Header logo is


2016


no image
Bio-inspired feedback-circuit implementation of discrete, free energy optimizing, winner-take-all computations

Genewein, T, Braun, DA

Biological Cybernetics, 110(2):135–150, June 2016 (article)

Abstract
Bayesian inference and bounded rational decision-making require the accumulation of evidence or utility, respectively, to transform a prior belief or strategy into a posterior probability distribution over hypotheses or actions. Crucially, this process cannot be simply realized by independent integrators, since the different hypotheses and actions also compete with each other. In continuous time, this competitive integration process can be described by a special case of the replicator equation. Here we investigate simple analog electric circuits that implement the underlying differential equation under the constraint that we only permit a limited set of building blocks that we regard as biologically interpretable, such as capacitors, resistors, voltage-dependent conductances and voltage- or current-controlled current and voltage sources. The appeal of these circuits is that they intrinsically perform normalization without requiring an explicit divisive normalization. However, even in idealized simulations, we find that these circuits are very sensitive to internal noise as they accumulate error over time. We discuss in how far neural circuits could implement these operations that might provide a generic competitive principle underlying both perception and action.

ei

DOI [BibTex]

2016


DOI [BibTex]


no image
Collective modes in three-dimensional magnonic vortex crystals

Hänze, M., Adolff, C. F., Schulte, B., Möller, J., Weigand, M., Meier, G.

{Scientific Reports}, 6, Nature Publishing Group, London, UK, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Spin wave mediated unidirectional vortex core reversal by two orthogonal monopolar field pulses: The essential role of three-dimensional magnetization dynamics

Noske, M., Stoll, H., Fähnle, M., Gangwar, A., Woltersdorf, G., Slavin, A., Weigand, M., Dieterle, G., Förster, J., Back, C. H., Schütz, G.

{Journal of Applied Physics}, 119(17), AIP Publishing, New York, NY, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic vortex cores as tunable spin-wave emitters

Wintz, S., Tiberkevich, V., Weigand, M., Raabe, J., Lindner, J., Erbe, A., Slavin, A., Fassbender, J.

{Nature Nanotechnology}, 11(11):948-953, Nature Publishing Group, London, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
The usable capacity of porous materials for hydrogen storage

Schlichtenmayer, M., Hirscher, M.

{Applied Physics A}, 122(4), Springer-Verlag Heidelberg, Heidelberg, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ferromagnetic behaviour of ZnO: the role of grain boundaries

Straumal, B. B., Protasova, S. G., Mazilkin, A. A., Goering, E., Schütz, G., Straumal, P. B., Baretzky, B.

{Beilstein Journal of Nanotechnology}, 7, pages: 1936-1947, Beilstein-Institut, Frankfurt am Main, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Localized domain wall nucleation dynamics in asymmetric ferromagnetic rings revealed by direct time-resolved magnetic imaging

Richter, K., Krone, A., Mawass, M., Krüger, B., Weigand, M., Stoll, H., Schütz, G., Kläui, M.

{Physical Review B}, 94(2), American Physical Society, Woodbury, NY, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets

Woo, S., Litzius, K., Krüger, B., Im, M., Caretta, L., Richter, K., Mann, M., Krone, A., Reeve, R. M., Weigand, M., Agrawal, P., Lemesh, I., Mawass, M., Fischer, P., Kläui, M., Beach, G. S. D.

{Nature Materials}, 15(5):501-506, Nature Pub. Group, London, UK, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Decision-Making under Ambiguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor Context: Experiments and an Information-Theoretic Ambiguity Model

Grau-Moya, J, Ortega, PA, Braun, DA

PLoS ONE, 11(4):1-21, April 2016 (article)

Abstract
A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects’ choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects’ choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain.

ei

DOI [BibTex]


no image
Outlook and challenges for hydrogen storage in nanoporous materials

Broom, D. P., Webb, C. J., Hurst, K. E., Parilla, P. A., Gennett, T., Brown, C. M., Zacharia, R., Tylianakis, E., Klontzas, E., Froudakis, G. E., Steriotis, T. A., Trikalitis, P. N., Anton, D. L., Hardy, B., Tamburello, D., Corgnale, C., van Hassel, B. A., Cossement, D., Chahine, R., Hirscher, M.

{Applied Physics A}, 122(3), Springer-Verlag Heidelberg, Heidelberg, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Quantum sieving for separation of hydrogen isotopes using MOFs

Oh, H., Hirscher, M.

{European Journal of Inorganic Chemistry}, 2016(27):4278-4289, Wiley-VCH, Weinheim, Germany, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Direct patterning of vortex generators on a fiber tip using a focused ion beam

Vayalamkuzhi, P., Bhattacharya, S., Eigenthaler, U., Keskinbora, K., Salman, C. T., Hirscher, M., Spatz, J. P., Viswanathan, N. K.

{Optics Letters}, 41(10):2133-2136, Optical Society of America, Washington, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Two-body problem of core-region coupled magnetic vortex stacks

Hänze, M., Adolff, C. F., Velten, S., Weigand, M., Meier, G.

{Physical Review B}, 93(5), American Physical Society, Woodbury, NY, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Irreproducibility in hydrogen storage material research

Broom, D. P., Hirscher, M.

{Energy \& Environmental Science}, 9(11):3368-3380, Royal Society of Chemistry, Cambridge, UK, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Effect of surface configurations on the room-temperature magnetism of pure ZnO

Chen, Y., Wang, Z., Leineweber, A., Baier, J., Tietze, T., Phillipp, F., Schütz, G., Goering, E.

{Journal of Materials Chemistry C}, 4(19):4166-4175, Royal Society of Chemistry, London, UK, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
On the synthesis and microstructure analysis of high performance MnBi

Chen, Y., Sawatzki, S., Ener, S., Sepehri-Amin, H., Leineweber, A., Gregori, G., Qu, F., Muralidhar, S., Ohkubo, T., Hono, K., Gutfleisch, O., Kronmüller, H., Schütz, G., Goering, E.

{AIP Advances}, 6(12), 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
The role of individual defects on the magnetic screening of HTSC films

Ruoß, S., Stahl, C., Weigand, M., Zahn, P., Bayer, J., Schütz, G., Albrecht, J.

{New Journal of Physics}, 18(10), IOP Publishing, Bristol, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic switching of nanoscale antidot lattices

Wiedwald, U., Gräfe, J., Lebecki, K. M., Skripnik, M., Haering, F., Schütz, G., Ziemann, P., Goering, E., Nowak, U.

{Beilstein Journal of Nanotechnology}, 7, pages: 733-750, Beilstein-Institut, Frankfurt am Main, 2016 (article)

mms

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Hydrogen-based energy storage (IEA-HIA Task 32)

Buckley, C. E., Chen, P., van Hassel, B. A., Hirscher, M.

{Applied Physics A}, 122(2), Springer-Verlag Heidelberg, Heidelberg, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Local domain-wall velocity engineering via tailored potential landscapes in ferromagnetic rings

Richter, K., Krone, A., Mawass, M., Krüger, B., Weigand, M., Stoll, H., Schütz, G., Kläui, M.

{Physical Review Applied}, 5(2), American Physical Society, College Park, Md. [u.a.], 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Geometric control of the magnetization reversal in antidot lattices with perpendicular magnetic anisotropy

Gräfe, J., Weigand, M., Träger, N., Schütz, G., Goering, E. J., Skripnik, M., Nowak, U., Haering, F., Ziemann, P., Wiedwald, U.

{Physical Review B}, 93(10), American Physical Society, Woodbury, NY, 2016 (article)

mms

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


no image
Growth and characterizationof large weak topological insulator Bi2Tel single crystal by Bismuth self-flux method

Ryu, G., Son, K., Schütz, G.

{Journal of Crystal Growth}, 440, pages: 26-30, North-Holland, Amsterdam, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature

Moreau-Luchaire, C., Moutafis, C., Reyren, N., Sampaio, J., Vaz, C. A. F., Van Horne, N., Bouzehouane, K., Garcia, K., Deranlot, C., Warnicke, P., Wohlhüter, P., George, J.-M., Weigand, M., Raabe, J., Cros, V., Fert, A.

{Nature Nanotechnology}, 11(5):444-448, Nature Publishing Group, London, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Surface defect free growth of a spin dimer TlCuCl3 compound crystals and investigations on its optical and magnetic properties

Ryu, G., Son, K.

{Journal of Solid State Chemistry}, 237, pages: 358-363, Academic Press, Orlando, Fla., 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Physical and mathematical justification of the numerical Brillouin zone integration of the Boltzmann rate equation by Gaussian smearing

Illg, C., Haag, M., Teeny, N., Wirth, J., Fähnle, M.

{Journal of Theoretical and Applied Physics}, 10(1):1-6, Springer, Berlin, Heidelberg, Tehran, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Pinned orbital moments - A new contribution to magnetic anisotropy

Audehm, P., Schmidt, M., Brück, S., Tietze, T., Gräfe, J., Macke, S., Schütz, G., Goering, E.

{Scientific Reports}, 6, Nature Publishing Group, London, UK, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Comparative study of ALD SiO2 thin films for optical applications

Pfeiffer, K., Shestaeva, S., Bingel, A., Munzert, P., Ghazaryan, L., van Helvoirt, C., Kessels, W. M. M., Sanli, U. T., Grévent, C., Schütz, G., Putkonen, M., Buchanan, I., Jensen, L., Ristau, D., Tünnermann, A., Szeghalmi, A.

{Optical materials express}, 6(2):660-670, OSA, Washington, DC, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Combined first-order reversal curve and x-ray microscopy investigation of magnetization reversal mechanisms in hexagonal antidot lattices

Gräfe, J., Weigand, M., Stahl, C., Träger, N., Kopp, M., Schütz, G., Goering, E. J., Haering, F., Ziemann, P., Wiedwald, U.

{Physical Review B}, 93(1), American Physical Society, Woodbury, NY, 2016 (article)

mms

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


no image
Switching probabilities of magnetic vortex core reversal studied by table top magneto optic Kerr microscopy

Dieterle, G., Gangwar, A., Gräfe, J., Noske, M., Förster, J., Woltersdorf, G., Stoll, H., Back, C. H., Schütz, G.

{Applied Physics Letters}, 108(2), American Institute of Physics, Melville, NY, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ultrafast demagnetization after femtosecond laser pulses: Transfer of angular momentum from the electronic system to magnetoelastic spin-phonon modes

Tsatsoulis, T., Illg, C., Haag, M., Müller, B. Y., Zhang, L., Fähnle, M.

{Physical Review B}, 93(13), American Physical Society, Woodbury, NY, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Developments in the Ni-Nb-Zr amorphous alloy membranes

Sarker, S., Chandra, D., Hirscher, M., Dolan, M., Isheim, D., Wermer, J., Viano, D., Baricco, M., Udovic, T. J., Grant, D., Palumbo, O., Paolone, A., Cantelli, R.

{Applied Physics A}, 122(3), Springer-Verlag Heidelberg, Heidelberg, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Resistance to the transport of H2 through the external surface of as-made and modified silicalite-1 (MFI)

Kalantzopoulos, G. N., Policicchio, A., Maccallini, E., Krkljus, I., Ciuchi, F., Hirscher, M., Agostino, R. G., Golemme, G.

{Microporous and Mesoporous Materials}, 220, pages: 290-297, Elsevier, Amsterdam, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Observation of pseudopartial grain boundary wetting in the NdFeB-based alloy

Straumal, B. B., Mazilkin, A. A., Protasova, S. G., Schütz, G., Straumal, A. B., Baretzky, B.

{Journal of Materials Engineering and Performance}, 25(8):3303-3309, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]

2005


no image
Kernel Methods for Measuring Independence

Gretton, A., Herbrich, R., Smola, A., Bousquet, O., Schölkopf, B.

Journal of Machine Learning Research, 6, pages: 2075-2129, December 2005 (article)

Abstract
We introduce two new functionals, the constrained covariance and the kernel mutual information, to measure the degree of independence of random variables. These quantities are both based on the covariance between functions of the random variables in reproducing kernel Hilbert spaces (RKHSs). We prove that when the RKHSs are universal, both functionals are zero if and only if the random variables are pairwise independent. We also show that the kernel mutual information is an upper bound near independence on the Parzen window estimate of the mutual information. Analogous results apply for two correlation-based dependence functionals introduced earlier: we show the kernel canonical correlation and the kernel generalised variance to be independence measures for universal kernels, and prove the latter to be an upper bound on the mutual information near independence. The performance of the kernel dependence functionals in measuring independence is verified in the context of independent component analysis.

ei

PDF PostScript PDF [BibTex]

2005


PDF PostScript PDF [BibTex]


no image
A Unifying View of Sparse Approximate Gaussian Process Regression

Quinonero Candela, J., Rasmussen, C.

Journal of Machine Learning Research, 6, pages: 1935-1959, December 2005 (article)

Abstract
We provide a new unifying view, including all existing proper probabilistic sparse approximations for Gaussian process regression. Our approach relies on expressing the effective prior which the methods are using. This allows new insights to be gained, and highlights the relationship between existing methods. It also allows for a clear theoretically justified ranking of the closeness of the known approximations to the corresponding full GPs. Finally we point directly to designs of new better sparse approximations, combining the best of the existing strategies, within attractive computational constraints.

ei

PDF [BibTex]

PDF [BibTex]


no image
Kernel methods for dependence testing in LFP-MUA

Gretton, A., Belitski, A., Murayama, Y., Schölkopf, B., Logothetis, N.

35(689.17), 35th Annual Meeting of the Society for Neuroscience (Neuroscience), November 2005 (poster)

Abstract
A fundamental problem in neuroscience is determining whether or not particular neural signals are dependent. The correlation is the most straightforward basis for such tests, but considerable work also focuses on the mutual information (MI), which is capable of revealing dependence of higher orders that the correlation cannot detect. That said, there are other measures of dependence that share with the MI an ability to detect dependence of any order, but which can be easier to compute in practice. We focus in particular on tests based on the functional covariance, which derive from work originally accomplished in 1959 by Renyi. Conceptually, our dependence tests work by computing the covariance between (infinite dimensional) vectors of nonlinear mappings of the observations being tested, and then determining whether this covariance is zero - we call this measure the constrained covariance (COCO). When these vectors are members of universal reproducing kernel Hilbert spaces, we can prove this covariance to be zero only when the variables being tested are independent. The greatest advantage of these tests, compared with the mutual information, is their simplicity – when comparing two signals, we need only take the largest eigenvalue (or the trace) of a product of two matrices of nonlinearities, where these matrices are generally much smaller than the number of observations (and are very simple to construct). We compare the mutual information, the COCO, and the correlation in the context of finding changes in dependence between the LFP and MUA signals in the primary visual cortex of the anaesthetized macaque, during the presentation of dynamic natural stimuli. We demonstrate that the MI and COCO reveal dependence which is not detected by the correlation alone (which we prove by artificially removing all correlation between the signals, and then testing their dependence with COCO and the MI); and that COCO and the MI give results consistent with each other on our data.

ei

Web [BibTex]

Web [BibTex]


no image
Maximal Margin Classification for Metric Spaces

Hein, M., Bousquet, O., Schölkopf, B.

Journal of Computer and System Sciences, 71(3):333-359, October 2005 (article)

Abstract
In order to apply the maximum margin method in arbitrary metric spaces, we suggest to embed the metric space into a Banach or Hilbert space and to perform linear classification in this space. We propose several embeddings and recall that an isometric embedding in a Banach space is always possible while an isometric embedding in a Hilbert space is only possible for certain metric spaces. As a result, we obtain a general maximum margin classification algorithm for arbitrary metric spaces (whose solution is approximated by an algorithm of Graepel. Interestingly enough, the embedding approach, when applied to a metric which can be embedded into a Hilbert space, yields the SVM algorithm, which emphasizes the fact that its solution depends on the metric and not on the kernel. Furthermore we give upper bounds of the capacity of the function classes corresponding to both embeddings in terms of Rademacher averages. Finally we compare the capacities of these function classes directly.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Selective integration of multiple biological data for supervised network inference

Kato, T., Tsuda, K., Asai, K.

Bioinformatics, 21(10):2488 , October 2005 (article)

ei

PDF [BibTex]

PDF [BibTex]


no image
Assessing Approximate Inference for Binary Gaussian Process Classification

Kuss, M., Rasmussen, C.

Journal of Machine Learning Research, 6, pages: 1679 , October 2005 (article)

Abstract
Gaussian process priors can be used to define flexible, probabilistic classification models. Unfortunately exact Bayesian inference is analytically intractable and various approximation techniques have been proposed. In this work we review and compare Laplace‘s method and Expectation Propagation for approximate Bayesian inference in the binary Gaussian process classification model. We present a comprehensive comparison of the approximations, their predictive performance and marginal likelihood estimates to results obtained by MCMC sampling. We explain theoretically and corroborate empirically the advantages of Expectation Propagation compared to Laplace‘s method.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Clustering on the Unit Hypersphere using von Mises-Fisher Distributions

Banerjee, A., Dhillon, I., Ghosh, J., Sra, S.

Journal of Machine Learning Research, 6, pages: 1345-1382, September 2005 (article)

Abstract
Several large scale data mining applications, such as text categorization and gene expression analysis, involve high-dimensional data that is also inherently directional in nature. Often such data is L2 normalized so that it lies on the surface of a unit hypersphere. Popular models such as (mixtures of) multi-variate Gaussians are inadequate for characterizing such data. This paper proposes a generative mixture-model approach to clustering directional data based on the von Mises-Fisher (vMF) distribution, which arises naturally for data distributed on the unit hypersphere. In particular, we derive and analyze two variants of the Expectation Maximization (EM) framework for estimating the mean and concentration parameters of this mixture. Numerical estimation of the concentration parameters is non-trivial in high dimensions since it involves functional inversion of ratios of Bessel functions. We also formulate two clustering algorithms corresponding to the variants of EM that we derive. Our approach provides a theoretical basis for the use of cosine similarity that has been widely employed by the information retrieval community, and obtains the spherical kmeans algorithm (kmeans with cosine similarity) as a special case of both variants. Empirical results on clustering of high-dimensional text and gene-expression data based on a mixture of vMF distributions show that the ability to estimate the concentration parameter for each vMF component, which is not present in existing approaches, yields superior results, especially for difficult clustering tasks in high-dimensional spaces.

ei

PDF [BibTex]

PDF [BibTex]


no image
Support Vector Machines for 3D Shape Processing

Steinke, F., Schölkopf, B., Blanz, V.

Computer Graphics Forum, 24(3, EUROGRAPHICS 2005):285-294, September 2005 (article)

Abstract
We propose statistical learning methods for approximating implicit surfaces and computing dense 3D deformation fields. Our approach is based on Support Vector (SV) Machines, which are state of the art in machine learning. It is straightforward to implement and computationally competitive; its parameters can be automatically set using standard machine learning methods. The surface approximation is based on a modified Support Vector regression. We present applications to 3D head reconstruction, including automatic removal of outliers and hole filling. In a second step, we build on our SV representation to compute dense 3D deformation fields between two objects. The fields are computed using a generalized SVMachine enforcing correspondence between the previously learned implicit SV object representations, as well as correspondences between feature points if such points are available. We apply the method to the morphing of 3D heads and other objects.

ei

PDF [BibTex]

PDF [BibTex]


no image
Rapid animal detection in natural scenes: Critical features are local

Wichmann, F., Rosas, P., Gegenfurtner, K.

Journal of Vision, 5(8):376, Fifth Annual Meeting of the Vision Sciences Society (VSS), September 2005 (poster)

Abstract
Thorpe et al (Nature 381, 1996) first showed how rapidly human observers are able to classify natural images as to whether they contain an animal or not. Whilst the basic result has been replicated using different response paradigms (yes-no versus forced-choice), modalities (eye movements versus button presses) as well as while measuring neurophysiological correlates (ERPs), it is still unclear which image features support this rapid categorisation. Recently Torralba and Oliva (Network: Computation in Neural Systems, 14, 2003) suggested that simple global image statistics can be used to predict seemingly complex decisions about the absence and/or presence of objects in natural scences. They show that the information contained in a small number (N=16) of spectral principal components (SPC)—principal component analysis (PCA) applied to the normalised power spectra of the images—is sufficient to achieve approximately 80% correct animal detection in natural scenes. Our goal was to test whether human observers make use of the power spectrum when rapidly classifying natural scenes. We measured our subjects' ability to detect animals in natural scenes as a function of presentation time (13 to 167 msec); images were immediately followed by a noise mask. In one condition we used the original images, in the other images whose power spectra were equalised (each power spectrum was set to the mean power spectrum over our ensemble of 1476 images). Thresholds for 75% correct animal detection were in the region of 20–30 msec for all observers, independent of the power spectrum of the images: this result makes it very unlikely that human observers make use of the global power spectrum. Taken together with the results of Gegenfurtner, Braun & Wichmann (Journal of Vision [abstract], 2003), showing the robustness of animal detection to global phase noise, we conclude that humans use local features, like edges and contours, in rapid animal detection.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Fast Protein Classification with Multiple Networks

Tsuda, K., Shin, H., Schölkopf, B.

Bioinformatics, 21(Suppl. 2):59-65, September 2005 (article)

Abstract
Support vector machines (SVM) have been successfully used to classify proteins into functional categories. Recently, to integrate multiple data sources, a semidefinite programming (SDP) based SVM method was introduced Lanckriet et al (2004). In SDP/SVM, multiple kernel matrices corresponding to each of data sources are combined with weights obtained by solving an SDP. However, when trying to apply SDP/SVM to large problems, the computational cost can become prohibitive, since both converting the data to a kernel matrix for the SVM and solving the SDP are time and memory demanding. Another application-specific drawback arises when some of the data sources are protein networks. A common method of converting the network to a kernel matrix is the diffusion kernel method, which has time complexity of O(n^3), and produces a dense matrix of size n x n. We propose an efficient method of protein classification using multiple protein networks. Available protein networks, such as a physical interaction network or a metabolic network, can be directly incorporated. Vectorial data can also be incorporated after conversion into a network by means of neighbor point connection. Similarly to the SDP/SVM method, the combination weights are obtained by convex optimization. Due to the sparsity of network edges, the computation time is nearly linear in the number of edges of the combined network. Additionally, the combination weights provide information useful for discarding noisy or irrelevant networks. Experiments on function prediction of 3588 yeast proteins show promising results: the computation time is enormously reduced, while the accuracy is still comparable to the SDP/SVM method.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Iterative Kernel Principal Component Analysis for Image Modeling

Kim, K., Franz, M., Schölkopf, B.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(9):1351-1366, September 2005 (article)

Abstract
In recent years, Kernel Principal Component Analysis (KPCA) has been suggested for various image processing tasks requiring an image model such as, e.g., denoising or compression. The original form of KPCA, however, can be only applied to strongly restricted image classes due to the limited number of training examples that can be processed. We therefore propose a new iterative method for performing KPCA, the Kernel Hebbian Algorithm which iteratively estimates the Kernel Principal Components with only linear order memory complexity. In our experiments, we compute models for complex image classes such as faces and natural images which require a large number of training examples. The resulting image models are tested in single-frame super-resolution and denoising applications. The KPCA model is not specifically tailored to these tasks; in fact, the same model can be used in super-resolution with variable input resolution, or denoising with unknown noise characteristics. In spite of this, both super-resolution a nd denoising performance are comparable to existing methods.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Learning an Interest Operator from Eye Movements

Kienzle, W., Franz, M., Wichmann, F., Schölkopf, B.

International Workshop on Bioinspired Information Processing (BIP 2005), 2005, pages: 1, September 2005 (poster)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Classification of natural scenes using global image statistics

Drewes, J., Wichmann, F., Gegenfurtner, K.

Journal of Vision, 5(8):602, Fifth Annual Meeting of the Vision Sciences Society (VSS), September 2005 (poster)

Abstract
The algorithmic classification of complex, natural scenes is generally considered a difficult task due to the large amount of information conveyed by natural images. Work by Simon Thorpe and colleagues showed that humans are capable of detecting animals within novel natural scenes with remarkable speed and accuracy. This suggests that the relevant information for classification can be extracted at comparatively limited computational cost. One hypothesis is that global image statistics such as the amplitude spectrum could underly fast image classification (Johnson & Olshausen, Journal of Vision, 2003; Torralba & Oliva, Network: Comput. Neural Syst., 2003). We used linear discriminant analysis to classify a set of 11.000 images into animal and non-animal images. After applying a DFT to the image, we put the Fourier spectrum into bins (8 orientations with 6 frequency bands each). Using all bins, classification performance on the Fourier spectrum reached 70%. However, performance was similar (67%) when only the high spatial frequency information was used and decreased steadily at lower spatial frequencies, reaching a minimum (50%) for the low spatial frequency information. Similar results were obtained when all bins were used on spatially filtered images. A detailed analysis of the classification weights showed that a relatively high level of performance (67%) could also be obtained when only 2 bins were used, namely the vertical and horizontal orientation at the highest spatial frequency band. Our results show that in the absence of sophisticated machine learning techniques, animal detection in natural scenes is limited to rather modest levels of performance, far below those of human observers. If limiting oneself to global image statistics such as the DFT then mostly information at the highest spatial frequencies is useful for the task. This is analogous to the results obtained with human observers on filtered images (Kirchner et al, VSS 2004).

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Phenotypic characterization of chondrosarcoma-derived cell lines

Schorle, C., Finger, F., Zien, A., Block, J., Gebhard, P., Aigner, T.

Cancer Letters, 226(2):143-154, August 2005 (article)

Abstract
Gene expression profiling of three chondrosarcoma derived cell lines (AD, SM, 105KC) showed an increased proliferative activity and a reduced expression of chondrocytic-typical matrix products compared to primary chondrocytes. The incapability to maintain an adequate matrix synthesis as well as a notable proliferative activity at the same time is comparable to neoplastic chondrosarcoma cells in vivo which cease largely cartilage matrix formation as soon as their proliferative activity increases. Thus, the investigated cell lines are of limited value as substitute of primary chondrocytes but might have a much higher potential to investigate the behavior of neoplastic chondrocytes, i.e. chondrosarcoma biology.

ei

Web [BibTex]

Web [BibTex]


no image
Local Rademacher Complexities

Bartlett, P., Bousquet, O., Mendelson, S.

The Annals of Statistics, 33(4):1497-1537, August 2005 (article)

Abstract
We propose new bounds on the error of learning algorithms in terms of a data-dependent notion of complexity. The estimates we establish give optimal rates and are based on a local and empirical version of Rademacher averages, in the sense that the Rademacher averages are computed from the data, on a subset of functions with small empirical error. We present some applications to classification and prediction with convex function classes, and with kernel classes in particular.

ei

PDF PostScript Web [BibTex]

PDF PostScript Web [BibTex]


no image
Learning the Kernel with Hyperkernels

Ong, CS., Smola, A., Williamson, R.

Journal of Machine Learning Research, 6, pages: 1043-1071, July 2005 (article)

Abstract
This paper addresses the problem of choosing a kernel suitable for estimation with a Support Vector Machine, hence further automating machine learning. This goal is achieved by defining a Reproducing Kernel Hilbert Space on the space of kernels itself. Such a formulation leads to a statistical estimation problem similar to the problem of minimizing a regularized risk functional. We state the equivalent representer theorem for the choice of kernels and present a semidefinite programming formulation of the resulting optimization problem. Several recipes for constructing hyperkernels are provided, as well as the details of common machine learning problems. Experimental results for classification, regression and novelty detection on UCI data show the feasibility of our approach.

ei

PDF [BibTex]

PDF [BibTex]


no image
Comparative evaluation of Independent Components Analysis algorithms for isolating target-relevant information in brain-signal classification

Hill, N., Schröder, M., Lal, T., Schölkopf, B.

Brain-Computer Interface Technology, 3, pages: 95, June 2005 (poster)

ei

PDF [BibTex]