Header logo is


2007


no image
Brain-Computer Interfaces for Communication in Paralysis: A Clinical Experimental Approach

Hinterberger, T., Nijboer, F., Kübler, A., Matuz, T., Furdea, A., Mochty, U., Jordan, M., Lal, T., Hill, J., Mellinger, J., Bensch, M., Tangermann, M., Widman, G., Elger, C., Rosenstiel, W., Schölkopf, B., Birbaumer, N.

In Toward Brain-Computer Interfacing, pages: 43-64, Neural Information Processing, (Editors: G. Dornhege and J del R Millán and T Hinterberger and DJ McFarland and K-R Müller), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

ei

PDF Web [BibTex]

2007


PDF Web [BibTex]


no image
Thinking Out Loud: Research and Development of Brain Computer Interfaces

Hill, NJ.

Invited keynote talk at the Max Planck Society‘s PhDNet Workshop., July 2007 (talk)

Abstract
My principal interest is in applying machine-learning methods to the development of Brain-Computer Interfaces (BCI). This involves the classification of a user‘s intentions or mental states, or regression against some continuous intentional control signal, using brain signals obtained for example by EEG, ECoG or MEG. The long-term aim is to develop systems that a completely paralysed person (such as someone suffering from advanced Amyotrophic Lateral Sclerosis) could use to communicate. Such systems have the potential to improve the lives of many people who would be otherwise completely unable to communicate, but they are still very much in the research and development stages.

ei

PDF [BibTex]

PDF [BibTex]


no image
Dirichlet Process Mixtures of Factor Analysers

Görür, D., Rasmussen, C.

Fifth Workshop on Bayesian Inference in Stochastic Processes (BSP5), June 2007 (talk)

Abstract
Mixture of factor analysers (MFA) is a well-known model that combines the dimensionality reduction technique of Factor Analysis (FA) with mixture modeling. The key issue in MFA is deciding on the latent dimension and the number of mixture components to be used. The Bayesian treatment of MFA has been considered by Beal and Ghahramani (2000) using variational approximation and by Fokoué and Titterington (2003) using birth-and –death Markov chain Monte Carlo (MCMC). Here, we present the nonparametric MFA model utilizing a Dirichlet process (DP) prior on the component parameters (that is, the factor loading matrix and the mean vector of each component) and describe an MCMC scheme for inference. The clustering property of the DP provides automatic selection of the number of mixture components. The latent dimensionality of each component is inferred by automatic relevance determination (ARD). Identifying the action potentials of individual neurons from extracellular recordings, known as spike sorting, is a challenging clustering problem. We apply our model for clustering the waveforms recorded from the cortex of a macaque monkey.

ei

Web [BibTex]

Web [BibTex]


no image
New BCI approaches: Selective Attention to Auditory and Tactile Stimulus Streams

Hill, N., Raths, C.

Invited talk at the PASCAL Workshop on Methods of Data Analysis in Computational Neuroscience and Brain Computer Interfaces, June 2007 (talk)

Abstract
When considering Brain-Computer Interface (BCI) development for patients in the most severely paralysed states, there is considerable motivation to move away from BCI systems based on either motor cortex activity, or on visual stimuli. Together these account for most of current BCI research. I present the results of our recent exploration of new auditory- and tactile-stimulus-driven BCIs. The talk includes a tutorial on the construction and interpretation of classifiers which extract spatio-temporal features from event-related potential data. The effects and implications of whitening are discussed, and preliminary results on the effectiveness of a low-rank constraint (Tomioka and Aihara 2007) are shown.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Towards Motor Skill Learning in Robotics

Peters, J.

Interactive Robot Learning - RSS workshop, June 2007 (talk)

ei

Web [BibTex]

Web [BibTex]


no image
Transductive Support Vector Machines for Structured Variables

Zien, A., Brefeld, U., Scheffer, T.

International Conference on Machine Learning (ICML), June 2007 (talk)

Abstract
We study the problem of learning kernel machines transductively for structured output variables. Transductive learning can be reduced to combinatorial optimization problems over all possible labelings of the unlabeled data. In order to scale transductive learning to structured variables, we transform the corresponding non-convex, combinatorial, constrained optimization problems into continuous, unconstrained optimization problems. The discrete optimization parameters are eliminated and the resulting differentiable problems can be optimized efficiently. We study the effectiveness of the generalized TSVM on multiclass classification and label-sequence learning problems empirically.

ei

PDF PDF Web [BibTex]

PDF PDF Web [BibTex]


no image
Impact of target-to-target interval on classification performance in the P300 speller

Martens, S., Hill, J., Farquhar, J., Schölkopf, B.

Scientific Meeting "Applied Neuroscience for Healthy Brain Function", May 2007 (talk)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Probabilistic Structure Calculation

Rieping, W., Habeck, M., Nilges, M.

In Structure and Biophysics: New Technologies for Current Challenges in Biology and Beyond, pages: 81-98, NATO Security through Science Series, (Editors: Puglisi, J. D.), Springer, Berlin, Germany, March 2007 (inbook)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
New Margin- and Evidence-Based Approaches for EEG Signal Classification

Hill, N., Farquhar, J.

Invited talk at the FaSor Jahressymposium, February 2007 (talk)

ei

PDF [BibTex]

PDF [BibTex]


no image
On the Pre-Image Problem in Kernel Methods

BakIr, G., Schölkopf, B., Weston, J.

In Kernel Methods in Bioengineering, Signal and Image Processing, pages: 284-302, (Editors: G Camps-Valls and JL Rojo-Álvarez and M Martínez-Ramón), Idea Group Publishing, Hershey, PA, USA, January 2007 (inbook)

Abstract
In this chapter we are concerned with the problem of reconstructing patterns from their representation in feature space, known as the pre-image problem. We review existing algorithms and propose a learning based approach. All algorithms are discussed regarding their usability and complexity and evaluated on an image denoising application.

ei

DOI [BibTex]

DOI [BibTex]


no image
Dynamics systems vs. optimal control ? a unifying view

Schaal, S, Mohajerian, P., Ijspeert, A.

In Progress in Brain Research, (165):425-445, 2007, clmc (inbook)

Abstract
In the past, computational motor control has been approached from at least two major frameworks: the dynamic systems approach and the viewpoint of optimal control. The dynamic system approach emphasizes motor control as a process of self-organization between an animal and its environment. Nonlinear differential equations that can model entrainment and synchronization behavior are among the most favorable tools of dynamic systems modelers. In contrast, optimal control approaches view motor control as the evolutionary or development result of a nervous system that tries to optimize rather general organizational principles, e.g., energy consumption or accurate task achievement. Optimal control theory is usually employed to develop appropriate theories. Interestingly, there is rather little interaction between dynamic systems and optimal control modelers as the two approaches follow rather different philosophies and are often viewed as diametrically opposing. In this paper, we develop a computational approach to motor control that offers a unifying modeling framework for both dynamic systems and optimal control approaches. In discussions of several behavioral experiments and some theoretical and robotics studies, we demonstrate how our computational ideas allow both the representation of self-organizing processes and the optimization of movement based on reward criteria. Our modeling framework is rather simple and general, and opens opportunities to revisit many previous modeling results from this novel unifying view.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Bacteria integrated swimming microrobots

Behkam, B., Sitti, M.

In 50 years of artificial intelligence, pages: 154-163, Springer Berlin Heidelberg, 2007 (incollection)

pi

[BibTex]

[BibTex]


no image
Micromagnetism-microstructure relations and the hysteresis loop

Goll, D.

In Handbook of Magnetism and Advanced Magnetic Materials. Vol. 2: Micromagnetism, pages: 1023-1058, John Wiley & Sons Ltd., Chichester, UK, 2007 (incollection)

mms

[BibTex]

[BibTex]


no image
Synchrotron radiation techniques based on X-ray magnetic circular dichroism

Schütz, G., Goering, E., Stoll, H.

In Handbook of Magnetism and Advanced Magnetic Materials. Vol. 3: Materials Novel Techniques for Characterizing and Preparing Samples, pages: 1311-1363, John Wiley & Sons Ltd., Chichester, UK, 2007 (incollection)

mms

[BibTex]

[BibTex]


no image
Micromagnetism-microstructure relations and the hysteresis loop

Goll, D.

In Handbook of Magnetism and Advanced Magnetic Materials. Vol. 2: Micromagnetism, pages: 1023-1058, John Wiley & Sons Ltd., Chichester, UK, 2007 (incollection)

mms

[BibTex]

[BibTex]


no image
Dissipative magnetization dynamics close to the adiabatic regime

Fähnle, M., Steiauf, D.

In Handbook of Magnetism and Advanced Magnetic Materials. Vol. 1: Fundamental and Theory, pages: 282-302, John Wiley & Sons Ltd., Chichester, UK, 2007 (incollection)

mms

[BibTex]

[BibTex]

2002


no image
Learning robot control

Schaal, S.

In The handbook of brain theory and neural networks, 2nd Edition, pages: 983-987, 2, (Editors: Arbib, M. A.), MIT Press, Cambridge, MA, 2002, clmc (inbook)

Abstract
This is a review article on learning control in robots.

am

link (url) [BibTex]

2002


link (url) [BibTex]


no image
Arm and hand movement control

Schaal, S.

In The handbook of brain theory and neural networks, 2nd Edition, pages: 110-113, 2, (Editors: Arbib, M. A.), MIT Press, Cambridge, MA, 2002, clmc (inbook)

Abstract
This is a review article on computational and biological research on arm and hand control.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Ion Channeling in Quasicrystals

Plachke, D., Carstanjen, H. D.

In Quasicrystals. An Introduction to Structure, Physical Properties and Applications, 55, pages: 280-304, Springer Series in Materials Science, Springer, Berlin [et al.], 2002 (incollection)

mms

[BibTex]

[BibTex]

2001


no image
Influence of grain boundary phase transitions on the properties of Cu-Bi polycrystals

Straumal, B. B., Sluchanko, N.E., Gust, W.

In Defects and Diffusion in Metals III: An Annual Retrospective III, 188-1, pages: 185-194, Defect and Diffusion Forum, 2001 (incollection)

mms

[BibTex]

2001


[BibTex]

1999


no image
Nonparametric regression for learning nonlinear transformations

Schaal, S.

In Prerational Intelligence in Strategies, High-Level Processes and Collective Behavior, 2, pages: 595-621, (Editors: Ritter, H.;Cruse, H.;Dean, J.), Kluwer Academic Publishers, 1999, clmc (inbook)

Abstract
Information processing in animals and artificial movement systems consists of a series of transformations that map sensory signals to intermediate representations, and finally to motor commands. Given the physical and neuroanatomical differences between individuals and the need for plasticity during development, it is highly likely that such transformations are learned rather than pre-programmed by evolution. Such self-organizing processes, capable of discovering nonlinear dependencies between different groups of signals, are one essential part of prerational intelligence. While neural network algorithms seem to be the natural choice when searching for solutions for learning transformations, this paper will take a more careful look at which types of neural networks are actually suited for the requirements of an autonomous learning system. The approach that we will pursue is guided by recent developments in learning theory that have linked neural network learning to well established statistical theories. In particular, this new statistical understanding has given rise to the development of neural network systems that are directly based on statistical methods. One family of such methods stems from nonparametric regression. This paper will compare nonparametric learning with the more widely used parametric counterparts in a non technical fashion, and investigate how these two families differ in their properties and their applicabilities. We will argue that nonparametric neural networks offer a set of characteristics that make them a very promising candidate for on-line learning in autonomous system.

am

link (url) [BibTex]

1999


link (url) [BibTex]

1996


no image
From isolation to cooperation: An alternative of a system of experts

Schaal, S., Atkeson, C. G.

In Advances in Neural Information Processing Systems 8, pages: 605-611, (Editors: Touretzky, D. S.;Mozer, M. C.;Hasselmo, M. E.), MIT Press, Cambridge, MA, 1996, clmc (inbook)

Abstract
We introduce a constructive, incremental learning system for regression problems that models data by means of locally linear experts. In contrast to other approaches, the experts are trained independently and do not compete for data during learning. Only when a prediction for a query is required do the experts cooperate by blending their individual predictions. Each expert is trained by minimizing a penalized local cross validation error using second order methods. In this way, an expert is able to adjust the size and shape of the receptive field in which its predictions are valid, and also to adjust its bias on the importance of individual input dimensions. The size and shape adjustment corresponds to finding a local distance metric, while the bias adjustment accomplishes local dimensionality reduction. We derive asymptotic results for our method. In a variety of simulations we demonstrate the properties of the algorithm with respect to interference, learning speed, prediction accuracy, feature detection, and task oriented incremental learning. 

am

link (url) [BibTex]

1996


link (url) [BibTex]

1993


no image
Learning passive motor control strategies with genetic algorithms

Schaal, S., Sternad, D.

In 1992 Lectures in complex systems, pages: 913-918, (Editors: Nadel, L.;Stein, D.), Addison-Wesley, Redwood City, CA, 1993, clmc (inbook)

Abstract
This study investigates learning passive motor control strategies. Passive control is understood as control without active error correction; the movement is stabilized by particular properties of the controlling dynamics. We analyze the task of juggling a ball on a racket. An approximation to the optimal solution of the task is derived by means of optimization theory. In order to model the learning process, the problem is coded for a genetic algorithm in representations without sensory or with sensory information. For all representations the genetic algorithm is able to find passive control strategies, but learning speed and the quality of the outcome are significantly different. A comparison with data from human subjects shows that humans seem to apply yet different movement strategies to the ones proposed. For the feedback representation some implications arise for learning from demonstration.

am

link (url) [BibTex]

1993


link (url) [BibTex]


no image
A genetic algorithm for evolution from an ecological perspective

Sternad, D., Schaal, S.

In 1992 Lectures in Complex Systems, pages: 223-231, (Editors: Nadel, L.;Stein, D.), Addison-Wesley, Redwood City, CA, 1993, clmc (inbook)

Abstract
In the population model presented, an evolutionary dynamic is explored which is based on the operator characteristics of genetic algorithms. An essential modification in the genetic algorithms is the inclusion of a constraint in the mixing of the gene pool. The pairing for the crossover is governed by a selection principle based on a complementarity criterion derived from the theoretical tenet of perception-action (P-A) mutuality of ecological psychology. According to Swenson and Turvey [37] P-A mutuality underlies evolution and is an integral part of its thermodynamics. The present simulation tested the contribution of P-A-cycles in evolutionary dynamics. A numerical experiment compares the population's evolution with and without this intentional component. The effect is measured in the difference of the rate of energy dissipation, as well as in three operationalized aspects of complexity. The results support the predicted increase in the rate of energy dissipation, paralleled by an increase in the average heterogeneity of the population. Furthermore, the spatio-temporal evolution of the system is tested for the characteristic power-law relations of a nonlinear system poised in a critical state. The frequency distribution of consecutive increases in population size shows a significantly different exponent in functional relationship.

am

[BibTex]

[BibTex]