the stochastic policies that optimize the free energy trade-off comply with the notion of \(\epsilon\)-optimality. Moreover, this optimality criterion even holds when the environment is adversarial. We conclude that the study of bounded rationality based on \(\epsilon\)-optimality criteria that abstract away from the particulars of the information processing constraints is compatible with the information-theoretic free energy model of bounded rationality.

ei

DOI [BibTex]

DOI [BibTex]


no image
Staying sticky: contact self-cleaning of gecko-inspired adhesives

Mengüç, Y., Röhrig, M., Abusomwan, U., Hölscher, H., Sitti, M.

Journal of The Royal Society Interface, 11(94):20131205, The Royal Society, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Dynamic Trapping and Two-Dimensional Transport of Swimming Microorganisms Using a Rotating Magnetic Micro-Robot

Ye, Z., Sitti, M.

Lab on a Chip, 14(13):2177-2182, Royal Society of Chemistry, 2014 (article)

pi

Project Page [BibTex]


no image
STRIDE II: a water strider-inspired miniature robot with circular footpads

Ozcan, O., Wang, H., Taylor, J. D., Sitti, M.

International Journal of Advanced Robotic Systems, 11(6):85, SAGE Publications Sage UK: London, England, 2014 (article)

pi

[BibTex]

[BibTex]


no image
Soft Grippers Using Micro-Fibrillar Adhesives for Transfer Printing

Song, S., Sitti, M.

Advanced Materials, 26(28):4901-4906, 2014 (article)

pi

[BibTex]

[BibTex]


no image
Unidirectional sub-100-ps magnetic vortex core reversal

Noske, M., Gangwar, A., Stoll, H., Kammerer, M., Sproll, M., Dieterle, G., Weigand, M., Fähnle, M., Woltersdorf, G., Back, C. H., Schütz, G.

{Physical Review B}, 90(10), American Physical Society, Woodbury, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Domain wall transformations and hopping in La0.7Sr0.3MnO3 nanostructures imaged with high resolution x-ray magnetic microscopy

Finizio, S., Foerster, M., Krüger, B., Vaz, C. A. F., Miyawaki, T., Mawass, M. A., Pena, L., Méchin, L., Hühn, S., Moshnyaga, V., Büttner, F., Bisig, A., Le Guyader, L., El Moussaoui, S., Valencia, S., Kronast, F., Eisebitt, S., Kläui, M.

{Journal of Physics: Condensed Matter}, 26(45), IOP Publishing, Bristol, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Tunable eigenmodes of coupled magnetic vortex oscillators

Hänze, M., Adolff, C. F., Weigand, M., Meier, G.

{Applied Physics Letters}, 104(18), American Institute of Physics, Melville, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Domain wall pinning in ultra-narrow electromigrated break junctions

Reeve, R. M., Loescher, A., Mawass, M.-A., Hoffmann-Vogel, R., Kläui, M.

{Journal of Physics: Condensed Matter}, 26(47), IOP Publishing, Bristol, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Highly effective hydrogen isotope separation in nanoporous metal-organic framworks with open metal sites: Direct measurement and theoretical analysis

Oh, H., Savchenko, I., Mavrandonakis, A., Heine, T., Hirscher, M.

{ACS Nano}, 8(1):761-770, American Chemical Society, Washington, DC, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Stabilization of the dissipation-free current transport in inhomogeneous MgB2 thin films

Treiber, S., Stahl, C., Schütz, G., Soltan, S., Albrecht, J.

{Physica C}, 506, pages: 1-5, North-Holland, Amsterdam, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Thermal conductivity of mechanically joined semiconducting/metal nanomembrane superlattices

Grimm, D., Wilson, R. B., Teshome, B., Gorantla, S., Rümmeli, M. H., Bublat, T., Zallo, E., Li, G., Cahill, D. G., Schmidt, O. G.

{Nano Letters}, 14(5):2387-2393, American Chemical Society, Washington, DC, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
An autonomous manipulation system based on force control and optimization

Righetti, L., Kalakrishnan, M., Pastor, P., Binney, J., Kelly, J., Voorhies, R. C., Sukhatme, G. S., Schaal, S.

Autonomous Robots, 36(1-2):11-30, January 2014 (article)

Abstract
In this paper we present an architecture for autonomous manipulation. Our approach is based on the belief that contact interactions during manipulation should be exploited to improve dexterity and that optimizing motion plans is useful to create more robust and repeatable manipulation behaviors. We therefore propose an architecture where state of the art force/torque control and optimization-based motion planning are the core components of the system. We give a detailed description of the modules that constitute the complete system and discuss the challenges inherent to creating such a system. We present experimental results for several grasping and manipulation tasks to demonstrate the performance and robustness of our approach.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Occam’s Razor in sensorimotor learning

Genewein, T, Braun, D

Proceedings of the Royal Society of London B, 281(1783):1-7, May 2014 (article)

Abstract
A large number of recent studies suggest that the sensorimotor system uses probabilistic models to predict its environment and makes inferences about unobserved variables in line with Bayesian statistics. One of the important features of Bayesian statistics is Occam's Razor—an inbuilt preference for simpler models when comparing competing models that explain some observed data equally well. Here, we test directly for Occam's Razor in sensorimotor control. We designed a sensorimotor task in which participants had to draw lines through clouds of noisy samples of an unobserved curve generated by one of two possible probabilistic models—a simple model with a large length scale, leading to smooth curves, and a complex model with a short length scale, leading to more wiggly curves. In training trials, participants were informed about the model that generated the stimulus so that they could learn the statistics of each model. In probe trials, participants were then exposed to ambiguous stimuli. In probe trials where the ambiguous stimulus could be fitted equally well by both models, we found that participants showed a clear preference for the simpler model. Moreover, we found that participants’ choice behaviour was quantitatively consistent with Bayesian Occam's Razor. We also show that participants’ drawn trajectories were similar to samples from the Bayesian predictive distribution over trajectories and significantly different from two non-probabilistic heuristics. In two control experiments, we show that the preference of the simpler model cannot be simply explained by a difference in physical effort or by a preference for curve smoothness. Our results suggest that Occam's Razor is a general behavioural principle already present during sensorimotor processing.

ei

DOI [BibTex]

DOI [BibTex]


no image
Generalized Thompson sampling for sequential decision-making and causal inference

Ortega, PA, Braun, DA

Complex Adaptive Systems Modeling, 2(2):1-23, March 2014 (article)

Abstract
Purpose Sampling an action according to the probability that the action is believed to be the optimal one is sometimes called Thompson sampling. Methods Although mostly applied to bandit problems, Thompson sampling can also be used to solve sequential adaptive control problems, when the optimal policy is known for each possible environment. The predictive distribution over actions can then be constructed by a Bayesian superposition of the policies weighted by their posterior probability of being optimal. Results Here we discuss two important features of this approach. First, we show in how far such generalized Thompson sampling can be regarded as an optimal strategy under limited information processing capabilities that constrain the sampling complexity of the decision-making process. Second, we show how such Thompson sampling can be extended to solve causal inference problems when interacting with an environment in a sequential fashion. Conclusion In summary, our results suggest that Thompson sampling might not merely be a useful heuristic, but a principled method to address problems of adaptive sequential decision-making and causal inference.

ei

DOI [BibTex]

DOI [BibTex]


no image
Can DC motors directly drive flapping wings at high frequency and large wing strokes?

Campolo, D., Azhar, M., Lau, G., Sitti, M.

IEEE/ASME Trans. on Mechatronics, 19(1):109-120, 2014 (article)

pi

[BibTex]

[BibTex]


no image
Magnetic steering control of multi-cellular bio-hybrid microswimmers

Carlsen, R. W., Edwards, M. R., Zhuang, J., Pacoret, C., Sitti, M.

Lab on a Chip, 14(19):3850-3859, Royal Society of Chemistry, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Analytical modeling and experimental characterization of chemotaxis in serratia marcescens

Zhuang, J., Wei, G., Carlsen, R. W., Edwards, M. R., Marculescu, R., Bogdan, P., Sitti, M.

Physical Review E, 89(5):052704, American Physical Society, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Swimming characterization of Serratia marcescens for bio-hybrid micro-robotics

Edwards, M. R., Carlsen, R. W., Zhuang, J., Sitti, M.

Journal of Micro-Bio Robotics, 9(3):47-60, Springer Berlin Heidelberg, 2014 (article)

pi

[BibTex]

[BibTex]


no image
Influence of Magnetic Fields on Magneto-Aerotaxis

Bennet, M., McCarthy, A., Fix, D., Edwards, M. R., Repp, F., Vach, P., Dunlop, J. W., Sitti, M., Buller, G. S., Klumpp, S., others,

PLoS One, 9(7):e101150, Public Library of Science, 2014 (article)

pi

[BibTex]

[BibTex]


no image
Role of the sample boundaries in the problem of dissipative magnetization dynamics

Fähnle, M., Slavin, A., Hertel, R.

{Journal of Magnetism and Magnetic Materials}, 360, pages: 126-130, Elsevier, Amsterdam, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Using magnetic coupling in bilayers of superconducting YBCO and soft-magnetic CoFeB to map supercurrent flow

Stahl, C., Walker, P., Treiber, S., Christiani, G., Schütz, G., Albrecht, J.

{EPL}, 106(2), 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Element-specific depth profile of magnetism and stoichiometry at the La0.67Sr0.33MnO3/BiFeO3 interface

Bertinshaw, J., Brück, S., Lott, D., Fritzsche, H., Khaydukov, Y., Soltwedel, O., Keller, T., Goering, E., Audehm, P., Cortie, D. L., Hutchison, W. D., Ramasse, Q. M., Arredondo, M., Maran, R., Nagarajan, V., Klose, F., Ulrich, C.

{Physical Review B}, 90(4), American Physical Society, Woodbury, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic reflectometry of heterostructures (Topical Review)

Macke, S., Goering, E.

{Journal of Physics: Condensed Matter}, 26(36), IOP Publishing, Bristol, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Optimizing the fabrication of diffractive optical elements using a focused ion beam system

Vijayakumar, A., Eigenthaler, U., Keskinbora, K., Sridharan, G. M., Pramitha, V., Hirscher, M., Spatz, J. P., Bhattacharya, S.

{Proceedings of SPIE}, 9130, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]