Header logo is


2011


no image
Modeling of stochastic motion of bacteria propelled spherical microbeads

Arabagi, V., Behkam, B., Cheung, E., Sitti, M.

Journal of Applied Physics, 109(11):114702, AIP, 2011 (article)

pi

Project Page [BibTex]

2011


Project Page [BibTex]


no image
The effect of aspect ratio on adhesion and stiffness for soft elastic fibres

Aksak, B., Hui, C., Sitti, M.

Journal of The Royal Society Interface, 8(61):1166-1175, The Royal Society, 2011 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


Steerable random fields for image restoration and inpainting
Steerable random fields for image restoration and inpainting

Roth, S., Black, M. J.

In Markov Random Fields for Vision and Image Processing, pages: 377-387, (Editors: Blake, A. and Kohli, P. and Rother, C.), MIT Press, 2011 (incollection)

Abstract
This chapter introduces the concept of a Steerable Random Field (SRF). In contrast to traditional Markov random field (MRF) models in low-level vision, the random field potentials of a SRF are defined in terms of filter responses that are steered to the local image structure. This steering uses the structure tensor to obtain derivative responses that are either aligned with, or orthogonal to, the predominant local image structure. Analysis of the statistics of these steered filter responses in natural images leads to the model proposed here. Clique potentials are defined over steered filter responses using a Gaussian scale mixture model and are learned from training data. The SRF model connects random fields with anisotropic regularization and provides a statistical motivation for the latter. Steering the random field to the local image structure improves image denoising and inpainting performance compared with traditional pairwise MRFs.

ps

publisher site [BibTex]

publisher site [BibTex]


no image
Large hidden orbital moments in magnetite

Goering, E.

{Physica Status Solidi B}, 248(10):2345-2351, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Cr magnetization reversal at the CrO2/RuO2 interface: Origin of the reduced GMR effect

Zafar, K., Audehm, P., Schütz, G., Goering, E., Pathak, M., Chetry, K. B., LeClair, P. R., Gupta, A.

{Physical Review B}, 84, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetocaloric effect, magnetic domain structure and spin-reorientation transitios in HoCo5 single crystals

Skokov, K. P., Pastushenkov, Y. G., Koshkid\textquotesingleko, Y. S., Schütz, G., Goll, D., Ivanova, T. I., Nikitin, S. A., Semenova, E. M., Petrenko, A. V.

{Journal of Magnetism and Magnetic Materials}, 323(5):447-450, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Elucidating gating effects for hydrogen sorption in MFU-4-type triazolate-based metal-organic frameworks featuring different pore sizes

Denysenko, D., Grzywa, M., Tonigold, M., Streppel, B., Krkljus, I., Hirscher, M., Mugnaioli, E., Kolb, U., Hanss, J., Volkmer, D.

{Chemistry - A European Journal}, 17(6):1837-1848, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
BET specific surface area and pore structure of MOFs determined by hydrogen adsorption at 20 K

Streppel, B., Hirscher, M.

{Physical Chemistry Chemical Physics}, 13(8):3220-3222, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
High contrast magnetic and nonmagnetic sample current microscopy for bulk and transparent samples using soft X-rays

Nolle, D., Weigand, M., Schütz, G., Goering, E.

{Microscopy and Microanalysis}, 17, pages: 834-842, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic vortex core reversal by rotating magnetic fields generated on micrometer length scales

Curcic, M., Stoll, H., Weigand, M., Sackmann, V., Jüllig, P., Kammerer, M., Noske, M., Sproll, M., Van Waeyenberge, B., Vansteenkiste, A., Woltersdorf, G., Tyliszczak, T., Schütz, G.

{Physica Status Solidi B}, 248(10):2317-2322, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Nanomechanics of AFM based nanomanipulation

Xie, H., Onal, C., Régnier, S., Sitti, M.

In Atomic Force Microscopy Based Nanorobotics, pages: 87-143, Springer Berlin Heidelberg, 2011 (incollection)

pi

[BibTex]

[BibTex]


no image
Enhancing adhesion of biologically inspired polymer microfibers with a viscous oil coating

Cheung, E., Sitti, M.

The Journal of Adhesion, 87(6):547-557, Taylor & Francis Group, 2011 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Formation of two amorphous phases in the Ni60Nb18Y22 alloy after high pressure torsion

Straumal, B. B., Mazilkin, A. A., Protasova, S. G., Goll, D., Baretzky, B., Bakai, A. S., Dobatkin, S. V.

{Kovove Materialy-Metallic Materials}, 49(1):17-22, 2011 (article)

mms

link (url) [BibTex]

link (url) [BibTex]


no image
Structure and properties of nanograined Fe-C alloys after severe plastic deformation

Straumal, B. B., Dobatkin, S. V., Rodin, A. O., Protasova, S. G., Mazilkin, A. A., Goll, D., Baretzky, B.

{Advanced Engineering Materials}, 13(6):463-469, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Increased flux pinning in YBa2Cu3O7-δthin-film devices through embedding of Au nano crystals

Katzer, C., Schmidt, M., Michalowski, P., Kuhwald, D., Schmidl, F., Grosse, V., Treiber, S., Stahl, C., Albrecht, J., Hübner, U., Undisz, A., Rettenmayr, M., Schütz, G., Seidel, P.

{Europhysics Letters}, 95(6), 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Signal transfer in a chain of stray-field coupled ferromagnetic squares

Vogel, A., Martens, M., Weigand, M., Meier, G.

{Applied Physics Letters}, 99, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Electron theory of magnetoelectric effects in metallic ferromagnetic nanostructures

Subkow, S., Fähnle, M.

{Physical Review B}, 84, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic antivortex-core reversal by rotating magnetic fields

Kamionka, T., Martens, M., Chou, K., Drews, A., Tyliszczak, T., Stoll, H., Van Waeyenberge, B., Meier, G.

{Physical Review B}, 83, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic properties of exchange-spring composite films

Kronmüller, H., Goll, D.

{Physica Status Solidi B}, 248(10):2361-2367, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Wetting transition of grain boundaries in the Sn-rich part of the Sn-Bi phase diagram

Yeh, C.-H., Chang, L.-S., Straumal, B. B.

{Journal of Materials Science}, 46(5):1557-1562, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Instrumentation Issues of an AFM Based Nanorobotic System

Xie, H., Onal, C., Régnier, S., Sitti, M.

In Atomic Force Microscopy Based Nanorobotics, pages: 31-86, Springer Berlin Heidelberg, 2011 (incollection)

pi

[BibTex]

[BibTex]


no image
Piezoelectric polymer fiber arrays for tactile sensing applications

Sümer, B., Aksak, B., Şsahin, K., Chuengsatiansup, K., Sitti, M.

Sensor Letters, 9(2):457-463, American Scientific Publishers, 2011 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Control methodologies for a heterogeneous group of untethered magnetic micro-robots

Floyd, S., Diller, E., Pawashe, C., Sitti, M.

The International Journal of Robotics Research, 30(13):1553-1565, SAGE Publications, 2011 (article)

pi

[BibTex]

[BibTex]


no image
Projected Newton-type methods in machine learning

Schmidt, M., Kim, D., Sra, S.

In Optimization for Machine Learning, pages: 305-330, MIT Press, Cambridge, MA, USA, 2011 (incollection)

Abstract
{We consider projected Newton-type methods for solving large-scale optimization problems arising in machine learning and related fields. We first introduce an algorithmic framework for projected Newton-type methods by reviewing a canonical projected (quasi-)Newton method. This method, while conceptually pleasing, has a high computation cost per iteration. Thus, we discuss two variants that are more scalable, namely, two-metric projection and inexact projection methods. Finally, we show how to apply the Newton-type framework to handle non-smooth objectives. Examples are provided throughout the chapter to illustrate machine learning applications of our framework.}

mms

link (url) [BibTex]

link (url) [BibTex]


no image
Influence of dot size and annealing on the magnetic properties of large-area L10-FePt nanopatterns

Bublat, T., Goll, D.

{Journal of Applied Physics}, 110(7), 2011 (article)

mms

DOI [BibTex]


no image
The temperature-dependent magnetization profile across an epitaxial bilayer of ferromagnetic La2/3Ca1/3MnO3 and superconducting YBa2Cu3O7-δ

Brück, S., Treiber, S., Macke, S., Audehm, P., Christiani, G., Soltan, S., Habermeier, H., Goering, E., Albrecht, J.

{New Journal of Physics}, 13(3), 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Spin interactions in bcc and fcc Fe beyond the Heisenberg model

Singer, R., Dietermann, F., Fähnle, M.

{Physical Review Letters}, 107, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Route to a family of robust, non-interpenetrated metal-organic frameworks with pto-like topology

Klein, N., Senkovska, I., Baburin, I. A., Grünker, R., Stoeck, U., Schlichtenmayer, M., Streppel, B., Mueller, U., Leoni, S., Hirscher, M., Kaskel, S.

{Chemistry - A European Journal}, 17(46):13007-13016, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Initial stages of growth of iron on silicon for spin injection through Schottky barrier

Dash, S. P., Carstanjen, H. D.

{Physica Status Solidi B}, 248(10):2300-2304, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Fe3O4/ZnO: A high-quality magnetic oxide-semiconductor heterostructure by reactive deposition

Paul, M., Kufer, D., Müller, A., Brück, S., Goering, E., Kamp, M., Verbeeck, J., Tian, H., Van Tendeloo, G., Ingle, N. J. C., Sing, M., Claessen, R.

{Applied Physics Letters}, 98, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Influence of texture on the ferromagnetic properties of nanograined ZnO films

Straumal, B., Mazilkin, A., Protasova, S., Myatiev, A., Straumal, P., Goering, E., Baretzky, B.

{Physica Status Solidi B}, 248(7):1581-1586, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Control of spin configuration in half-metallic La0.7Sr0.3MnO3 nano-structures

Rhensius, J., Vaz, C. A. F., Bisig, A., Schweitzer, S., Heidler, J., Körner, H. S., Locatelli, A., Niño, M. A., Weigand, M., Méchin, L., Gaucher, F., Goering, E., Heyderman, L. J., Kläui, M.

{Applied Physics Letters}, 99(6), 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Comparison of various sol-gel derived metal oxide layers for inverted organic solar cells

Oh, H., Krantz, J., Litzov, I., Stubhan, T., Pinna, L., Brabec, C. J.

{Solar Energy Materials \& Solar Cells}, 95(8):2194-2199, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]

2007


no image
A Tutorial on Spectral Clustering

von Luxburg, U.

Statistics and Computing, 17(4):395-416, December 2007 (article)

Abstract
In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. On the first glance spectral clustering appears slightly mysterious, and it is not obvious to see why it works at all and what it really does. The goal of this tutorial is to give some intuition on those questions. We describe different graph Laplacians and their basic properties, present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed.

ei

PDF PDF DOI [BibTex]

2007


PDF PDF DOI [BibTex]


no image
A Tutorial on Kernel Methods for Categorization

Jäkel, F., Schölkopf, B., Wichmann, F.

Journal of Mathematical Psychology, 51(6):343-358, December 2007 (article)

Abstract
The abilities to learn and to categorize are fundamental for cognitive systems, be it animals or machines, and therefore have attracted attention from engineers and psychologists alike. Modern machine learning methods and psychological models of categorization are remarkably similar, partly because these two fields share a common history in artificial neural networks and reinforcement learning. However, machine learning is now an independent and mature field that has moved beyond psychologically or neurally inspired algorithms towards providing foundations for a theory of learning that is rooted in statistics and functional analysis. Much of this research is potentially interesting for psychological theories of learning and categorization but also hardly accessible for psychologists. Here, we provide a tutorial introduction to a popular class of machine learning tools, called kernel methods. These methods are closely related to perceptrons, radial-basis-function neural networks and exemplar theories of catego rization. Recent theoretical advances in machine learning are closely tied to the idea that the similarity of patterns can be encapsulated in a positive definite kernel. Such a positive definite kernel can define a reproducing kernel Hilbert space which allows one to use powerful tools from functional analysis for the analysis of learning algorithms. We give basic explanations of some key concepts—the so-called kernel trick, the representer theorem and regularization—which may open up the possibility that insights from machine learning can feed back into psychology.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Accurate Splice site Prediction Using Support Vector Machines

Sonnenburg, S., Schweikert, G., Philips, P., Behr, J., Rätsch, G.

BMC Bioinformatics, 8(Supplement 10):1-16, December 2007 (article)

Abstract
Background: For splice site recognition, one has to solve two classification problems: discriminating true from decoy splice sites for both acceptor and donor sites. Gene finding systems typically rely on Markov Chains to solve these tasks. Results: In this work we consider Support Vector Machines for splice site recognition. We employ the so-called weighted degree kernel which turns out well suited for this task, as we will illustrate in several experiments where we compare its prediction accuracy with that of recently proposed systems. We apply our method to the genome-wide recognition of splice sites in Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, Danio rerio, and Homo sapiens. Our performance estimates indicate that splice sites can be recognized very accurately in these genomes and that our method outperforms many other methods including Markov Chains, GeneSplicer and SpliceMachine. We provide genome-wide predictions of splice sites and a stand-alone prediction tool ready to be used for incorporation in a gene finder. Availability: Data, splits, additional information on the model selection, the whole genome predictions, as well as the stand-alone prediction tool are available for download at http:// www.fml.mpg.de/raetsch/projects/splice.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
A unifying framework for robot control with redundant DOFs

Peters, J., Mistry, M., Udwadia, F., Nakanishi, J., Schaal, S.

Autonomous Robots, 24(1):1-12, October 2007 (article)

Abstract
Recently, Udwadia (Proc. R. Soc. Lond. A 2003:1783–1800, 2003) suggested to derive tracking controllers for mechanical systems with redundant degrees-of-freedom (DOFs) using a generalization of Gauss’ principle of least constraint. This method allows reformulating control problems as a special class of optimal controllers. In this paper, we take this line of reasoning one step further and demonstrate that several well-known and also novel nonlinear robot control laws can be derived from this generic methodology. We show experimental verifications on a Sarcos Master Arm robot for some of the derived controllers. The suggested approach offers a promising unification and simplification of nonlinear control law design for robots obeying rigid body dynamics equations, both with or without external constraints, with over-actuation or underactuation, as well as open-chain and closed-chain kinematics.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
The Need for Open Source Software in Machine Learning

Sonnenburg, S., Braun, M., Ong, C., Bengio, S., Bottou, L., Holmes, G., LeCun, Y., Müller, K., Pereira, F., Rasmussen, C., Rätsch, G., Schölkopf, B., Smola, A., Vincent, P., Weston, J., Williamson, R.

Journal of Machine Learning Research, 8, pages: 2443-2466, October 2007 (article)

Abstract
Open source tools have recently reached a level of maturity which makes them suitable for building large-scale real-world systems. At the same time, the field of machine learning has developed a large body of powerful learning algorithms for diverse applications. However, the true potential of these methods is not realized, since existing implementations are not openly shared, resulting in software with low usability, and weak interoperability. We argue that this situation can be significantly improved by increasing incentives for researchers to publish their software under an open source model. Additionally, we outline the problems authors are faced with when trying to publish algorithmic implementations of machine learning methods. We believe that a resource of peer reviewed software accompanied by short articles would be highly valuable to both the machine learning and the general scientific community.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Some observations on the masking effects of Mach bands

Curnow, T., Cowie, DA., Henning, GB., Hill, NJ.

Journal of the Optical Society of America A, 24(10):3233-3241, October 2007 (article)

Abstract
There are 8 cycle / deg ripples or oscillations in performance as a function of location near Mach bands in experiments measuring Mach bands’ masking effects on random polarity signal bars. The oscillations with increments are 180 degrees out of phase with those for decrements. The oscillations, much larger than the measurement error, appear to relate to the weighting function of the spatial-frequency-tuned channel detecting the broad- band signals. The ripples disappear with step maskers and become much smaller at durations below 25 ms, implying either that the site of masking has changed or that the weighting function and hence spatial-frequency tuning is slow to develop.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Support Vector Machine Learning for Interdependent and Structured Output Spaces

Altun, Y., Hofmann, T., Tsochantaridis, I.

In Predicting Structured Data, pages: 85-104, Advances in neural information processing systems, (Editors: Bakir, G. H. , T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, S. V. N. Vishwanathan), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

ei

Web [BibTex]

Web [BibTex]


no image
Brisk Kernel ICA

Jegelka, S., Gretton, A.

In Large Scale Kernel Machines, pages: 225-250, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

Abstract
Recent approaches to independent component analysis have used kernel independence measures to obtain very good performance in ICA, particularly in areas where classical methods experience difficulty (for instance, sources with near-zero kurtosis). In this chapter, we compare two efficient extensions of these methods for large-scale problems: random subsampling of entries in the Gram matrices used in defining the independence measures, and incomplete Cholesky decomposition of these matrices. We derive closed-form, efficiently computable approximations for the gradients of these measures, and compare their performance on ICA using both artificial and music data. We show that kernel ICA can scale up to much larger problems than yet attempted, and that incomplete Cholesky decomposition performs better than random sampling.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Mining complex genotypic features for predicting HIV-1 drug resistance

Saigo, H., Uno, T., Tsuda, K.

Bioinformatics, 23(18):2455-2462, September 2007 (article)

Abstract
Human immunodeficiency virus type 1 (HIV-1) evolves in human body, and its exposure to a drug often causes mutations that enhance the resistance against the drug. To design an effective pharmacotherapy for an individual patient, it is important to accurately predict the drug resistance based on genotype data. Notably, the resistance is not just the simple sum of the effects of all mutations. Structural biological studies suggest that the association of mutations is crucial: Even if mutations A or B alone do not affect the resistance, a significant change might happen when the two mutations occur together. Linear regression methods cannot take the associations into account, while decision tree methods can reveal only limited associations. Kernel methods and neural networks implicitly use all possible associations for prediction, but cannot select salient associations explicitly. Our method, itemset boosting, performs linear regression in the complete space of power sets of mutations. It implements a forward feature selection procedure where, in each iteration, one mutation combination is found by an efficient branch-and-bound search. This method uses all possible combinations, and salient associations are explicitly shown. In experiments, our method worked particularly well for predicting the resistance of nucleotide reverse transcriptase inhibitors (NRTIs). Furthermore, it successfully recovered many mutation associations known in biological literature.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Training a Support Vector Machine in the Primal

Chapelle, O.

In Large Scale Kernel Machines, pages: 29-50, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007, This is a slightly updated version of the Neural Computation paper (inbook)

Abstract
Most literature on Support Vector Machines (SVMs) concentrate on the dual optimization problem. In this paper, we would like to point out that the primal problem can also be solved efficiently, both for linear and non-linear SVMs, and that there is no reason to ignore this possibility. On the contrary, from the primal point of view new families of algorithms for large scale SVM training can be investigated.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Approximation Methods for Gaussian Process Regression

Quiñonero-Candela, J., Rasmussen, CE., Williams, CKI.

In Large-Scale Kernel Machines, pages: 203-223, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

Abstract
A wealth of computationally efficient approximation methods for Gaussian process regression have been recently proposed. We give a unifying overview of sparse approximations, following Quiñonero-Candela and Rasmussen (2005), and a brief review of approximate matrix-vector multiplication methods.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Trading Convexity for Scalability

Collobert, R., Sinz, F., Weston, J., Bottou, L.

In Large Scale Kernel Machines, pages: 275-300, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

Abstract
Convex learning algorithms, such as Support Vector Machines (SVMs), are often seen as highly desirable because they offer strong practical properties and are amenable to theoretical analysis. However, in this work we show how nonconvexity can provide scalability advantages over convexity. We show how concave-convex programming can be applied to produce (i) faster SVMs where training errors are no longer support vectors, and (ii) much faster Transductive SVMs.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Real-Time Fetal Heart Monitoring in Biomagnetic Measurements Using Adaptive Real-Time ICA

Waldert, S., Bensch, M., Bogdan, M., Rosenstiel, W., Schölkopf, B., Lowery, C., Eswaran, H., Preissl, H.

IEEE Transactions on Biomedical Engineering, 54(10):1867-1874, September 2007 (article)

Abstract
Electrophysiological signals of the developing fetal brain and heart can be investigated by fetal magnetoencephalography (fMEG). During such investigations, the fetal heart activity and that of the mother should be monitored continuously to provide an important indication of current well-being. Due to physical constraints of an fMEG system, it is not possible to use clinically established heart monitors for this purpose. Considering this constraint, we developed a real-time heart monitoring system for biomagnetic measurements and showed its reliability and applicability in research and for clinical examinations. The developed system consists of real-time access to fMEG data, an algorithm based on Independent Component Analysis (ICA), and a graphical user interface (GUI). The algorithm extracts the current fetal and maternal heart signal from a noisy and artifact-contaminated data stream in real-time and is able to adapt automatically to continuously varying environmental parameters. This algorithm has been na med Adaptive Real-time ICA (ARICA) and is applicable to real-time artifact removal as well as to related blind signal separation problems.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Classifying Event-Related Desynchronization in EEG, ECoG and MEG signals

Hill, N., Lal, T., Tangermann, M., Hinterberger, T., Widman, G., Elger, C., Schölkopf, B., Birbaumer, N.

In Toward Brain-Computer Interfacing, pages: 235-260, Neural Information Processing, (Editors: G Dornhege and J del R Millán and T Hinterberger and DJ McFarland and K-R Müller), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

ei

PDF Web [BibTex]

PDF Web [BibTex]