Header logo is


2019


no image
Interpreting first-order reversal curves beyond the Preisach model: An experimental permalloy microarray investigation

Groß, F., Ilse, S. E., Schütz, G., Gräfe, J., Goering, E.

{Physical Review B}, 99(6), American Physical Society, Woodbury, NY, 2019 (article)

mms

DOI [BibTex]

2019



no image
Effects of system response delays on elderly humans’ cognitive performance in a virtual training scenario

Wirzberger, M., Schmidt, R., Georgi, M., Hardt, W., Brunnett, G., Rey, G. D.

Scientific Reports, 9:8291, 2019 (article)

Abstract
Observed influences of system response delay in spoken human-machine dialogues are rather ambiguous and mainly focus on perceived system quality. Studies that systematically inspect effects on cognitive performance are still lacking, and effects of individual characteristics are also often neglected. Building on benefits of cognitive training for decelerating cognitive decline, this Wizard-of-Oz study addresses both issues by testing 62 elderly participants in a dialogue-based memory training with a virtual agent. Participants acquired the method of loci with fading instructional guidance and applied it afterward to memorizing and recalling lists of German nouns. System response delays were randomly assigned, and training performance was included as potential mediator. Participants’ age, gender, and subscales of affinity for technology (enthusiasm, competence, positive and negative perception of technology) were inspected as potential moderators. The results indicated positive effects on recall performance with higher training performance, female gender, and less negative perception of technology. Additionally, memory retention and facets of affinity for technology moderated increasing system response delays. Participants also provided higher ratings in perceived system quality with higher enthusiasm for technology but reported increasing frustration with a more positive perception of technology. Potential explanations and implications for the design of spoken dialogue systems are discussed.

re

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A Kernel Stein Test for Comparing Latent Variable Models

Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.

2019 (conference) Submitted

ei

arXiv [BibTex]

arXiv [BibTex]


no image
Learning to Disentangle Latent Physical Factors for Video Prediction

Zhu, D., Munderloh, M., Rosenhahn, B., Stückler, J.

In German Conference on Pattern Recognition (GCPR), 2019, to appear (inproceedings)

ev

[BibTex]

[BibTex]


no image
Bistability of magnetic states in Fe-Pd nanocap arrays

Aravind, P. B., Heigl, M., Fix, M., Groß, F., Gräfe, J., Mary, A., Rajgowrav, C. R., Krupiński, M., Marszałek, M., Thomas, S., Anantharaman, M. R., Albrecht, M.

Nanotechnology, 30, pages: 405705, 2019 (article)

Abstract
Magnetic bistability between vortex and single domain states in nanostructures are of great interest from both fundamental and technological perspectives. In soft magnetic nanostructures, the transition from a uniform collinear magnetic state to a vortex state (or vice versa) induced by a magnetic field involves an energy barrier. If the thermal energy is large enough for overcoming this energy barrier, magnetic bistability with a hysteresis-free switching occurs between the two magnetic states. In this work, we tune this energy barrier by tailoring the composition of FePd alloys, which were deposited onto self-assembled particle arrays forming magnetic vortex structures on top of the particles. The bifurcation temperature, where a hysteresis-free transition occurs, was extracted from the temperature dependence of the annihilation and nucleation field which increases almost linearly with Fe content of the magnetic alloy. This study provides insights into the magnetization reversal process associated with magnetic bistability, which allows adjusting the bifurcation temperature range by the material properties of the nanosystem.

mms

link (url) [BibTex]

link (url) [BibTex]


Thumb xl model
Resisting Adversarial Attacks using Gaussian Mixture Variational Autoencoders

Ghosh, P., Losalka, A., Black, M. J.

In Proc. AAAI, 2019 (inproceedings)

Abstract
Susceptibility of deep neural networks to adversarial attacks poses a major theoretical and practical challenge. All efforts to harden classifiers against such attacks have seen limited success till now. Two distinct categories of samples against which deep neural networks are vulnerable, ``adversarial samples" and ``fooling samples", have been tackled separately so far due to the difficulty posed when considered together. In this work, we show how one can defend against them both under a unified framework. Our model has the form of a variational autoencoder with a Gaussian mixture prior on the latent variable, such that each mixture component corresponds to a single class. We show how selective classification can be performed using this model, thereby causing the adversarial objective to entail a conflict. The proposed method leads to the rejection of adversarial samples instead of misclassification, while maintaining high precision and recall on test data. It also inherently provides a way of learning a selective classifier in a semi-supervised scenario, which can similarly resist adversarial attacks. We further show how one can reclassify the detected adversarial samples by iterative optimization.

ps

link (url) Project Page [BibTex]


no image
Fisher Efficient Inference of Intractable Models

Liu, S., Kanamori, T., Jitkrittum, W., Chen, Y.

2019 (conference) Submitted

ei

arXiv [BibTex]

arXiv [BibTex]


no image
Electromechanical actuation of dielectric liquid crystal elastomers for soft robotics

Davidson, Z., Shahsavan, H., Guo, Y., Hines, L., Xia, Y., Yang, S., Sitti, M.

Bulletin of the American Physical Society, APS, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl 543 figure0 1
Active Probabilistic Inference on Matrices for Pre-Conditioning in Stochastic Optimization

Roos, F. D., Hennig, P.

2019 (conference) Accepted

Abstract
Pre-conditioning is a well-known concept that can significantly improve the convergence of optimization algorithms. For noise-free problems, where good pre-conditioners are not known a priori, iterative linear algebra methods offer one way to efficiently construct them. For the stochastic optimization problems that dominate contemporary machine learning, however, this approach is not readily available. We propose an iterative algorithm inspired by classic iterative linear solvers that uses a probabilistic model to actively infer a pre-conditioner in situations where Hessian-projections can only be constructed with strong Gaussian noise. The algorithm is empirically demonstrated to efficiently construct effective pre-conditioners for stochastic gradient descent and its variants. Experiments on problems of comparably low dimensionality show improved convergence. In very high-dimensional problems, such as those encountered in deep learning, the pre-conditioner effectively becomes an automatic learning-rate adaptation scheme, which we also empirically show to work well.

pn

link (url) [BibTex]


no image
Fast Gaussian Process Based Gradient Matching for Parameter Identification in Systems of Nonlinear ODEs

Wenk, P., Gotovos, A., Bauer, S., Gorbach, N., Krause, A., Buhmann, J. M.

22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 2019 (conference) Accepted

ei

PDF [BibTex]

PDF [BibTex]


Thumb xl teaser website
Occupancy Networks: Learning 3D Reconstruction in Function Space

Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, 2019 (inproceedings)

Abstract
With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learning-based 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose Occupancy Networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.

avg

Code Video pdf suppmat Project Page [BibTex]

Code Video pdf suppmat Project Page [BibTex]


Thumb xl rae
From Variational to Deterministic Autoencoders

Ghosh*, P., Sajjadi*, M. S. M., Vergari, A., Black, M. J., Schölkopf, B.

2019, *equal contribution (conference) Submitted

Abstract
Variational Autoencoders (VAEs) provide a theoretically-backed framework for deep generative models. However, they often produce “blurry” images, which is linked to their training objective. Sampling in the most popular implementation, the Gaussian VAE, can be interpreted as simply injecting noise to the input of a deterministic decoder. In practice, this simply enforces a smooth latent space structure. We challenge the adoption of the full VAE framework on this specific point in favor of a simpler, deterministic one. Specifically, we investigate how substituting stochasticity with other explicit and implicit regularization schemes can lead to a meaningful latent space without having to force it to conform to an arbitrarily chosen prior. To retrieve a generative mechanism for sampling new data points, we propose to employ an efficient ex-post density estimation step that can be readily adopted both for the proposed deterministic autoencoders as well as to improve sample quality of existing VAEs. We show in a rigorous empirical study that regularized deterministic autoencoding achieves state-of-the-art sample quality on the common MNIST, CIFAR-10 and CelebA datasets.

ei ps

arXiv [BibTex]


no image
A rational reinterpretation of dual process theories

Milli, S., Lieder, F., Griffiths, T.

2019 (article)

re

DOI [BibTex]

DOI [BibTex]


Thumb xl linear solvers stco figure7 1
Probabilistic Linear Solvers: A Unifying View

Bartels, S., Cockayne, J., Ipsen, I. C. F., Hennig, P.

Statistics and Computing, 2019 (article) Accepted

pn

link (url) [BibTex]

link (url) [BibTex]


no image
3D Birds-Eye-View Instance Segmentation

Elich, C., Engelmann, F., Kontogianni, T., Leibe, B.

In German Conference on Pattern Recognition (GCPR), 2019, arXiv:1904.02199, to appear (inproceedings)

ev

[BibTex]

[BibTex]


no image
Artifacts from manganese reduction in rock samples prepared by focused ion beam (FIB) slicing for X-ray microspectroscopy

Macholdt, D. S., Förster, J., Müller, M., Weber, B., Kappl, M., Kilcoyne, A. L. D., Weigand, M., Leitner, J., Jochum, K. P., Pöhlker, C., Andreae, M. O.

{Geoscientific instrumentation, methods and data systems}, 8(1):97-111, Copernicus Publ., Göttingen, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Mixed-state magnetotransport properties of MgB2 thin film prepared by pulsed laser deposition on an Al2O3 substrate

Alzayed, N. S., Shahabuddin, M., Ramey, S. M., Soltan, S.

{Journal of Materials Science: Materials in Electronics}, 30(2):1547-1552, Springer, Norwell, MA, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Comparison of theories of fast and ultrafast magnetization dynamics

Fähnle, M.

{Journal of Magnetism and Magnetic Materials}, 469, pages: 28-29, NH, Elsevier, Amsterdam, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Concepts for improving hydrogen storage in nanoporous materials

Broom, D. P., Webb, C. J., Fanourgakis, G. S., Froudakis, G. E., Trikalitis, P. N., Hirscher, M.

{International Journal of Hydrogen Energy}, 44(15):7768-7779, Elsevier, Amsterdam, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Controlling dislocation nucleation-mediatd plasticity in nanostructures via surface modification

Shin, J., Chen, L. Y., Sanli, U. T., Richter, G., Labat, S., Richard, M., Cornelius, T., Thomas, O., Gianola, D. S.

{Acta Materialia}, 166, pages: 572-586, Elsevier Science, Kidlington, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]

2005


no image
Kernel Methods for Measuring Independence

Gretton, A., Herbrich, R., Smola, A., Bousquet, O., Schölkopf, B.

Journal of Machine Learning Research, 6, pages: 2075-2129, December 2005 (article)

Abstract
We introduce two new functionals, the constrained covariance and the kernel mutual information, to measure the degree of independence of random variables. These quantities are both based on the covariance between functions of the random variables in reproducing kernel Hilbert spaces (RKHSs). We prove that when the RKHSs are universal, both functionals are zero if and only if the random variables are pairwise independent. We also show that the kernel mutual information is an upper bound near independence on the Parzen window estimate of the mutual information. Analogous results apply for two correlation-based dependence functionals introduced earlier: we show the kernel canonical correlation and the kernel generalised variance to be independence measures for universal kernels, and prove the latter to be an upper bound on the mutual information near independence. The performance of the kernel dependence functionals in measuring independence is verified in the context of independent component analysis.

ei

PDF PostScript PDF [BibTex]

2005


PDF PostScript PDF [BibTex]


no image
Kernel ICA for Large Scale Problems

Jegelka, S., Gretton, A., Achlioptas, D.

In pages: -, NIPS Workshop on Large Scale Kernel Machines, December 2005 (inproceedings)

ei

Web [BibTex]

Web [BibTex]


no image
A Unifying View of Sparse Approximate Gaussian Process Regression

Quinonero Candela, J., Rasmussen, C.

Journal of Machine Learning Research, 6, pages: 1935-1959, December 2005 (article)

Abstract
We provide a new unifying view, including all existing proper probabilistic sparse approximations for Gaussian process regression. Our approach relies on expressing the effective prior which the methods are using. This allows new insights to be gained, and highlights the relationship between existing methods. It also allows for a clear theoretically justified ranking of the closeness of the known approximations to the corresponding full GPs. Finally we point directly to designs of new better sparse approximations, combining the best of the existing strategies, within attractive computational constraints.

ei

PDF [BibTex]

PDF [BibTex]


no image
Kernel methods for dependence testing in LFP-MUA

Gretton, A., Belitski, A., Murayama, Y., Schölkopf, B., Logothetis, N.

35(689.17), 35th Annual Meeting of the Society for Neuroscience (Neuroscience), November 2005 (poster)

Abstract
A fundamental problem in neuroscience is determining whether or not particular neural signals are dependent. The correlation is the most straightforward basis for such tests, but considerable work also focuses on the mutual information (MI), which is capable of revealing dependence of higher orders that the correlation cannot detect. That said, there are other measures of dependence that share with the MI an ability to detect dependence of any order, but which can be easier to compute in practice. We focus in particular on tests based on the functional covariance, which derive from work originally accomplished in 1959 by Renyi. Conceptually, our dependence tests work by computing the covariance between (infinite dimensional) vectors of nonlinear mappings of the observations being tested, and then determining whether this covariance is zero - we call this measure the constrained covariance (COCO). When these vectors are members of universal reproducing kernel Hilbert spaces, we can prove this covariance to be zero only when the variables being tested are independent. The greatest advantage of these tests, compared with the mutual information, is their simplicity – when comparing two signals, we need only take the largest eigenvalue (or the trace) of a product of two matrices of nonlinearities, where these matrices are generally much smaller than the number of observations (and are very simple to construct). We compare the mutual information, the COCO, and the correlation in the context of finding changes in dependence between the LFP and MUA signals in the primary visual cortex of the anaesthetized macaque, during the presentation of dynamic natural stimuli. We demonstrate that the MI and COCO reveal dependence which is not detected by the correlation alone (which we prove by artificially removing all correlation between the signals, and then testing their dependence with COCO and the MI); and that COCO and the MI give results consistent with each other on our data.

ei

Web [BibTex]

Web [BibTex]


no image
Training Support Vector Machines with Multiple Equality Constraints

Kienzle, W., Schölkopf, B.

In Proceedings of the 16th European Conference on Machine Learning, Lecture Notes in Computer Science, Vol. 3720, pages: 182-193, (Editors: JG Carbonell and J Siekmann), Springer, Berlin, Germany, ECML, November 2005 (inproceedings)

Abstract
In this paper we present a primal-dual decomposition algorithm for support vector machine training. As with existing methods that use very small working sets (such as Sequential Minimal Optimization (SMO), Successive Over-Relaxation (SOR) or the Kernel Adatron (KA)), our method scales well, is straightforward to implement, and does not require an external QP solver. Unlike SMO, SOR and KA, the method is applicable to a large number of SVM formulations regardless of the number of equality constraints involved. The effectiveness of our algorithm is demonstrated on a more difficult SVM variant in this respect, namely semi-parametric support vector regression.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Measuring Statistical Dependence with Hilbert-Schmidt Norms

Gretton, A., Bousquet, O., Smola, A., Schoelkopf, B.

In Algorithmic Learning Theory, Lecture Notes in Computer Science, Vol. 3734, pages: 63-78, (Editors: S Jain and H-U Simon and E Tomita), Springer, Berlin, Germany, 16th International Conference ALT, October 2005 (inproceedings)

Abstract
We propose an independence criterion based on the eigenspectrum of covariance operators in reproducing kernel Hilbert spaces (RKHSs), consisting of an empirical estimate of the Hilbert-Schmidt norm of the cross-covariance operator (we term this a Hilbert-Schmidt Independence Criterion, or HSIC). This approach has several advantages, compared with previous kernel-based independence criteria. First, the empirical estimate is simpler than any other kernel dependence test, and requires no user-defined regularisation. Second, there is a clearly defined population quantity which the empirical estimate approaches in the large sample limit, with exponential convergence guaranteed between the two: this ensures that independence tests based on {methodname} do not suffer from slow learning rates. Finally, we show in the context of independent component analysis (ICA) that the performance of HSIC is competitive with that of previously published kernel-based criteria, and of other recently published ICA methods.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Maximal Margin Classification for Metric Spaces

Hein, M., Bousquet, O., Schölkopf, B.

Journal of Computer and System Sciences, 71(3):333-359, October 2005 (article)

Abstract
In order to apply the maximum margin method in arbitrary metric spaces, we suggest to embed the metric space into a Banach or Hilbert space and to perform linear classification in this space. We propose several embeddings and recall that an isometric embedding in a Banach space is always possible while an isometric embedding in a Hilbert space is only possible for certain metric spaces. As a result, we obtain a general maximum margin classification algorithm for arbitrary metric spaces (whose solution is approximated by an algorithm of Graepel. Interestingly enough, the embedding approach, when applied to a metric which can be embedded into a Hilbert space, yields the SVM algorithm, which emphasizes the fact that its solution depends on the metric and not on the kernel. Furthermore we give upper bounds of the capacity of the function classes corresponding to both embeddings in terms of Rademacher averages. Finally we compare the capacities of these function classes directly.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
An Analysis of the Anti-Learning Phenomenon for the Class Symmetric Polyhedron

Kowalczyk, A., Chapelle, O.

In Algorithmic Learning Theory: 16th International Conference, pages: 78-92, Algorithmic Learning Theory, October 2005 (inproceedings)

Abstract
This paper deals with an unusual phenomenon where most machine learning algorithms yield good performance on the training set but systematically worse than random performance on the test set. This has been observed so far for some natural data sets and demonstrated for some synthetic data sets when the classification rule is learned from a small set of training samples drawn from some high dimensional space. The initial analysis presented in this paper shows that anti-learning is a property of data sets and is quite distinct from overfitting of a training data. Moreover, the analysis leads to a specification of some machine learning procedures which can overcome anti-learning and generate ma- chines able to classify training and test data consistently.

ei

PDF [BibTex]

PDF [BibTex]


no image
Selective integration of multiple biological data for supervised network inference

Kato, T., Tsuda, K., Asai, K.

Bioinformatics, 21(10):2488 , October 2005 (article)

ei

PDF [BibTex]

PDF [BibTex]


no image
Assessing Approximate Inference for Binary Gaussian Process Classification

Kuss, M., Rasmussen, C.

Journal of Machine Learning Research, 6, pages: 1679 , October 2005 (article)

Abstract
Gaussian process priors can be used to define flexible, probabilistic classification models. Unfortunately exact Bayesian inference is analytically intractable and various approximation techniques have been proposed. In this work we review and compare Laplace‘s method and Expectation Propagation for approximate Bayesian inference in the binary Gaussian process classification model. We present a comprehensive comparison of the approximations, their predictive performance and marginal likelihood estimates to results obtained by MCMC sampling. We explain theoretically and corroborate empirically the advantages of Expectation Propagation compared to Laplace‘s method.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Clustering on the Unit Hypersphere using von Mises-Fisher Distributions

Banerjee, A., Dhillon, I., Ghosh, J., Sra, S.

Journal of Machine Learning Research, 6, pages: 1345-1382, September 2005 (article)

Abstract
Several large scale data mining applications, such as text categorization and gene expression analysis, involve high-dimensional data that is also inherently directional in nature. Often such data is L2 normalized so that it lies on the surface of a unit hypersphere. Popular models such as (mixtures of) multi-variate Gaussians are inadequate for characterizing such data. This paper proposes a generative mixture-model approach to clustering directional data based on the von Mises-Fisher (vMF) distribution, which arises naturally for data distributed on the unit hypersphere. In particular, we derive and analyze two variants of the Expectation Maximization (EM) framework for estimating the mean and concentration parameters of this mixture. Numerical estimation of the concentration parameters is non-trivial in high dimensions since it involves functional inversion of ratios of Bessel functions. We also formulate two clustering algorithms corresponding to the variants of EM that we derive. Our approach provides a theoretical basis for the use of cosine similarity that has been widely employed by the information retrieval community, and obtains the spherical kmeans algorithm (kmeans with cosine similarity) as a special case of both variants. Empirical results on clustering of high-dimensional text and gene-expression data based on a mixture of vMF distributions show that the ability to estimate the concentration parameter for each vMF component, which is not present in existing approaches, yields superior results, especially for difficult clustering tasks in high-dimensional spaces.

ei

PDF [BibTex]

PDF [BibTex]


no image
Support Vector Machines for 3D Shape Processing

Steinke, F., Schölkopf, B., Blanz, V.

Computer Graphics Forum, 24(3, EUROGRAPHICS 2005):285-294, September 2005 (article)

Abstract
We propose statistical learning methods for approximating implicit surfaces and computing dense 3D deformation fields. Our approach is based on Support Vector (SV) Machines, which are state of the art in machine learning. It is straightforward to implement and computationally competitive; its parameters can be automatically set using standard machine learning methods. The surface approximation is based on a modified Support Vector regression. We present applications to 3D head reconstruction, including automatic removal of outliers and hole filling. In a second step, we build on our SV representation to compute dense 3D deformation fields between two objects. The fields are computed using a generalized SVMachine enforcing correspondence between the previously learned implicit SV object representations, as well as correspondences between feature points if such points are available. We apply the method to the morphing of 3D heads and other objects.

ei

PDF [BibTex]

PDF [BibTex]


no image
Rapid animal detection in natural scenes: Critical features are local

Wichmann, F., Rosas, P., Gegenfurtner, K.

Journal of Vision, 5(8):376, Fifth Annual Meeting of the Vision Sciences Society (VSS), September 2005 (poster)

Abstract
Thorpe et al (Nature 381, 1996) first showed how rapidly human observers are able to classify natural images as to whether they contain an animal or not. Whilst the basic result has been replicated using different response paradigms (yes-no versus forced-choice), modalities (eye movements versus button presses) as well as while measuring neurophysiological correlates (ERPs), it is still unclear which image features support this rapid categorisation. Recently Torralba and Oliva (Network: Computation in Neural Systems, 14, 2003) suggested that simple global image statistics can be used to predict seemingly complex decisions about the absence and/or presence of objects in natural scences. They show that the information contained in a small number (N=16) of spectral principal components (SPC)—principal component analysis (PCA) applied to the normalised power spectra of the images—is sufficient to achieve approximately 80% correct animal detection in natural scenes. Our goal was to test whether human observers make use of the power spectrum when rapidly classifying natural scenes. We measured our subjects' ability to detect animals in natural scenes as a function of presentation time (13 to 167 msec); images were immediately followed by a noise mask. In one condition we used the original images, in the other images whose power spectra were equalised (each power spectrum was set to the mean power spectrum over our ensemble of 1476 images). Thresholds for 75% correct animal detection were in the region of 20–30 msec for all observers, independent of the power spectrum of the images: this result makes it very unlikely that human observers make use of the global power spectrum. Taken together with the results of Gegenfurtner, Braun & Wichmann (Journal of Vision [abstract], 2003), showing the robustness of animal detection to global phase noise, we conclude that humans use local features, like edges and contours, in rapid animal detection.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Fast Protein Classification with Multiple Networks

Tsuda, K., Shin, H., Schölkopf, B.

Bioinformatics, 21(Suppl. 2):59-65, September 2005 (article)

Abstract
Support vector machines (SVM) have been successfully used to classify proteins into functional categories. Recently, to integrate multiple data sources, a semidefinite programming (SDP) based SVM method was introduced Lanckriet et al (2004). In SDP/SVM, multiple kernel matrices corresponding to each of data sources are combined with weights obtained by solving an SDP. However, when trying to apply SDP/SVM to large problems, the computational cost can become prohibitive, since both converting the data to a kernel matrix for the SVM and solving the SDP are time and memory demanding. Another application-specific drawback arises when some of the data sources are protein networks. A common method of converting the network to a kernel matrix is the diffusion kernel method, which has time complexity of O(n^3), and produces a dense matrix of size n x n. We propose an efficient method of protein classification using multiple protein networks. Available protein networks, such as a physical interaction network or a metabolic network, can be directly incorporated. Vectorial data can also be incorporated after conversion into a network by means of neighbor point connection. Similarly to the SDP/SVM method, the combination weights are obtained by convex optimization. Due to the sparsity of network edges, the computation time is nearly linear in the number of edges of the combined network. Additionally, the combination weights provide information useful for discarding noisy or irrelevant networks. Experiments on function prediction of 3588 yeast proteins show promising results: the computation time is enormously reduced, while the accuracy is still comparable to the SDP/SVM method.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Iterative Kernel Principal Component Analysis for Image Modeling

Kim, K., Franz, M., Schölkopf, B.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(9):1351-1366, September 2005 (article)

Abstract
In recent years, Kernel Principal Component Analysis (KPCA) has been suggested for various image processing tasks requiring an image model such as, e.g., denoising or compression. The original form of KPCA, however, can be only applied to strongly restricted image classes due to the limited number of training examples that can be processed. We therefore propose a new iterative method for performing KPCA, the Kernel Hebbian Algorithm which iteratively estimates the Kernel Principal Components with only linear order memory complexity. In our experiments, we compute models for complex image classes such as faces and natural images which require a large number of training examples. The resulting image models are tested in single-frame super-resolution and denoising applications. The KPCA model is not specifically tailored to these tasks; in fact, the same model can be used in super-resolution with variable input resolution, or denoising with unknown noise characteristics. In spite of this, both super-resolution a nd denoising performance are comparable to existing methods.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Learning an Interest Operator from Eye Movements

Kienzle, W., Franz, M., Wichmann, F., Schölkopf, B.

International Workshop on Bioinspired Information Processing (BIP 2005), 2005, pages: 1, September 2005 (poster)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Classification of natural scenes using global image statistics

Drewes, J., Wichmann, F., Gegenfurtner, K.

Journal of Vision, 5(8):602, Fifth Annual Meeting of the Vision Sciences Society (VSS), September 2005 (poster)

Abstract
The algorithmic classification of complex, natural scenes is generally considered a difficult task due to the large amount of information conveyed by natural images. Work by Simon Thorpe and colleagues showed that humans are capable of detecting animals within novel natural scenes with remarkable speed and accuracy. This suggests that the relevant information for classification can be extracted at comparatively limited computational cost. One hypothesis is that global image statistics such as the amplitude spectrum could underly fast image classification (Johnson & Olshausen, Journal of Vision, 2003; Torralba & Oliva, Network: Comput. Neural Syst., 2003). We used linear discriminant analysis to classify a set of 11.000 images into animal and non-animal images. After applying a DFT to the image, we put the Fourier spectrum into bins (8 orientations with 6 frequency bands each). Using all bins, classification performance on the Fourier spectrum reached 70%. However, performance was similar (67%) when only the high spatial frequency information was used and decreased steadily at lower spatial frequencies, reaching a minimum (50%) for the low spatial frequency information. Similar results were obtained when all bins were used on spatially filtered images. A detailed analysis of the classification weights showed that a relatively high level of performance (67%) could also be obtained when only 2 bins were used, namely the vertical and horizontal orientation at the highest spatial frequency band. Our results show that in the absence of sophisticated machine learning techniques, animal detection in natural scenes is limited to rather modest levels of performance, far below those of human observers. If limiting oneself to global image statistics such as the DFT then mostly information at the highest spatial frequencies is useful for the task. This is analogous to the results obtained with human observers on filtered images (Kirchner et al, VSS 2004).

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Phenotypic characterization of chondrosarcoma-derived cell lines

Schorle, C., Finger, F., Zien, A., Block, J., Gebhard, P., Aigner, T.

Cancer Letters, 226(2):143-154, August 2005 (article)

Abstract
Gene expression profiling of three chondrosarcoma derived cell lines (AD, SM, 105KC) showed an increased proliferative activity and a reduced expression of chondrocytic-typical matrix products compared to primary chondrocytes. The incapability to maintain an adequate matrix synthesis as well as a notable proliferative activity at the same time is comparable to neoplastic chondrosarcoma cells in vivo which cease largely cartilage matrix formation as soon as their proliferative activity increases. Thus, the investigated cell lines are of limited value as substitute of primary chondrocytes but might have a much higher potential to investigate the behavior of neoplastic chondrocytes, i.e. chondrosarcoma biology.

ei

Web [BibTex]

Web [BibTex]


no image
Local Rademacher Complexities

Bartlett, P., Bousquet, O., Mendelson, S.

The Annals of Statistics, 33(4):1497-1537, August 2005 (article)

Abstract
We propose new bounds on the error of learning algorithms in terms of a data-dependent notion of complexity. The estimates we establish give optimal rates and are based on a local and empirical version of Rademacher averages, in the sense that the Rademacher averages are computed from the data, on a subset of functions with small empirical error. We present some applications to classification and prediction with convex function classes, and with kernel classes in particular.

ei

PDF PostScript Web [BibTex]

PDF PostScript Web [BibTex]


no image
Building Sparse Large Margin Classifiers

Wu, M., Schölkopf, B., BakIr, G.

In Proceedings of the 22nd International Conference on Machine Learning, pages: 996-1003, (Editors: L De Raedt and S Wrobel ), ACM, New York, NY, USA, ICML , August 2005 (inproceedings)

Abstract
This paper presents an approach to build Sparse Large Margin Classifiers (SLMC) by adding one more constraint to the standard Support Vector Machine (SVM) training problem. The added constraint explicitly controls the sparseness of the classifier and an approach is provided to solve the formulated problem. When considering the dual of this problem, it can be seen that building an SLMC is equivalent to constructing an SVM with a modified kernel function. Further analysis of this kernel function indicates that the proposed approach essentially finds a discriminating subspace that can be spanned by a small number of vectors, and in this subspace different classes of data are linearly well separated. Experimental results over several classification benchmarks show that in most cases the proposed approach outperforms the state-of-art sparse learning algorithms.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Learning from Labeled and Unlabeled Data on a Directed Graph

Zhou, D., Huang, J., Schölkopf, B.

In Proceedings of the 22nd International Conference on Machine Learning, pages: 1041 -1048, (Editors: L De Raedt and S Wrobel), ACM, New York, NY, USA, ICML, August 2005 (inproceedings)

Abstract
We propose a general framework for learning from labeled and unlabeled data on a directed graph in which the structure of the graph including the directionality of the edges is considered. The time complexity of the algorithm derived from this framework is nearly linear due to recently developed numerical techniques. In the absence of labeled instances, this framework can be utilized as a spectral clustering method for directed graphs, which generalizes the spectral clustering approach for undirected graphs. We have applied our framework to real-world web classification problems and obtained encouraging results.

ei

PostScript PDF [BibTex]

PostScript PDF [BibTex]


no image
Regularization on Discrete Spaces

Zhou, D., Schölkopf, B.

In Pattern Recognition, Lecture Notes in Computer Science, Vol. 3663, pages: 361-368, (Editors: WG Kropatsch and R Sablatnig and A Hanbury), Springer, Berlin, Germany, 27th DAGM Symposium, August 2005 (inproceedings)

Abstract
We consider the classification problem on a finite set of objects. Some of them are labeled, and the task is to predict the labels of the remaining unlabeled ones. Such an estimation problem is generally referred to as transductive inference. It is well-known that many meaningful inductive or supervised methods can be derived from a regularization framework, which minimizes a loss function plus a regularization term. In the same spirit, we propose a general discrete regularization framework defined on finite object sets, which can be thought of as the discrete analogue of classical regularization theory. A family of transductive inference schemes is then systemically derived from the framework, including our earlier algorithm for transductive inference, with which we obtained encouraging results on many practical classification problems. The discrete regularization framework is built on the discrete analysis and geometry developed by ourselves, in which a number of discrete differential operators of various orders are constructed, which can be thought of as the discrete analogue of their counterparts in the continuous case.

ei

PDF PostScript DOI [BibTex]

PDF PostScript DOI [BibTex]


no image
Large Margin Non-Linear Embedding

Zien, A., Candela, J.

In ICML 2005, pages: 1065-1072, (Editors: De Raedt, L. , S. Wrobel), ACM Press, New York, NY, USA, 22nd International Conference on Machine Learning, August 2005 (inproceedings)

Abstract
It is common in classification methods to first place data in a vector space and then learn decision boundaries. We propose reversing that process: for fixed decision boundaries, we ``learn‘‘ the location of the data. This way we (i) do not need a metric (or even stronger structure) -- pairwise dissimilarities suffice; and additionally (ii) produce low-dimensional embeddings that can be analyzed visually. We achieve this by combining an entropy-based embedding method with an entropy-based version of semi-supervised logistic regression. We present results for clustering and semi-supervised classification.

ei

PDF PostScript Web DOI [BibTex]

PDF PostScript Web DOI [BibTex]


no image
Face Detection: Efficient and Rank Deficient

Kienzle, W., BakIr, G., Franz, M., Schölkopf, B.

In Advances in Neural Information Processing Systems 17, pages: 673-680, (Editors: LK Saul and Y Weiss and L Bottou), MIT Press, Cambridge, MA, USA, 18th Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
This paper proposes a method for computing fast approximations to support vector decision functions in the field of object detection. In the present approach we are building on an existing algorithm where the set of support vectors is replaced by a smaller, so-called reduced set of synthesized input space points. In contrast to the existing method that finds the reduced set via unconstrained optimization, we impose a structural constraint on the synthetic points such that the resulting approximations can be evaluated via separable filters. For applications that require scanning an entire image, this decreases the computational complexity of a scan by a significant amount. We present experimental results on a standard face detection database.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Methods Towards Invasive Human Brain Computer Interfaces

Lal, T., Hinterberger, T., Widman, G., Schröder, M., Hill, J., Rosenstiel, W., Elger, C., Schölkopf, B., Birbaumer, N.

In Advances in Neural Information Processing Systems 17, pages: 737-744, (Editors: LK Saul and Y Weiss and L Bottou), MIT Press, Cambridge, MA, USA, 18th Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
During the last ten years there has been growing interest in the development of Brain Computer Interfaces (BCIs). The field has mainly been driven by the needs of completely paralyzed patients to communicate. With a few exceptions, most human BCIs are based on extracranial electroencephalography (EEG). However, reported bit rates are still low. One reason for this is the low signal-to-noise ratio of the EEG. We are currently investigating if BCIs based on electrocorticography (ECoG) are a viable alternative. In this paper we present the method and examples of intracranial EEG recordings of three epilepsy patients with electrode grids placed on the motor cortex. The patients were asked to repeatedly imagine movements of two kinds, e.g., tongue or finger movements. We analyze the classifiability of the data using Support Vector Machines (SVMs) and Recursive Channel Elimination (RCE).

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
A Machine Learning Approach to Conjoint Analysis

Chapelle, O., Harchaoui, Z.

In Advances in Neural Information Processing Systems 17, pages: 257-264, (Editors: Saul, L.K. , Y. Weiss, L. Bottou), MIT Press, Cambridge, MA, USA, Eighteenth Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
Choice-based conjoint analysis builds models of consumers preferences over products with answers gathered in questionnaires. Our main goal is to bring tools from the machine learning community to solve more efficiently this problem. Thus, we propose two algorithms to estimate quickly and accurately consumer preferences.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
An Auditory Paradigm for Brain-Computer Interfaces

Hill, N., Lal, T., Bierig, K., Birbaumer, N., Schölkopf, B.

In Advances in Neural Information Processing Systems 17, pages: 569-576, (Editors: LK Saul and Y Weiss and L Bottou), MIT Press, Cambridge, MA, USA, 18th Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
Motivated by the particular problems involved in communicating with "locked-in" paralysed patients, we aim to develop a brain-computer interface that uses auditory stimuli. We describe a paradigm that allows a user to make a binary decision by focusing attention on one of two concurrent auditory stimulus sequences. Using Support Vector Machine classification and Recursive Channel Elimination on the independent components of averaged event-related potentials, we show that an untrained user's EEG data can be classified with an encouragingly high level of accuracy. This suggests that it is possible for users to modulate EEG signals in a single trial by the conscious direction of attention, well enough to be useful in BCI.

ei

PDF Web [BibTex]

PDF Web [BibTex]