Header logo is


2016


no image
Localized domain wall nucleation dynamics in asymmetric ferromagnetic rings revealed by direct time-resolved magnetic imaging

Richter, K., Krone, A., Mawass, M., Krüger, B., Weigand, M., Stoll, H., Schütz, G., Kläui, M.

{Physical Review B}, 94(2), American Physical Society, Woodbury, NY, 2016 (article)

mms

DOI [BibTex]

2016


DOI [BibTex]


no image
Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets

Woo, S., Litzius, K., Krüger, B., Im, M., Caretta, L., Richter, K., Mann, M., Krone, A., Reeve, R. M., Weigand, M., Agrawal, P., Lemesh, I., Mawass, M., Fischer, P., Kläui, M., Beach, G. S. D.

{Nature Materials}, 15(5):501-506, Nature Pub. Group, London, UK, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Decision-Making under Ambiguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor Context: Experiments and an Information-Theoretic Ambiguity Model

Grau-Moya, J, Ortega, PA, Braun, DA

PLoS ONE, 11(4):1-21, April 2016 (article)

Abstract
A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects’ choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects’ choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain.

ei

DOI [BibTex]


no image
Austauschgekoppelte Moden in magnetischen Vortexstrukturen

Dieterle, G.

Universität Stuttgart, Stuttgart, 2016 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Density matrix calculations for the ultrafast demagnetization after femtosecond laser pulses

Weng, Weikai

Universität Stuttgart, Stuttgart, 2016 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Outlook and challenges for hydrogen storage in nanoporous materials

Broom, D. P., Webb, C. J., Hurst, K. E., Parilla, P. A., Gennett, T., Brown, C. M., Zacharia, R., Tylianakis, E., Klontzas, E., Froudakis, G. E., Steriotis, T. A., Trikalitis, P. N., Anton, D. L., Hardy, B., Tamburello, D., Corgnale, C., van Hassel, B. A., Cossement, D., Chahine, R., Hirscher, M.

{Applied Physics A}, 122(3), Springer-Verlag Heidelberg, Heidelberg, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Quantum sieving for separation of hydrogen isotopes using MOFs

Oh, H., Hirscher, M.

{European Journal of Inorganic Chemistry}, 2016(27):4278-4289, Wiley-VCH, Weinheim, Germany, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Direct patterning of vortex generators on a fiber tip using a focused ion beam

Vayalamkuzhi, P., Bhattacharya, S., Eigenthaler, U., Keskinbora, K., Salman, C. T., Hirscher, M., Spatz, J. P., Viswanathan, N. K.

{Optics Letters}, 41(10):2133-2136, Optical Society of America, Washington, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Two-body problem of core-region coupled magnetic vortex stacks

Hänze, M., Adolff, C. F., Velten, S., Weigand, M., Meier, G.

{Physical Review B}, 93(5), American Physical Society, Woodbury, NY, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Irreproducibility in hydrogen storage material research

Broom, D. P., Hirscher, M.

{Energy \& Environmental Science}, 9(11):3368-3380, Royal Society of Chemistry, Cambridge, UK, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Effect of surface configurations on the room-temperature magnetism of pure ZnO

Chen, Y., Wang, Z., Leineweber, A., Baier, J., Tietze, T., Phillipp, F., Schütz, G., Goering, E.

{Journal of Materials Chemistry C}, 4(19):4166-4175, Royal Society of Chemistry, London, UK, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
On the synthesis and microstructure analysis of high performance MnBi

Chen, Y., Sawatzki, S., Ener, S., Sepehri-Amin, H., Leineweber, A., Gregori, G., Qu, F., Muralidhar, S., Ohkubo, T., Hono, K., Gutfleisch, O., Kronmüller, H., Schütz, G., Goering, E.

{AIP Advances}, 6(12), 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Deep Learning for Diabetic Retinopathy Diagnostics

Balles, Lukas

Heidelberg University, 2016 (mastersthesis)

[BibTex]

[BibTex]


no image
The role of individual defects on the magnetic screening of HTSC films

Ruoß, S., Stahl, C., Weigand, M., Zahn, P., Bayer, J., Schütz, G., Albrecht, J.

{New Journal of Physics}, 18(10), IOP Publishing, Bristol, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic switching of nanoscale antidot lattices

Wiedwald, U., Gräfe, J., Lebecki, K. M., Skripnik, M., Haering, F., Schütz, G., Ziemann, P., Goering, E., Nowak, U.

{Beilstein Journal of Nanotechnology}, 7, pages: 733-750, Beilstein-Institut, Frankfurt am Main, 2016 (article)

mms

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Hydrogen-based energy storage (IEA-HIA Task 32)

Buckley, C. E., Chen, P., van Hassel, B. A., Hirscher, M.

{Applied Physics A}, 122(2), Springer-Verlag Heidelberg, Heidelberg, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Local domain-wall velocity engineering via tailored potential landscapes in ferromagnetic rings

Richter, K., Krone, A., Mawass, M., Krüger, B., Weigand, M., Stoll, H., Schütz, G., Kläui, M.

{Physical Review Applied}, 5(2), American Physical Society, College Park, Md. [u.a.], 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Geometric control of the magnetization reversal in antidot lattices with perpendicular magnetic anisotropy

Gräfe, J., Weigand, M., Träger, N., Schütz, G., Goering, E. J., Skripnik, M., Nowak, U., Haering, F., Ziemann, P., Wiedwald, U.

{Physical Review B}, 93(10), American Physical Society, Woodbury, NY, 2016 (article)

mms

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


no image
Growth and characterizationof large weak topological insulator Bi2Tel single crystal by Bismuth self-flux method

Ryu, G., Son, K., Schütz, G.

{Journal of Crystal Growth}, 440, pages: 26-30, North-Holland, Amsterdam, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature

Moreau-Luchaire, C., Moutafis, C., Reyren, N., Sampaio, J., Vaz, C. A. F., Van Horne, N., Bouzehouane, K., Garcia, K., Deranlot, C., Warnicke, P., Wohlhüter, P., George, J.-M., Weigand, M., Raabe, J., Cros, V., Fert, A.

{Nature Nanotechnology}, 11(5):444-448, Nature Publishing Group, London, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Surface defect free growth of a spin dimer TlCuCl3 compound crystals and investigations on its optical and magnetic properties

Ryu, G., Son, K.

{Journal of Solid State Chemistry}, 237, pages: 358-363, Academic Press, Orlando, Fla., 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Physical and mathematical justification of the numerical Brillouin zone integration of the Boltzmann rate equation by Gaussian smearing

Illg, C., Haag, M., Teeny, N., Wirth, J., Fähnle, M.

{Journal of Theoretical and Applied Physics}, 10(1):1-6, Springer, Berlin, Heidelberg, Tehran, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Helium und Hydrogen Isotope Adsorption and Separation in Metal-Organic Frameworks

Zaiser, Ingrid

Universität Stuttgart, Stuttgart (und Cuvillier Verlag, Göttingen), 2016 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Pinned orbital moments - A new contribution to magnetic anisotropy

Audehm, P., Schmidt, M., Brück, S., Tietze, T., Gräfe, J., Macke, S., Schütz, G., Goering, E.

{Scientific Reports}, 6, Nature Publishing Group, London, UK, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Comparative study of ALD SiO2 thin films for optical applications

Pfeiffer, K., Shestaeva, S., Bingel, A., Munzert, P., Ghazaryan, L., van Helvoirt, C., Kessels, W. M. M., Sanli, U. T., Grévent, C., Schütz, G., Putkonen, M., Buchanan, I., Jensen, L., Ristau, D., Tünnermann, A., Szeghalmi, A.

{Optical materials express}, 6(2):660-670, OSA, Washington, DC, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Combined first-order reversal curve and x-ray microscopy investigation of magnetization reversal mechanisms in hexagonal antidot lattices

Gräfe, J., Weigand, M., Stahl, C., Träger, N., Kopp, M., Schütz, G., Goering, E. J., Haering, F., Ziemann, P., Wiedwald, U.

{Physical Review B}, 93(1), American Physical Society, Woodbury, NY, 2016 (article)

mms

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


no image
Switching probabilities of magnetic vortex core reversal studied by table top magneto optic Kerr microscopy

Dieterle, G., Gangwar, A., Gräfe, J., Noske, M., Förster, J., Woltersdorf, G., Stoll, H., Back, C. H., Schütz, G.

{Applied Physics Letters}, 108(2), American Institute of Physics, Melville, NY, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ultrafast demagnetization after femtosecond laser pulses: Transfer of angular momentum from the electronic system to magnetoelastic spin-phonon modes

Tsatsoulis, T., Illg, C., Haag, M., Müller, B. Y., Zhang, L., Fähnle, M.

{Physical Review B}, 93(13), American Physical Society, Woodbury, NY, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Developments in the Ni-Nb-Zr amorphous alloy membranes

Sarker, S., Chandra, D., Hirscher, M., Dolan, M., Isheim, D., Wermer, J., Viano, D., Baricco, M., Udovic, T. J., Grant, D., Palumbo, O., Paolone, A., Cantelli, R.

{Applied Physics A}, 122(3), Springer-Verlag Heidelberg, Heidelberg, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Resistance to the transport of H2 through the external surface of as-made and modified silicalite-1 (MFI)

Kalantzopoulos, G. N., Policicchio, A., Maccallini, E., Krkljus, I., Ciuchi, F., Hirscher, M., Agostino, R. G., Golemme, G.

{Microporous and Mesoporous Materials}, 220, pages: 290-297, Elsevier, Amsterdam, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Observation of pseudopartial grain boundary wetting in the NdFeB-based alloy

Straumal, B. B., Mazilkin, A. A., Protasova, S. G., Schütz, G., Straumal, A. B., Baretzky, B.

{Journal of Materials Engineering and Performance}, 25(8):3303-3309, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]

2007


no image
Reaction graph kernels for discovering missing enzymes in the plant secondary metabolism

Saigo, H., Hattori, M., Tsuda, K.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
Secondary metabolic pathway in plant is important for finding druggable candidate enzymes. However, there are many enzymes whose functions are still undiscovered especially in organism-specific metabolic pathways. We propose reaction graph kernels for automatically assigning the EC numbers to unknown enzymatic reactions in a metabolic network. Experiments are carried out on KEGG/REACTION database and our method successfully predicted the first three digits of the EC number with 83% accuracy.We also exhaustively predicted missing enzymatic functions in the plant secondary metabolism pathways, and evaluated our results in biochemical validity.

ei

Web [BibTex]

2007


Web [BibTex]


no image
Positional Oligomer Importance Matrices

Sonnenburg, S., Zien, A., Philips, P., Rätsch, G.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
At the heart of many important bioinformatics problems, such as gene finding and function prediction, is the classification of biological sequences, above all of DNA and proteins. In many cases, the most accurate classifiers are obtained by training SVMs with complex sequence kernels, for instance for transcription starts or splice sites. However, an often criticized downside of SVMs with complex kernels is that it is very hard for humans to understand the learned decision rules and to derive biological insights from them. To close this gap, we introduce the concept of positional oligomer importance matrices (POIMs) and develop an efficient algorithm for their computation. We demonstrate how they overcome the limitations of sequence logos, and how they can be used to find relevant motifs for different biological phenomena in a straight-forward way. Note that the concept of POIMs is not limited to interpreting SVMs, but is applicable to general k−mer based scoring systems.

ei

Web [BibTex]

Web [BibTex]


no image
Machine Learning Algorithms for Polymorphism Detection

Schweikert, G., Zeller, G., Weigel, D., Schölkopf, B., Rätsch, G.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

ei

Web [BibTex]

Web [BibTex]


no image
A Tutorial on Spectral Clustering

von Luxburg, U.

Statistics and Computing, 17(4):395-416, December 2007 (article)

Abstract
In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. On the first glance spectral clustering appears slightly mysterious, and it is not obvious to see why it works at all and what it really does. The goal of this tutorial is to give some intuition on those questions. We describe different graph Laplacians and their basic properties, present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
An Automated Combination of Kernels for Predicting Protein Subcellular Localization

Zien, A., Ong, C.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
Protein subcellular localization is a crucial ingredient to many important inferences about cellular processes, including prediction of protein function and protein interactions.We propose a new class of protein sequence kernels which considers all motifs including motifs with gaps. This class of kernels allows the inclusion of pairwise amino acid distances into their computation. We utilize an extension of the multiclass support vector machine (SVM)method which directly solves protein subcellular localization without resorting to the common approach of splitting the problem into several binary classification problems. To automatically search over families of possible amino acid motifs, we optimize over multiple kernels at the same time. We compare our automated approach to four other predictors on three different datasets, and show that we perform better than the current state of the art. Furthermore, our method provides some insights as to which features are most useful for determining subcellular localization, which are in agreement with biological reasoning.

ei

Web [BibTex]

Web [BibTex]


no image
A Tutorial on Kernel Methods for Categorization

Jäkel, F., Schölkopf, B., Wichmann, F.

Journal of Mathematical Psychology, 51(6):343-358, December 2007 (article)

Abstract
The abilities to learn and to categorize are fundamental for cognitive systems, be it animals or machines, and therefore have attracted attention from engineers and psychologists alike. Modern machine learning methods and psychological models of categorization are remarkably similar, partly because these two fields share a common history in artificial neural networks and reinforcement learning. However, machine learning is now an independent and mature field that has moved beyond psychologically or neurally inspired algorithms towards providing foundations for a theory of learning that is rooted in statistics and functional analysis. Much of this research is potentially interesting for psychological theories of learning and categorization but also hardly accessible for psychologists. Here, we provide a tutorial introduction to a popular class of machine learning tools, called kernel methods. These methods are closely related to perceptrons, radial-basis-function neural networks and exemplar theories of catego rization. Recent theoretical advances in machine learning are closely tied to the idea that the similarity of patterns can be encapsulated in a positive definite kernel. Such a positive definite kernel can define a reproducing kernel Hilbert space which allows one to use powerful tools from functional analysis for the analysis of learning algorithms. We give basic explanations of some key concepts—the so-called kernel trick, the representer theorem and regularization—which may open up the possibility that insights from machine learning can feed back into psychology.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Accurate Splice site Prediction Using Support Vector Machines

Sonnenburg, S., Schweikert, G., Philips, P., Behr, J., Rätsch, G.

BMC Bioinformatics, 8(Supplement 10):1-16, December 2007 (article)

Abstract
Background: For splice site recognition, one has to solve two classification problems: discriminating true from decoy splice sites for both acceptor and donor sites. Gene finding systems typically rely on Markov Chains to solve these tasks. Results: In this work we consider Support Vector Machines for splice site recognition. We employ the so-called weighted degree kernel which turns out well suited for this task, as we will illustrate in several experiments where we compare its prediction accuracy with that of recently proposed systems. We apply our method to the genome-wide recognition of splice sites in Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, Danio rerio, and Homo sapiens. Our performance estimates indicate that splice sites can be recognized very accurately in these genomes and that our method outperforms many other methods including Markov Chains, GeneSplicer and SpliceMachine. We provide genome-wide predictions of splice sites and a stand-alone prediction tool ready to be used for incorporation in a gene finder. Availability: Data, splits, additional information on the model selection, the whole genome predictions, as well as the stand-alone prediction tool are available for download at http:// www.fml.mpg.de/raetsch/projects/splice.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Challenges in Brain-Computer Interface Development: Induction, Measurement, Decoding, Integration

Hill, NJ.

Invited keynote talk at the launch of BrainGain, the Dutch BCI research consortium, November 2007 (talk)

Abstract
I‘ll present a perspective on Brain-Computer Interface development from T{\"u}bingen. Some of the benefits promised by BCI technology lie in the near foreseeable future, and some further away. Our motivation is to make BCI technology feasible for the people who could benefit from what it has to offer soon: namely, people in the "completely locked-in" state. I‘ll mention some of the challenges of working with this user group, and explain the specific directions they have motivated us to take in developing experimental methods, algorithms, and software.

ei

[BibTex]

[BibTex]


no image
Some Theoretical Aspects of Human Categorization Behavior: Similarity and Generalization

Jäkel, F.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, November 2007, passed with "ausgezeichnet", summa cum laude, published online (phdthesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Statistical Learning Theory Approaches to Clustering

Jegelka, S.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, November 2007 (diplomathesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Policy Learning for Robotics

Peters, J.

14th International Conference on Neural Information Processing (ICONIP), November 2007 (talk)

ei

Web [BibTex]

Web [BibTex]


no image
A unifying framework for robot control with redundant DOFs

Peters, J., Mistry, M., Udwadia, F., Nakanishi, J., Schaal, S.

Autonomous Robots, 24(1):1-12, October 2007 (article)

Abstract
Recently, Udwadia (Proc. R. Soc. Lond. A 2003:1783–1800, 2003) suggested to derive tracking controllers for mechanical systems with redundant degrees-of-freedom (DOFs) using a generalization of Gauss’ principle of least constraint. This method allows reformulating control problems as a special class of optimal controllers. In this paper, we take this line of reasoning one step further and demonstrate that several well-known and also novel nonlinear robot control laws can be derived from this generic methodology. We show experimental verifications on a Sarcos Master Arm robot for some of the derived controllers. The suggested approach offers a promising unification and simplification of nonlinear control law design for robots obeying rigid body dynamics equations, both with or without external constraints, with over-actuation or underactuation, as well as open-chain and closed-chain kinematics.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
The Need for Open Source Software in Machine Learning

Sonnenburg, S., Braun, M., Ong, C., Bengio, S., Bottou, L., Holmes, G., LeCun, Y., Müller, K., Pereira, F., Rasmussen, C., Rätsch, G., Schölkopf, B., Smola, A., Vincent, P., Weston, J., Williamson, R.

Journal of Machine Learning Research, 8, pages: 2443-2466, October 2007 (article)

Abstract
Open source tools have recently reached a level of maturity which makes them suitable for building large-scale real-world systems. At the same time, the field of machine learning has developed a large body of powerful learning algorithms for diverse applications. However, the true potential of these methods is not realized, since existing implementations are not openly shared, resulting in software with low usability, and weak interoperability. We argue that this situation can be significantly improved by increasing incentives for researchers to publish their software under an open source model. Additionally, we outline the problems authors are faced with when trying to publish algorithmic implementations of machine learning methods. We believe that a resource of peer reviewed software accompanied by short articles would be highly valuable to both the machine learning and the general scientific community.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Hilbert Space Representations of Probability Distributions

Gretton, A.

2nd Workshop on Machine Learning and Optimization at the ISM, October 2007 (talk)

Abstract
Many problems in unsupervised learning require the analysis of features of probability distributions. At the most fundamental level, we might wish to determine whether two distributions are the same, based on samples from each - this is known as the two-sample or homogeneity problem. We use kernel methods to address this problem, by mapping probability distributions to elements in a reproducing kernel Hilbert space (RKHS). Given a sufficiently rich RKHS, these representations are unique: thus comparing feature space representations allows us to compare distributions without ambiguity. Applications include testing whether cancer subtypes are distinguishable on the basis of DNA microarray data, and whether low frequency oscillations measured at an electrode in the cortex have a different distribution during a neural spike. A more difficult problem is to discover whether two random variables drawn from a joint distribution are independent. It turns out that any dependence between pairs of random variables can be encoded in a cross-covariance operator between appropriate RKHS representations of the variables, and we may test independence by looking at a norm of the operator. We demonstrate this independence test by establishing dependence between an English text and its French translation, as opposed to French text on the same topic but otherwise unrelated. Finally, we show that this operator norm is itself a difference in feature means.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Regression with Intervals

Kashima, H., Yamazaki, K., Saigo, H., Inokuchi, A.

International Workshop on Data-Mining and Statistical Science (DMSS2007), October 2007, JSAI Incentive Award. Talk was given by Hisashi Kashima. (talk)

ei

Web [BibTex]

Web [BibTex]


no image
Some observations on the masking effects of Mach bands

Curnow, T., Cowie, DA., Henning, GB., Hill, NJ.

Journal of the Optical Society of America A, 24(10):3233-3241, October 2007 (article)

Abstract
There are 8 cycle / deg ripples or oscillations in performance as a function of location near Mach bands in experiments measuring Mach bands’ masking effects on random polarity signal bars. The oscillations with increments are 180 degrees out of phase with those for decrements. The oscillations, much larger than the measurement error, appear to relate to the weighting function of the spatial-frequency-tuned channel detecting the broad- band signals. The ripples disappear with step maskers and become much smaller at durations below 25 ms, implying either that the site of masking has changed or that the weighting function and hence spatial-frequency tuning is slow to develop.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
MR-Based PET Attenuation Correction: Method and Validation

Hofmann, M., Steinke, F., Scheel, V., Brady, M., Schölkopf, B., Pichler, B.

Joint Molecular Imaging Conference, September 2007 (talk)

Abstract
PET/MR combines the high soft tissue contrast of Magnetic Resonance Imaging (MRI) and the functional information of Positron Emission Tomography (PET). For quantitative PET information, correction of tissue photon attenuation is mandatory. Usually in conventional PET, the attenuation map is obtained from a transmission scan, which uses a rotating source, or from the CT scan in case of combined PET/CT. In the case of a PET/MR scanner, there is insufficient space for the rotating source and ideally one would want to calculate the attenuation map from the MR image instead. Since MR images provide information about proton density of the different tissue types, it is not trivial to use this data for PET attenuation correction. We present a method for predicting the PET attenuation map from a given the MR image, using a combination of atlas-registration and recognition of local patterns. Using "leave one out cross validation" we show on a database of 16 MR-CT image pairs that our method reliably allows estimating the CT image from the MR image. Subsequently, as in PET/CT, the PET attenuation map can be predicted from the CT image. On an additional dataset of MR/CT/PET triplets we quantitatively validate that our approach allows PET quantification with an error that is smaller than what would be clinically significant. We demonstrate our approach on T1-weighted human brain scans. However, the presented methods are more general and current research focuses on applying the established methods to human whole body PET/MRI applications.

ei

PDF Web [BibTex]

PDF Web [BibTex]