Header logo is


2009


no image
Magnetic properties of cobalt-covered MgB2 films

Treiber, S., Stuhlhofer, B., Habermeier, H.-U., Albrecht, J.

{Superconductor Science and Technology}, 22, 2009 (article)

mms

DOI [BibTex]

2009


DOI [BibTex]


no image
Reconstruction of historic alloys for pipe organs brings true Baroque music back to life

Baretzky, B., Friesel, M., Straumal, B.

{Japan Organist}, 36, pages: 29-38, 2009 (article)

mms

[BibTex]

[BibTex]


no image
Exchange-coupled L10-FePt/Fe composite patterns with perpendicular magnetization

Breitling, A., Bublat, T., Goll, D.

{Physica Status Solidi - Rapid Research Letters}, 3(5):130-132, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Proton NMR studies of the NaAlH4 structure

Valiente-Banuet, L. E., Majer, G., Müller, K.

{Journal of Magnetic Resonance}, 200, pages: 280-284, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
A scaled bilateral control system for experimental one-dimensional teleoperated nanomanipulation

Onal, C. D., Sitti, M.

The International Journal of Robotics Research, 28(4):484-497, Sage Publications, 2009 (article)

pi

[BibTex]

[BibTex]


no image
A Swallowable Tethered Capsule Endoscope for Diagnosing Barrett’s Esophagus

Glass, P., Sitti, M., Pennathur, A., Appasamy, R.

Gastrointestinal Endoscopy, 69(5):AB106, Mosby, 2009 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Adhesion of biologically inspired polymer microfibers on soft surfaces

Cheung, E., Sitti, M.

Langmuir, 25(12):6613-6616, ACS Publications, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Dangling chain elastomers as repeatable fibrillar adhesives

Sitti, M., Cusick, B., Aksak, B., Nese, A., Lee, H., Dong, H., Kowalewski, T., Matyjaszewski, K.

ACS applied materials \& interfaces, 1(10):2277-2287, American Chemical Society, 2009 (article)

pi

[BibTex]

[BibTex]


no image
A Sensor-Based Learning Algorithm for the Self-Organization of Robot Behavior

Hesse, F., Martius, G., Der, R., Herrmann, J. M.

Algorithms, 2(1):398-409, 2009 (article)

Abstract
Ideally, sensory information forms the only source of information to a robot. We consider an algorithm for the self-organization of a controller. At short timescales the controller is merely reactive but the parameter dynamics and the acquisition of knowledge by an internal model lead to seemingly purposeful behavior on longer timescales. As a paradigmatic example, we study the simulation of an underactuated snake-like robot. By interacting with the real physical system formed by the robotic hardware and the environment, the controller achieves a sensitive and body-specific actuation of the robot.

al

link (url) [BibTex]

link (url) [BibTex]


no image
In-situ - Untersuchungen zu Interdiffusion und Magnetismus in magnetischen Multilayern

Schmidt, M.

Universität Stuttgart, Stuttgart, 2009 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Magnetism of FePt surface alloys

Honolka, J., Lee, T. Y., Kuhnke, K., Enders, A., Skomski, R., Bornemann, S., Mankovsky, S., Minár, J., Staunton, J., Ebert, H., Hessler, M., Fauth, K., Schütz, G., Buchsbaum, A., Schmid, M., Varga, P., Kern, K.

{Physical Review Letters}, 102(6), 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Enhanced 95Zr diffusion in grain boundaries of nano-crystalline ZrO2 \mbox⋅ 9.5 mol\textpercent Y2O3

Drings, H., Brossmann, U., Carstanjen, H. D., Szökefalvi-Nagy, A., Noll, C., Schaefer, H.-E.

{Physica Status Solidi (A)}, 206(1):54-58, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetism of nanostructured materials for advanced magnetic recording

Goll, D.

{International Journal of Materials Research}, 100, pages: 652-662, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Vortex core switching by coherent excitation with single in-plane magnetic field pulses

Weigand, M., van Waeyenberge, B., Vansteenkiste, A., Curcic, M., Sackmann, V., Stoll, H., Tyliszczak, T., Kaznatcheev, K., Bertwistle, D., Woltersdorf, G., Back, C. H., Schütz, G.

{Physical Review Letters}, 102, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Increase of Mn solubility with decreasing grain size in ZnO

Straumal, B., Baretzky, B., Mazilkin, A., Protasova, S., Myatiev, A., Straumal, P.

{Journal of the European Ceramic Society}, 29(10):1963-1970, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Fe-C nanograined alloys obtained by high-pressure torsion: Structure and magnetic properties

Straumal, B. B., Mazilkin, A. A., Protasova, S. G., Dobatkin, S. V., Rodin, A. O., Baretzky, B., Goll, D., Schütz, G.

{Materials Science and Engineering A}, 503, pages: 185-189, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Chiral symmetry breaking of magnetic vortices by sample roughness

Vansteenkiste, A., Weigand, M., Curcic, M., Stoll, H., Schütz, G., Van Waeyenberge, B.

{New Journal of Physics}, 11, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Extended s-d model for magnetization dynamics of strongly noncollinear configurations

De Angeli, L., Steiauf, D., Singer, R., Köberle, I., Dietermann, F., Fähnle, M.

{Physical Review B}, 79, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Incorporating Muscle Activation-Contraction dynamics to an optimal control framework for finger movements

Theodorou, Evangelos A., Valero-Cuevas, Francisco J.

Abstracts of Neural Control of Movement Conference (NCM 2009), 2009, clmc (article)

Abstract
Recent experimental and theoretical work [1] investigated the neural control of contact transition between motion and force during tapping with the index finger as a nonlinear optimization problem. Such transitions from motion to well-directed contact force are a fundamental part of dexterous manipulation. There are 3 alternative hypotheses of how this transition could be accomplished by the nervous system as a function of changes in direction and magnitude of the torque vector controlling the finger. These hypotheses are 1) an initial change in direction with a subsequent change in magnitude of the torque vector; 2) an initial change in magnitude with a subsequent directional change of the torque vector; and 3) a simultaneous and proportionally equal change of both direction and magnitude of the torque vector. Experimental work in [2] shows that the nervous system selects the first strategy, and in [1] we suggest that this may in fact be the optimal strategy. In [4] the framework of Iterative Linear Quadratic Optimal Regulator (ILQR) was extended to incorporate motion and force control. However, our prior simulation work assumed direct and instantaneous control of joint torques, which ignores the known delays and filtering properties of skeletal muscle. In this study, we implement an ILQR controller for a more biologically plausible biomechanical model of the index finger than [4], and add activation-contraction dynamics to the system to simulate muscle function. The planar biomechanical model includes the kinematics of the 3 joints while the applied torques are driven by activation?contraction dynamics with biologically plausible time constants [3]. In agreement with our experimental work [2], the task is to, within 500 ms, move the finger from a given resting configuration to target configuration with a desired terminal velocity. ILQR does not only stabilize the finger dynamics according to the objective function, but it also generates smooth joint space trajectories with minimal tuning and without an a-priori initial control policy (which is difficult to find for highly dimensional biomechanical systems). Furthemore, the use of this optimal control framework and the addition of activation-contraction dynamics considers the full nonlinear dynamics of the index finger and produces a sequence of postures which are compatible with experimental motion data [2]. These simulations combined with prior experimental results suggest that optimal control is a strong candidate for the generation of finger movements prior to abrupt motion-to-force transitions. This work is funded in part by grants NIH R01 0505520 and NSF EFRI-0836042 to Dr. Francisco J. Valero- Cuevas 1 Venkadesan M, Valero-Cuevas FJ. 
Effects of neuromuscular lags on controlling contact transitions. 
Philosophical Transactions of the Royal Society A: 2008. 2 Venkadesan M, Valero-Cuevas FJ. 
Neural Control of Motion-to-Force Transitions with the Fingertip. 
J. Neurosci., Feb 2008; 28: 1366 - 1373; 3 Zajac. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng, 17 4. Weiwei Li., Francisco Valero Cuevas: ?Linear Quadratic Optimal Control of Contact Transition with Fingertip ? ACC 2009

am

PDF [BibTex]

PDF [BibTex]


no image
On-line learning and modulation of periodic movements with nonlinear dynamical systems

Gams, A., Ijspeert, A., Schaal, S., Lenarčič, J.

Autonomous Robots, 27(1):3-23, 2009, clmc (article)

Abstract
Abstract  The paper presents a two-layered system for (1) learning and encoding a periodic signal without any knowledge on its frequency and waveform, and (2) modulating the learned periodic trajectory in response to external events. The system is used to learn periodic tasks on a humanoid HOAP-2 robot. The first layer of the system is a dynamical system responsible for extracting the fundamental frequency of the input signal, based on adaptive frequency oscillators. The second layer is a dynamical system responsible for learning of the waveform based on a built-in learning algorithm. By combining the two dynamical systems into one system we can rapidly teach new trajectories to robots without any knowledge of the frequency of the demonstration signal. The system extracts and learns only one period of the demonstration signal. Furthermore, the trajectories are robust to perturbations and can be modulated to cope with a dynamic environment. The system is computationally inexpensive, works on-line for any periodic signal, requires no additional signal processing to determine the frequency of the input signal and can be applied in parallel to multiple dimensions. Additionally, it can adapt to changes in frequency and shape, e.g. to non-stationary signals, such as hand-generated signals and human demonstrations.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Reversible dry micro-fibrillar adhesives with thermally controllable adhesion

Kim, S., Sitti, M., Xie, T., Xiao, X.

Soft Matter, 5(19):3689-3693, Royal Society of Chemistry, 2009 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Enhanced reversible adhesion of dopamine methacrylamide-coated elastomer microfibrillar structures under wet conditions

Glass, P., Chung, H., Washburn, N. R., Sitti, M.

Langmuir, 25(12):6607-6612, ACS Publications, 2009 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Theorie der elektronischen Zustände in oxidischen magnetischen Materialien

Kostoglou, C.

Universität Stuttgart, Stuttgart, 2009 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Magnetooptische Untersuchungen an Ferromagnet- und Supraleiter-Nanosystemen und deren Hybriden

Treiber, S.

Universität Stuttgart, Stuttgart, 2009 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Superconducting phase formation in random neck syntheses: a study of the Y-Ba-Cu-O system by magneto-optics and magnetometry

Willems, J. B., Albrecht, J., Landau, I. L., Hulliger, J.

{Superconductor Science and Technology}, 22, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Determination of spin moments from magnetic EXAFS

Popescu, V., Gü\ssmann, M., Fähnle, M., Schütz, G.

{Physical Review B}, 79, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Linewidth of ferromagnetic resonance for systems with anisotropic damping

Seib, J., Steiauf, D., Fähnle, M.

{Physical Review B}, 79, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Structural and magnetic deconvolution of FePt/FeOx-nanoparticles using x-ray magnetic circular dichroism

Nolle, D., Goering, E., Tietze, T., Schütz, G., Figuerola, A., Manna, L.

{New Journal of Physics}, 11, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic imaging with femtosecond temporal resolution

Li, J., Lee, M.-S., He, W., Redeker, B., Remhof, A., Amaladass, E., Hassel, C., Eimüller, T.

{Review of Scientific Instruments}, 80(7), 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Elliott-Yafet mechanism and the discussion of femtosecond magnetization dynamics

Steiauf, D., Fähnle, M.

{Physical Review B}, 79, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Investigation of the stability of Mn12 single molecule magnets

Voss, S., Fonin, M., Burova, L., Burgert, M., Dedkov, Y. S., Preobrajenski, A. B., Goering, E., Groth, U., Kaul, A. R., Ruediger, U.

{Applied Physics A}, 94(3):491-495, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]

2007


no image
Reaction graph kernels for discovering missing enzymes in the plant secondary metabolism

Saigo, H., Hattori, M., Tsuda, K.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
Secondary metabolic pathway in plant is important for finding druggable candidate enzymes. However, there are many enzymes whose functions are still undiscovered especially in organism-specific metabolic pathways. We propose reaction graph kernels for automatically assigning the EC numbers to unknown enzymatic reactions in a metabolic network. Experiments are carried out on KEGG/REACTION database and our method successfully predicted the first three digits of the EC number with 83% accuracy.We also exhaustively predicted missing enzymatic functions in the plant secondary metabolism pathways, and evaluated our results in biochemical validity.

ei

Web [BibTex]

2007


Web [BibTex]


no image
Positional Oligomer Importance Matrices

Sonnenburg, S., Zien, A., Philips, P., Rätsch, G.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
At the heart of many important bioinformatics problems, such as gene finding and function prediction, is the classification of biological sequences, above all of DNA and proteins. In many cases, the most accurate classifiers are obtained by training SVMs with complex sequence kernels, for instance for transcription starts or splice sites. However, an often criticized downside of SVMs with complex kernels is that it is very hard for humans to understand the learned decision rules and to derive biological insights from them. To close this gap, we introduce the concept of positional oligomer importance matrices (POIMs) and develop an efficient algorithm for their computation. We demonstrate how they overcome the limitations of sequence logos, and how they can be used to find relevant motifs for different biological phenomena in a straight-forward way. Note that the concept of POIMs is not limited to interpreting SVMs, but is applicable to general k−mer based scoring systems.

ei

Web [BibTex]

Web [BibTex]


no image
Machine Learning Algorithms for Polymorphism Detection

Schweikert, G., Zeller, G., Weigel, D., Schölkopf, B., Rätsch, G.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

ei

Web [BibTex]

Web [BibTex]


no image
A Tutorial on Spectral Clustering

von Luxburg, U.

Statistics and Computing, 17(4):395-416, December 2007 (article)

Abstract
In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. On the first glance spectral clustering appears slightly mysterious, and it is not obvious to see why it works at all and what it really does. The goal of this tutorial is to give some intuition on those questions. We describe different graph Laplacians and their basic properties, present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
An Automated Combination of Kernels for Predicting Protein Subcellular Localization

Zien, A., Ong, C.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
Protein subcellular localization is a crucial ingredient to many important inferences about cellular processes, including prediction of protein function and protein interactions.We propose a new class of protein sequence kernels which considers all motifs including motifs with gaps. This class of kernels allows the inclusion of pairwise amino acid distances into their computation. We utilize an extension of the multiclass support vector machine (SVM)method which directly solves protein subcellular localization without resorting to the common approach of splitting the problem into several binary classification problems. To automatically search over families of possible amino acid motifs, we optimize over multiple kernels at the same time. We compare our automated approach to four other predictors on three different datasets, and show that we perform better than the current state of the art. Furthermore, our method provides some insights as to which features are most useful for determining subcellular localization, which are in agreement with biological reasoning.

ei

Web [BibTex]

Web [BibTex]


no image
A Tutorial on Kernel Methods for Categorization

Jäkel, F., Schölkopf, B., Wichmann, F.

Journal of Mathematical Psychology, 51(6):343-358, December 2007 (article)

Abstract
The abilities to learn and to categorize are fundamental for cognitive systems, be it animals or machines, and therefore have attracted attention from engineers and psychologists alike. Modern machine learning methods and psychological models of categorization are remarkably similar, partly because these two fields share a common history in artificial neural networks and reinforcement learning. However, machine learning is now an independent and mature field that has moved beyond psychologically or neurally inspired algorithms towards providing foundations for a theory of learning that is rooted in statistics and functional analysis. Much of this research is potentially interesting for psychological theories of learning and categorization but also hardly accessible for psychologists. Here, we provide a tutorial introduction to a popular class of machine learning tools, called kernel methods. These methods are closely related to perceptrons, radial-basis-function neural networks and exemplar theories of catego rization. Recent theoretical advances in machine learning are closely tied to the idea that the similarity of patterns can be encapsulated in a positive definite kernel. Such a positive definite kernel can define a reproducing kernel Hilbert space which allows one to use powerful tools from functional analysis for the analysis of learning algorithms. We give basic explanations of some key concepts—the so-called kernel trick, the representer theorem and regularization—which may open up the possibility that insights from machine learning can feed back into psychology.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Accurate Splice site Prediction Using Support Vector Machines

Sonnenburg, S., Schweikert, G., Philips, P., Behr, J., Rätsch, G.

BMC Bioinformatics, 8(Supplement 10):1-16, December 2007 (article)

Abstract
Background: For splice site recognition, one has to solve two classification problems: discriminating true from decoy splice sites for both acceptor and donor sites. Gene finding systems typically rely on Markov Chains to solve these tasks. Results: In this work we consider Support Vector Machines for splice site recognition. We employ the so-called weighted degree kernel which turns out well suited for this task, as we will illustrate in several experiments where we compare its prediction accuracy with that of recently proposed systems. We apply our method to the genome-wide recognition of splice sites in Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, Danio rerio, and Homo sapiens. Our performance estimates indicate that splice sites can be recognized very accurately in these genomes and that our method outperforms many other methods including Markov Chains, GeneSplicer and SpliceMachine. We provide genome-wide predictions of splice sites and a stand-alone prediction tool ready to be used for incorporation in a gene finder. Availability: Data, splits, additional information on the model selection, the whole genome predictions, as well as the stand-alone prediction tool are available for download at http:// www.fml.mpg.de/raetsch/projects/splice.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Challenges in Brain-Computer Interface Development: Induction, Measurement, Decoding, Integration

Hill, NJ.

Invited keynote talk at the launch of BrainGain, the Dutch BCI research consortium, November 2007 (talk)

Abstract
I‘ll present a perspective on Brain-Computer Interface development from T{\"u}bingen. Some of the benefits promised by BCI technology lie in the near foreseeable future, and some further away. Our motivation is to make BCI technology feasible for the people who could benefit from what it has to offer soon: namely, people in the "completely locked-in" state. I‘ll mention some of the challenges of working with this user group, and explain the specific directions they have motivated us to take in developing experimental methods, algorithms, and software.

ei

[BibTex]

[BibTex]


no image
Some Theoretical Aspects of Human Categorization Behavior: Similarity and Generalization

Jäkel, F.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, November 2007, passed with "ausgezeichnet", summa cum laude, published online (phdthesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Statistical Learning Theory Approaches to Clustering

Jegelka, S.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, November 2007 (diplomathesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Policy Learning for Robotics

Peters, J.

14th International Conference on Neural Information Processing (ICONIP), November 2007 (talk)

ei

Web [BibTex]

Web [BibTex]


no image
A unifying framework for robot control with redundant DOFs

Peters, J., Mistry, M., Udwadia, F., Nakanishi, J., Schaal, S.

Autonomous Robots, 24(1):1-12, October 2007 (article)

Abstract
Recently, Udwadia (Proc. R. Soc. Lond. A 2003:1783–1800, 2003) suggested to derive tracking controllers for mechanical systems with redundant degrees-of-freedom (DOFs) using a generalization of Gauss’ principle of least constraint. This method allows reformulating control problems as a special class of optimal controllers. In this paper, we take this line of reasoning one step further and demonstrate that several well-known and also novel nonlinear robot control laws can be derived from this generic methodology. We show experimental verifications on a Sarcos Master Arm robot for some of the derived controllers. The suggested approach offers a promising unification and simplification of nonlinear control law design for robots obeying rigid body dynamics equations, both with or without external constraints, with over-actuation or underactuation, as well as open-chain and closed-chain kinematics.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
The Need for Open Source Software in Machine Learning

Sonnenburg, S., Braun, M., Ong, C., Bengio, S., Bottou, L., Holmes, G., LeCun, Y., Müller, K., Pereira, F., Rasmussen, C., Rätsch, G., Schölkopf, B., Smola, A., Vincent, P., Weston, J., Williamson, R.

Journal of Machine Learning Research, 8, pages: 2443-2466, October 2007 (article)

Abstract
Open source tools have recently reached a level of maturity which makes them suitable for building large-scale real-world systems. At the same time, the field of machine learning has developed a large body of powerful learning algorithms for diverse applications. However, the true potential of these methods is not realized, since existing implementations are not openly shared, resulting in software with low usability, and weak interoperability. We argue that this situation can be significantly improved by increasing incentives for researchers to publish their software under an open source model. Additionally, we outline the problems authors are faced with when trying to publish algorithmic implementations of machine learning methods. We believe that a resource of peer reviewed software accompanied by short articles would be highly valuable to both the machine learning and the general scientific community.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Hilbert Space Representations of Probability Distributions

Gretton, A.

2nd Workshop on Machine Learning and Optimization at the ISM, October 2007 (talk)

Abstract
Many problems in unsupervised learning require the analysis of features of probability distributions. At the most fundamental level, we might wish to determine whether two distributions are the same, based on samples from each - this is known as the two-sample or homogeneity problem. We use kernel methods to address this problem, by mapping probability distributions to elements in a reproducing kernel Hilbert space (RKHS). Given a sufficiently rich RKHS, these representations are unique: thus comparing feature space representations allows us to compare distributions without ambiguity. Applications include testing whether cancer subtypes are distinguishable on the basis of DNA microarray data, and whether low frequency oscillations measured at an electrode in the cortex have a different distribution during a neural spike. A more difficult problem is to discover whether two random variables drawn from a joint distribution are independent. It turns out that any dependence between pairs of random variables can be encoded in a cross-covariance operator between appropriate RKHS representations of the variables, and we may test independence by looking at a norm of the operator. We demonstrate this independence test by establishing dependence between an English text and its French translation, as opposed to French text on the same topic but otherwise unrelated. Finally, we show that this operator norm is itself a difference in feature means.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Regression with Intervals

Kashima, H., Yamazaki, K., Saigo, H., Inokuchi, A.

International Workshop on Data-Mining and Statistical Science (DMSS2007), October 2007, JSAI Incentive Award. Talk was given by Hisashi Kashima. (talk)

ei

Web [BibTex]

Web [BibTex]


no image
Some observations on the masking effects of Mach bands

Curnow, T., Cowie, DA., Henning, GB., Hill, NJ.

Journal of the Optical Society of America A, 24(10):3233-3241, October 2007 (article)

Abstract
There are 8 cycle / deg ripples or oscillations in performance as a function of location near Mach bands in experiments measuring Mach bands’ masking effects on random polarity signal bars. The oscillations with increments are 180 degrees out of phase with those for decrements. The oscillations, much larger than the measurement error, appear to relate to the weighting function of the spatial-frequency-tuned channel detecting the broad- band signals. The ripples disappear with step maskers and become much smaller at durations below 25 ms, implying either that the site of masking has changed or that the weighting function and hence spatial-frequency tuning is slow to develop.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
MR-Based PET Attenuation Correction: Method and Validation

Hofmann, M., Steinke, F., Scheel, V., Brady, M., Schölkopf, B., Pichler, B.

Joint Molecular Imaging Conference, September 2007 (talk)

Abstract
PET/MR combines the high soft tissue contrast of Magnetic Resonance Imaging (MRI) and the functional information of Positron Emission Tomography (PET). For quantitative PET information, correction of tissue photon attenuation is mandatory. Usually in conventional PET, the attenuation map is obtained from a transmission scan, which uses a rotating source, or from the CT scan in case of combined PET/CT. In the case of a PET/MR scanner, there is insufficient space for the rotating source and ideally one would want to calculate the attenuation map from the MR image instead. Since MR images provide information about proton density of the different tissue types, it is not trivial to use this data for PET attenuation correction. We present a method for predicting the PET attenuation map from a given the MR image, using a combination of atlas-registration and recognition of local patterns. Using "leave one out cross validation" we show on a database of 16 MR-CT image pairs that our method reliably allows estimating the CT image from the MR image. Subsequently, as in PET/CT, the PET attenuation map can be predicted from the CT image. On an additional dataset of MR/CT/PET triplets we quantitatively validate that our approach allows PET quantification with an error that is smaller than what would be clinically significant. We demonstrate our approach on T1-weighted human brain scans. However, the presented methods are more general and current research focuses on applying the established methods to human whole body PET/MRI applications.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Mining complex genotypic features for predicting HIV-1 drug resistance

Saigo, H., Uno, T., Tsuda, K.

Bioinformatics, 23(18):2455-2462, September 2007 (article)

Abstract
Human immunodeficiency virus type 1 (HIV-1) evolves in human body, and its exposure to a drug often causes mutations that enhance the resistance against the drug. To design an effective pharmacotherapy for an individual patient, it is important to accurately predict the drug resistance based on genotype data. Notably, the resistance is not just the simple sum of the effects of all mutations. Structural biological studies suggest that the association of mutations is crucial: Even if mutations A or B alone do not affect the resistance, a significant change might happen when the two mutations occur together. Linear regression methods cannot take the associations into account, while decision tree methods can reveal only limited associations. Kernel methods and neural networks implicitly use all possible associations for prediction, but cannot select salient associations explicitly. Our method, itemset boosting, performs linear regression in the complete space of power sets of mutations. It implements a forward feature selection procedure where, in each iteration, one mutation combination is found by an efficient branch-and-bound search. This method uses all possible combinations, and salient associations are explicitly shown. In experiments, our method worked particularly well for predicting the resistance of nucleotide reverse transcriptase inhibitors (NRTIs). Furthermore, it successfully recovered many mutation associations known in biological literature.

ei

Web DOI [BibTex]

Web DOI [BibTex]