Header logo is


2010


no image
On the nature of displacement bursts during nanoindentation of ultrathin Ni films on sapphire

Rabkin, E., Deuschle, J. K., Baretzky, B.

{Acta Materialia}, 58, pages: 1589-1598, 2010 (article)

mms

DOI [BibTex]

2010


DOI [BibTex]


no image
Nanospheres generate out-of-plane magnetization

Amaladass, E., Ludescher, B., Schütz, G., Tyliszczak, T., Lee, M., Eimüller, T.

{Journal of Applied Physics}, 107, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Absence of element specific ferromagnetism in Co doped ZnO investigated by soft X-ray resonant reflectivity

Goering, E., Brück, S., Tietze, T., Jakob, G., Gacic, M., Adrian, H.

In 200, Glasgow, Scotland, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Probing the local magnetization dynamics in large systems with spatial inhomogeneity

Li, J, Lee, M.-S., Amaladass, E., He, W., Eimüller, T.

In 200, Glasgow, Scotland, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Temperature dependence of the magnetic properties of L10-FePt nanostructures and films

Bublat, T., Goll, D.

{Journal of Applied Physics}, 108(11), 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Wetting of grain boundaries in Al by the solid Al3Mg2 phase

Straumal, B. B., Baretzky, B., Kogtenkova, O. A., Straumal, A. B., Sidorenko, A. S.

In 45, pages: 2057-2061, Athens, Greek, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Damping of near-adiabatic magnetization dynamics by excitations of electron-hole pairs

Seib, J., Steiauf, D., Fähnle, M.

In 200, Karlsruhe, Germany, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic properties of Fe nanoclusters on Cu(111) studied with X-ray magnetic circular dichroism

Fauth, K., Ballentine, G., Praetorius, C., Kleibert, A., Wilken, N., Voitkans, A., Meiwes-Broer, K.-H.

{Physica Status Solidi B}, 247(5):1170-1179, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
An experimental analysis of elliptical adhesive contact

Sümer, B., Onal, C. D., Aksak, B., Sitti, M.

Journal of Applied Physics, 107(11):113512, AIP, 2010 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Comparison of linear and nonlinear buck converter models with varying compensator gain values for design optimization

Sattler, Michael, Lui, Yusi, Edrington, Chris S

In North American Power Symposium (NAPS), 2010, pages: 1-7, 2010 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Optimality in Neuromuscular Systems

Theodorou, E. A., Valero-Cuevas, F.

In 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2010, clmc (inproceedings)

Abstract
Abstract? We provide an overview of optimal control meth- ods to nonlinear neuromuscular systems and discuss their lim- itations. Moreover we extend current optimal control methods to their application to neuromuscular models with realistically numerous musculotendons; as most prior work is limited to torque-driven systems. Recent work on computational motor control has explored the used of control theory and esti- mation as a conceptual tool to understand the underlying computational principles of neuromuscular systems. After all, successful biological systems regularly meet conditions for stability, robustness and performance for multiple classes of complex tasks. Among a variety of proposed control theory frameworks to explain this, stochastic optimal control has become a dominant framework to the point of being a standard computational technique to reproduce kinematic trajectories of reaching movements (see [12]) In particular, we demonstrate the application of optimal control to a neuromuscular model of the index finger with all seven musculotendons producing a tapping task. Our simu- lations include 1) a muscle model that includes force- length and force-velocity characteristics; 2) an anatomically plausible biomechanical model of the index finger that includes a tendi- nous network for the extensor mechanism and 3) a contact model that is based on a nonlinear spring-damper attached at the end effector of the index finger. We demonstrate that it is feasible to apply optimal control to systems with realistically large state vectors and conclude that, while optimal control is an adequate formalism to create computational models of neuro- musculoskeletal systems, there remain important challenges and limitations that need to be considered and overcome such as contact transitions, curse of dimensionality, and constraints on states and controls.

am

PDF [BibTex]

PDF [BibTex]


no image
Efficient learning and feature detection in high dimensional regression

Ting, J., D’Souza, A., Vijayakumar, S., Schaal, S.

Neural Computation, 22, pages: 831-886, 2010, clmc (article)

Abstract
We present a novel algorithm for efficient learning and feature selection in high- dimensional regression problems. We arrive at this model through a modification of the standard regression model, enabling us to derive a probabilistic version of the well-known statistical regression technique of backfitting. Using the Expectation- Maximization algorithm, along with variational approximation methods to overcome intractability, we extend our algorithm to include automatic relevance detection of the input features. This Variational Bayesian Least Squares (VBLS) approach retains its simplicity as a linear model, but offers a novel statistically robust â??black- boxâ? approach to generalized linear regression with high-dimensional inputs. It can be easily extended to nonlinear regression and classification problems. In particular, we derive the framework of sparse Bayesian learning, e.g., the Relevance Vector Machine, with VBLS at its core, offering significant computational and robustness advantages for this class of methods. We evaluate our algorithm on synthetic and neurophysiological data sets, as well as on standard regression and classification benchmark data sets, comparing it with other competitive statistical approaches and demonstrating its suitability as a drop-in replacement for other generalized linear regression techniques.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Nanoscale imaging using deep ultraviolet digital holographic microscopy

Faridian, A., Hopp, D., Pedrini, G., Eigenthaler, U., Hirscher, M., Osten, W.

{Optics Express}, 18(13):14159-14164, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Metal-organic frameworks for hydrogen storage

Hirscher, M., Panella, B., Schmitz, B.

{Microporous and Mesoporous Materials}, 129, pages: 335-339, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Samarium-cobalt 2:17 magnets: analysis of the coercive field of Sm2(CoFeCuZr)17 high-temperature permanent magnets

Goll, D., Stadelmaier, H. H., Kronmüller, H.

{Scripta Materialia}, 63, pages: 243-245, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Low-temperature growth of silicon nanotubes and nanowires on amorphous substrates

Mbenkum, B. N., Schneider, A. S., Schütz, G., Xu, C., Richter, G., van Aken, P. A., Majer, G., Spatz, J. P.

{ACS Nano}, 4(4):1805-1812, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Formation and mobility of protonic charge carriers in methyl sulfonic acid-water mixtures: A model for sulfonic acid based ionomers at low degree of hydration

Telfah, A., Majer, G., Kreuer, K. D., Schuster, M., Maier, J.

{Solid State Ionics}, 181, pages: 461-465, 2010 (article)

mms

[BibTex]

[BibTex]


no image
Magnetization reversal of Fe/Gd multilayers on self-assembled arrays of nanospheres

Amaladass, E., Eimüller, T., Ludescher, B., Tyliszczak, T., Schütz, G.

In 200, Glasgow, Scotland, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Continuous photobleaching to study the growth modes of focal adhesions

de Beer, A. G. F., Majer, G., Roke, S., Spatz, J. P.

{Journal of Adhesion Science and Technology}, 24, pages: 2323-2334, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic antivortex-core reversal by circular-rotational spin currents

Kamionka, T., Martens, M., Chou, K. W., Curcic, M., Drews, A., Schütz, G., Tyliszczak, T., Stoll, H., Van Waeyenberge, B., Meier, G.

{Physical Review Letters}, 105, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Extension of Yafet\textquotesingles theory of spin relaxation to ferromagnets

Steiauf, D., Illg, C., Fähnle, M.

{Journal of Magnetism and Magnetic Materials}, 322, pages: L5-L7, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Stochastic Differential Dynamic Programming

Theodorou, E., Tassa, Y., Todorov, E.

In the proceedings of American Control Conference (ACC 2010) , 2010, clmc (article)

Abstract
We present a generalization of the classic Differential Dynamic Programming algorithm. We assume the existence of state- and control-dependent process noise, and proceed to derive the second-order expansion of the cost-to-go. Despite having quartic and cubic terms in the initial expression, we show that these vanish, leaving us with the same quadratic structure as standard DDP.

am

PDF [BibTex]

PDF [BibTex]


no image
Learning Policy Improvements with Path Integrals

Theodorou, E. A., Buchli, J., Schaal, S.

In International Conference on Artificial Intelligence and Statistics (AISTATS 2010), 2010, clmc (inproceedings)

Abstract
With the goal to generate more scalable algo- rithms with higher efficiency and fewer open parameters, reinforcement learning (RL) has recently moved towards combining classi- cal techniques from optimal control and dy- namic programming with modern learning techniques from statistical estimation the- ory. In this vein, this paper suggests the framework of stochastic optimal control with path integrals to derive a novel approach to RL with parametrized policies. While solidly grounded in value function estimation and optimal control based on the stochastic Hamilton-Jacobi-Bellman (HJB) equations, policy improvements can be transformed into an approximation problem of a path inte- gral which has no open parameters other than the exploration noise. The resulting algorithm can be conceived of as model- based, semi-model-based, or even model free, depending on how the learning problem is structured. Our new algorithm demon- strates interesting similarities with previous RL research in the framework of proba- bility matching and provides intuition why the slightly heuristically motivated proba- bility matching approach can actually per- form well. Empirical evaluations demon- strate significant performance improvements over gradient-based policy learning and scal- ability to high-dimensional control problems. We believe that Policy Improvement with Path Integrals (PI2) offers currently one of the most efficient, numerically robust, and easy to implement algorithms for RL based on trajectory roll-outs.

am

PDF [BibTex]

PDF [BibTex]


no image
Learning optimal control solutions: a path integral approach

Theodorou, E., Schaal, S.

In Abstracts of Neural Control of Movement Conference (NCM 2010), Naples, Florida, 2010, 2010, clmc (inproceedings)

Abstract
Investigating principles of human motor control in the framework of optimal control has had a long tradition in neural control of movement, and has recently experienced a new surge of investigations. Ideally, optimal control problems are addresses as a reinforcement learning (RL) problem, which would allow to investigate both the process of acquiring an optimal control solution as well as the solution itself. Unfortunately, the applicability of RL to complex neural and biomechanics systems has been largely impossible so far due to the computational difficulties that arise in high dimensional continuous state-action spaces. As a way out, research has focussed on computing optimal control solutions based on iterative optimal control methods that are based on linear and quadratic approximations of dynamical models and cost functions. These methods require perfect knowledge of the dynamics and cost functions while they are based on gradient and Newton optimization schemes. Their applicability is also restricted to low dimensional problems due to problematic convergence in high dimensions. Moreover, the process of computing the optimal solution is removed from the learning process that might be plausible in biology. In this work, we present a new reinforcement learning method for learning optimal control solutions or motor control. This method, based on the framework of stochastic optimal control with path integrals, has a very solid theoretical foundation, while resulting in surprisingly simple learning algorithms. It is also possible to apply this approach without knowledge of the system model, and to use a wide variety of complex nonlinear cost functions for optimization. We illustrate the theoretical properties of this approach and its applicability to learning motor control tasks for reaching movements and locomotion studies. We discuss its applicability to learning desired trajectories, variable stiffness control (co-contraction), and parameterized control policies. We also investigate the applicability to signal dependent noise control systems. We believe that the suggested method offers one of the easiest to use approaches to learning optimal control suggested in the literature so far, which makes it ideally suited for computational investigations of biological motor control.

am

[BibTex]

[BibTex]


no image
Enhancing the performance of Bio-inspired adhesives

Chung, H., Glass, P., Sitti, M., Washburn, N. R.

In ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 240, 2010 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Enhanced wet adhesion and shear of elastomeric micro-fiber arrays with mushroom tip geometry and a photopolymerized p (DMA-co-MEA) tip coating

Glass, P., Chung, H., Washburn, N. R., Sitti, M.

Langmuir, 26(22):17357-17362, American Chemical Society, 2010 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Control performance simulation in the design of a flapping wing micro-aerial vehicle

Hines, L. L., Arabagi, V., Sitti, M.

In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages: 1090-1095, 2010 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Lateral transport of thermal capillary waves

Smith, T. H. R., Vasilyev, O., Maciolek, A., Schmidt, M.

{Europhysics Letters}, 89(1), 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
The formation and propagation of flux avalanches in tailored MgB2 films

Treiber, S., Albrecht, J.

{New Journal of Physics}, 12, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Direct imaging of current induced magnetic vortex gyration in an asymmetric potential well

Bisig, A., Rhensius, J., Kammerer, M., Curcic, M., Stoll, H., Schütz, G., Van Waeyenberge, B., Chou, K. W., Tyliszczak, T., Heyderman, L. J., Krzyk, S., von Bieren, A., Kläui, M.

{Applied Physics Letters}, 96, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Induced magnetism of carbon atoms at the graphene/Ni(111) interface

Weser, M., Rehder, Y., Horn, K., Sicot, M., Fonin, M., Preobrajenski, A. B., Voloshina, E. N., Goering, E., Dedkov, Y. S.

{Applied Physics Letters}, 96, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Photon counting system for time-resolved experiments in multibunch mode

Puzic, A., Korhonen, T., Kalantari, B., Raabe, J., Quitmann, C., Jüllig, P., Bommer, L., Goll, D., Schütz, G., Wintz, S., Strache, T., Körner, M., Markó, D., Bunce, C., Fassbender, J.

{Synchrotron Radiation News}, 23(2):26-32, 2010 (article)

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Coupling of Fe and uncompensated Mn moments in exchange-biased Fe/MnPd

Brück, S., Macke, S., Goering, E., Ji, X., Zhan, Q., Krishnan, K. M.

{Physical Review B}, 81(13), 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Remarks about spillover and hydrogen adsorption - Comments on the contributions of A.V. Talyzin and R.T. Yang

Hirscher, M.

{Microporous and Mesoporous Materials}, 135, pages: 209-210, 2010 (article)

mms

DOI [BibTex]


no image
Grain boundary ridges and triple lines

Straumal, B. B., Sursaeva, V. G., Baretzky, B.

{Scripta Materialia}, 62(12):924-927, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Contact angles by the solid-phase grain boundary wetting (coverage) in the Co-Cu system

Straumal, B. B., Kogtenkova, O. A., Straumal, A. B., Kuchyeyev, Y. O., Baretzky, B.

In 45, pages: 4271-4275, Glasgow, Scotland, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Expanding micelle nanolithography to the self-assembly of multicomponent core-shell nanoparticles

Mbenkum, B. N., D\’\iaz-Ortiz, A., Gu, L., van Aken, P. A., Schütz, G.

{Journal of the American Chemical Society}, 132(31):10671-10673, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Learning control in robotics – trajectory-based opitimal control techniques

Schaal, S., Atkeson, C. G.

Robotics and Automation Magazine, 17(2):20-29, 2010, clmc (article)

Abstract
In a not too distant future, robots will be a natural part of daily life in human society, providing assistance in many areas ranging from clinical applications, education and care giving, to normal household environments [1]. It is hard to imagine that all possible tasks can be preprogrammed in such robots. Robots need to be able to learn, either by themselves or with the help of human supervision. Additionally, wear and tear on robots in daily use needs to be automatically compensated for, which requires a form of continuous self-calibration, another form of learning. Finally, robots need to react to stochastic and dynamic environments, i.e., they need to learn how to optimally adapt to uncertainty and unforeseen changes. Robot learning is going to be a key ingredient for the future of autonomous robots. While robot learning covers a rather large field, from learning to perceive, to plan, to make decisions, etc., we will focus this review on topics of learning control, in particular, as it is concerned with learning control in simulated or actual physical robots. In general, learning control refers to the process of acquiring a control strategy for a particular control system and a particular task by trial and error. Learning control is usually distinguished from adaptive control [2] in that the learning system can have rather general optimization objectivesâ??not just, e.g., minimal tracking errorâ??and is permitted to fail during the process of learning, while adaptive control emphasizes fast convergence without failure. Thus, learning control resembles the way that humans and animals acquire new movement strategies, while adaptive control is a special case of learning control that fulfills stringent performance constraints, e.g., as needed in life-critical systems like airplanes. Learning control has been an active topic of research for at least three decades. However, given the lack of working robots that actually use learning components, more work needs to be done before robot learning will make it beyond the laboratory environment. This article will survey some ongoing and past activities in robot learning to assess where the field stands and where it is going. We will largely focus on nonwheeled robots and less on topics of state estimation, as typically explored in wheeled robots [3]â??6], and we emphasize learning in continuous state-action spaces rather than discrete state-action spaces [7], [8]. We will illustrate the different topics of robot learning with examples from our own research with anthropomorphic and humanoid robots.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Learning, planning, and control for quadruped locomotion over challenging terrain

Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., Schaal, S.

International Journal of Robotics Research, 30(2):236-258, 2010, clmc (article)

Abstract
We present a control architecture for fast quadruped locomotion over rough terrain. We approach the problem by decomposing it into many sub-systems, in which we apply state-of-the-art learning, planning, optimization, and control techniques to achieve robust, fast locomotion. Unique features of our control strategy include: (1) a system that learns optimal foothold choices from expert demonstration using terrain templates, (2) a body trajectory optimizer based on the Zero- Moment Point (ZMP) stability criterion, and (3) a floating-base inverse dynamics controller that, in conjunction with force control, allows for robust, compliant locomotion over unperceived obstacles. We evaluate the performance of our controller by testing it on the LittleDog quadruped robot, over a wide variety of rough terrains of varying difficulty levels. The terrain that the robot was tested on includes rocks, logs, steps, barriers, and gaps, with obstacle sizes up to the leg length of the robot. We demonstrate the generalization ability of this controller by presenting results from testing performed by an independent external test team on terrain that has never been shown to us.

am

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Teleoperated 3-D force feedback from the nanoscale with an atomic force microscope

Onal, C. D., Sitti, M.

IEEE Transactions on nanotechnology, 9(1):46-54, IEEE, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Roll and pitch motion analysis of a biologically inspired quadruped water runner robot

Park, H. S., Floyd, S., Sitti, M.

The International Journal of Robotics Research, 29(10):1281-1297, SAGE Publications Sage UK: London, England, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing

Kim, Seok, Wu, Jian, Carlson, Andrew, Jin, Sung Hun, Kovalsky, Anton, Glass, Paul, Liu, Zhuangjian, Ahmed, Numair, Elgan, Steven L, Chen, Weiqiu, others

Proceedings of the National Academy of Sciences, 107(40):17095-17100, National Acad Sciences, 2010 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Tankbot: A palm-size, tank-like climbing robot using soft elastomer adhesive treads

Unver, O., Sitti, M.

The International Journal of Robotics Research, 29(14):1761-1777, SAGE Publications Sage UK: London, England, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Playful Machines: Tutorial

Der, R., Martius, G.

\urlhttp://robot.informatik.uni-leipzig.de/tutorial?lang=en, 2010 (misc)

al

[BibTex]

[BibTex]


no image
Hydrogen spillover measurements of unbridged and bridged metal-organic frameworks - revisited

Campesi, R., Cuevas, F., Latroche, M., Hirscher, M.

{Physical Chemistry Chemical Physics}, 12, pages: 10457-10459, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Relating Gilbert damping and ultrafast laser-induced demagnetization

Fähnle, M., Seib, J., Illg, C.

{Physical Review B}, 82, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ferromagnetic properties of the Mn-doped nanograined ZnO films

Straumal, B. B., Protasova, S. G., Mazilkin, A. A., Myatiev, A. A., Straumal, P. B., Schütz, G., Goering, E., Baretzky, B.

{Journal of Applied Physics}, 108, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Unusual super-ductility at room temperature in an ultrafine-grained aluminum alloy

Valiev, R. Z., Murashkin, M. Y., Kilmametov, A., Straumal, B., Chinh, N. Q., Langdon, T.

In 45, pages: 4718-4724, Seattle, WA, USA, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Demagnetization on the fs time-scale by the Elliott-Yafet mechanism

Steiauf, D., Illg, C., Fähnle, M.

In 200, Karlsruhe, Germany, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]