Header logo is


2012


no image
Grain boundary wetting in the NdFeB-based hard magnetic alloys

Straumal, B. B., Kucheev, Y. O., Yatskovskaya, I. L., Mogilnikova, I. V., Schütz, G., Nekrasov, A. N., Baretzky, B.

{Journal of Materials Science}, 47(24):8352-8359, 2012 (article)

mms

DOI [BibTex]

2012


DOI [BibTex]


Thumb xl cvprlayers12crop
Layered segmentation and optical flow estimation over time

Sun, D., Sudderth, E., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 1768-1775, IEEE, 2012 (inproceedings)

Abstract
Layered models provide a compelling approach for estimating image motion and segmenting moving scenes. Previous methods, however, have failed to capture the structure of complex scenes, provide precise object boundaries, effectively estimate the number of layers in a scene, or robustly determine the depth order of the layers. Furthermore, previous methods have focused on optical flow between pairs of frames rather than longer sequences. We show that image sequences with more frames are needed to resolve ambiguities in depth ordering at occlusion boundaries; temporal layer constancy makes this feasible. Our generative model of image sequences is rich but difficult to optimize with traditional gradient descent methods. We propose a novel discrete approximation of the continuous objective in terms of a sequence of depth-ordered MRFs and extend graph-cut optimization methods with new “moves” that make joint layer segmentation and motion estimation feasible. Our optimizer, which mixes discrete and continuous optimization, automatically determines the number of layers and reasons about their depth ordering. We demonstrate the value of layered models, our optimization strategy, and the use of more than two frames on both the Middlebury optical flow benchmark and the MIT layer segmentation benchmark.

ps

pdf sup mat poster Project Page Project Page [BibTex]

pdf sup mat poster Project Page Project Page [BibTex]


no image
Towards Associative Skill Memories

Pastor, P., Kalakrishnan, M., Righetti, L., Schaal, S.

In 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pages: 309-315, IEEE, Osaka, Japan, November 2012 (inproceedings)

Abstract
Movement primitives as basis of movement planning and control have become a popular topic in recent years. The key idea of movement primitives is that a rather small set of stereotypical movements should suffice to create a large set of complex manipulation skills. An interesting side effect of stereotypical movement is that it also creates stereotypical sensory events, e.g., in terms of kinesthetic variables, haptic variables, or, if processed appropriately, visual variables. Thus, a movement primitive executed towards a particular object in the environment will associate a large number of sensory variables that are typical for this manipulation skill. These association can be used to increase robustness towards perturbations, and they also allow failure detection and switching towards other behaviors. We call such movement primitives augmented with sensory associations Associative Skill Memories (ASM). This paper addresses how ASMs can be acquired by imitation learning and how they can create robust manipulation skill by determining subsequent ASMs online to achieve a particular manipulation goal. Evaluation for grasping and manipulation with a Barrett WAM/Hand illustrate our approach.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Template-based learning of grasp selection

Herzog, A., Pastor, P., Kalakrishnan, M., Righetti, L., Asfour, T., Schaal, S.

In 2012 IEEE International Conference on Robotics and Automation, pages: 2379-2384, IEEE, Saint Paul, USA, 2012 (inproceedings)

Abstract
The ability to grasp unknown objects is an important skill for personal robots, which has been addressed by many present and past research projects, but still remains an open problem. A crucial aspect of grasping is choosing an appropriate grasp configuration, i.e. the 6d pose of the hand relative to the object and its finger configuration. Finding feasible grasp configurations for novel objects, however, is challenging because of the huge variety in shape and size of these objects. Moreover, possible configurations also depend on the specific kinematics of the robotic arm and hand in use. In this paper, we introduce a new grasp selection algorithm able to find object grasp poses based on previously demonstrated grasps. Assuming that objects with similar shapes can be grasped in a similar way, we associate to each demonstrated grasp a grasp template. The template is a local shape descriptor for a possible grasp pose and is constructed using 3d information from depth sensors. For each new object to grasp, the algorithm then finds the best grasp candidate in the library of templates. The grasp selection is also able to improve over time using the information of previous grasp attempts to adapt the ranking of the templates. We tested the algorithm on two different platforms, the Willow Garage PR2 and the Barrett WAM arm which have very different hands. Our results show that the algorithm is able to find good grasp configurations for a large set of objects from a relatively small set of demonstrations, and does indeed improve its performance over time.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Reinforcement Learning with Sequences of Motion Primitives for Robust Manipulation

Stulp, F., Theodorou, E., Schaal, S.

IEEE Transactions on Robotics, 2012 (article)

am

[BibTex]

[BibTex]


no image
Impact and Surface Tension in Water: a Study of Landing Bodies

Shih, B., Laham, L., Lee, K. J., Krasnoff, N., Diller, E., Sitti, M.

Bio-inspired Robotics Final Project, Carnegie Mellon University, 2012 (article)

pi

[BibTex]

[BibTex]


no image
Design and rolling locomotion of a magnetically actuated soft capsule endoscope

Yim, S., Sitti, M.

IEEE Transactions on Robotics, 28(1):183-194, IEEE, 2012 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Design and manufacturing of a controllable miniature flapping wing robotic platform

Arabagi, V., Hines, L., Sitti, M.

The International Journal of Robotics Research, 31(6):785-800, SAGE Publications Sage UK: London, England, 2012 (article)

pi

[BibTex]

[BibTex]


no image
Chemotactic steering of bacteria propelled microbeads

Kim, D., Liu, A., Diller, E., Sitti, M.

Biomedical microdevices, 14(6):1009-1017, Springer US, 2012 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Probabilistic depth image registration incorporating nonvisual information

Wüthrich, M., Pastor, P., Righetti, L., Billard, A., Schaal, S.

In 2012 IEEE International Conference on Robotics and Automation, pages: 3637-3644, IEEE, Saint Paul, USA, 2012 (inproceedings)

Abstract
In this paper, we derive a probabilistic registration algorithm for object modeling and tracking. In many robotics applications, such as manipulation tasks, nonvisual information about the movement of the object is available, which we will combine with the visual information. Furthermore we do not only consider observations of the object, but we also take space into account which has been observed to not be part of the object. Furthermore we are computing a posterior distribution over the relative alignment and not a point estimate as typically done in for example Iterative Closest Point (ICP). To our knowledge no existing algorithm meets these three conditions and we thus derive a novel registration algorithm in a Bayesian framework. Experimental results suggest that the proposed methods perform favorably in comparison to PCL [1] implementations of feature mapping and ICP, especially if nonvisual information is available.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Magnetic proximity effect in YBa2Cu3O7 / La2/3Ca1/3MnO3 and YBa2Cu3O7 / LaMnO3+δsuperlattices

Satapathy, D. K., Uribe-Laverde, M. A., Marozau, I., Malik, V. K., Das, S., Wagner, T., Marcelot, C., Stahn, J., Brück, S., Rühm, A., Macke, S., Tietze, T., Goering, E., Frañó, A., Kim, J., Wu, M., Benckiser, E., Keimer, B., Devishvili, A., Toperverg, B. P., Merz, M., Nagel, P., Schuppler, S., Bernhard, C.

{Physical Review Letters}, 108, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Structural and chemical characterization on the nanoscale

Stierle, A., Carstanjen, H.-D., Hofmann, S.

In Nanoelectronics and Information Technology. Advanced Electronic Materials and Novel Devices, pages: 233-254, Wiley-VCH, Weinheim, 2012 (incollection)

mms

[BibTex]

[BibTex]


no image
Noble gases and microporous frameworks; from interaction to application

Soleimani Dorcheh, A., Denysenko, D., Volkmer, D., Donner, W., Hirscher, M.

{Microporous and Mesoporous Materials}, 162, pages: 64-68, Elsevier, Amsterdam, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Note: Unique characterization possibilities in the ultra high vacuum scanning transmission x-ray microscope (UHV-STXM) "MAXYMUS" using a rotatable permanent magnetic field up to 0.22 T

Nolle, D., Weigand, M., Audehm, P., Goering, E., Wiesemann, U., Wolter, C., Nolle, E., Schütz, G.

{Review of Scientific Instruments}, 83(4), 2012 (article)

mms

DOI [BibTex]


no image
Rutherford Backscattering

Carstanjen, H. D.

In Nanoelectronics and Information Technology. Advanced Electronic Materials and Novel Devices, pages: 250-252, WILEY-VCH Verlag, Weinheim, Germany, 2012 (incollection)

mms

[BibTex]

[BibTex]


no image
Microstructure and superconducting properties of MgB2 films prepared by solid state reaction of multilayer precursors of the elements

Kugler, B., Stahl, C., Treiber, S., Soltan, S., Haug, S., Schütz, G., Albrecht, J.

{Thin Solid Films}, 520, pages: 6985-6988, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


Thumb xl amdo2012v2
Spatial Measures between Human Poses for Classification and Understanding

Soren Hauberg, Kim S. Pedersen

In Articulated Motion and Deformable Objects, 7378, pages: 26-36, LNCS, (Editors: Perales, Francisco J. and Fisher, Robert B. and Moeslund, Thomas B.), Springer Berlin Heidelberg, 2012 (inproceedings)

ps

Publishers site Project Page [BibTex]

Publishers site Project Page [BibTex]


Thumb xl nips teaser
A Geometric Take on Metric Learning

Hauberg, S., Freifeld, O., Black, M. J.

In Advances in Neural Information Processing Systems (NIPS) 25, pages: 2033-2041, (Editors: P. Bartlett and F.C.N. Pereira and C.J.C. Burges and L. Bottou and K.Q. Weinberger), MIT Press, 2012 (inproceedings)

Abstract
Multi-metric learning techniques learn local metric tensors in different parts of a feature space. With such an approach, even simple classifiers can be competitive with the state-of-the-art because the distance measure locally adapts to the structure of the data. The learned distance measure is, however, non-metric, which has prevented multi-metric learning from generalizing to tasks such as dimensionality reduction and regression in a principled way. We prove that, with appropriate changes, multi-metric learning corresponds to learning the structure of a Riemannian manifold. We then show that this structure gives us a principled way to perform dimensionality reduction and regression according to the learned metrics. Algorithmically, we provide the first practical algorithm for computing geodesics according to the learned metrics, as well as algorithms for computing exponential and logarithmic maps on the Riemannian manifold. Together, these tools let many Euclidean algorithms take advantage of multi-metric learning. We illustrate the approach on regression and dimensionality reduction tasks that involve predicting measurements of the human body from shape data.

ps

PDF Youtube Suppl. material Poster Project Page [BibTex]

PDF Youtube Suppl. material Poster Project Page [BibTex]

2005


no image
Kernel Methods for Measuring Independence

Gretton, A., Herbrich, R., Smola, A., Bousquet, O., Schölkopf, B.

Journal of Machine Learning Research, 6, pages: 2075-2129, December 2005 (article)

Abstract
We introduce two new functionals, the constrained covariance and the kernel mutual information, to measure the degree of independence of random variables. These quantities are both based on the covariance between functions of the random variables in reproducing kernel Hilbert spaces (RKHSs). We prove that when the RKHSs are universal, both functionals are zero if and only if the random variables are pairwise independent. We also show that the kernel mutual information is an upper bound near independence on the Parzen window estimate of the mutual information. Analogous results apply for two correlation-based dependence functionals introduced earlier: we show the kernel canonical correlation and the kernel generalised variance to be independence measures for universal kernels, and prove the latter to be an upper bound on the mutual information near independence. The performance of the kernel dependence functionals in measuring independence is verified in the context of independent component analysis.

ei

PDF PostScript PDF [BibTex]

2005


PDF PostScript PDF [BibTex]


no image
Kernel ICA for Large Scale Problems

Jegelka, S., Gretton, A., Achlioptas, D.

In pages: -, NIPS Workshop on Large Scale Kernel Machines, December 2005 (inproceedings)

ei

Web [BibTex]

Web [BibTex]


no image
A Unifying View of Sparse Approximate Gaussian Process Regression

Quinonero Candela, J., Rasmussen, C.

Journal of Machine Learning Research, 6, pages: 1935-1959, December 2005 (article)

Abstract
We provide a new unifying view, including all existing proper probabilistic sparse approximations for Gaussian process regression. Our approach relies on expressing the effective prior which the methods are using. This allows new insights to be gained, and highlights the relationship between existing methods. It also allows for a clear theoretically justified ranking of the closeness of the known approximations to the corresponding full GPs. Finally we point directly to designs of new better sparse approximations, combining the best of the existing strategies, within attractive computational constraints.

ei

PDF [BibTex]

PDF [BibTex]


no image
Training Support Vector Machines with Multiple Equality Constraints

Kienzle, W., Schölkopf, B.

In Proceedings of the 16th European Conference on Machine Learning, Lecture Notes in Computer Science, Vol. 3720, pages: 182-193, (Editors: JG Carbonell and J Siekmann), Springer, Berlin, Germany, ECML, November 2005 (inproceedings)

Abstract
In this paper we present a primal-dual decomposition algorithm for support vector machine training. As with existing methods that use very small working sets (such as Sequential Minimal Optimization (SMO), Successive Over-Relaxation (SOR) or the Kernel Adatron (KA)), our method scales well, is straightforward to implement, and does not require an external QP solver. Unlike SMO, SOR and KA, the method is applicable to a large number of SVM formulations regardless of the number of equality constraints involved. The effectiveness of our algorithm is demonstrated on a more difficult SVM variant in this respect, namely semi-parametric support vector regression.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Measuring Statistical Dependence with Hilbert-Schmidt Norms

Gretton, A., Bousquet, O., Smola, A., Schoelkopf, B.

In Algorithmic Learning Theory, Lecture Notes in Computer Science, Vol. 3734, pages: 63-78, (Editors: S Jain and H-U Simon and E Tomita), Springer, Berlin, Germany, 16th International Conference ALT, October 2005 (inproceedings)

Abstract
We propose an independence criterion based on the eigenspectrum of covariance operators in reproducing kernel Hilbert spaces (RKHSs), consisting of an empirical estimate of the Hilbert-Schmidt norm of the cross-covariance operator (we term this a Hilbert-Schmidt Independence Criterion, or HSIC). This approach has several advantages, compared with previous kernel-based independence criteria. First, the empirical estimate is simpler than any other kernel dependence test, and requires no user-defined regularisation. Second, there is a clearly defined population quantity which the empirical estimate approaches in the large sample limit, with exponential convergence guaranteed between the two: this ensures that independence tests based on {methodname} do not suffer from slow learning rates. Finally, we show in the context of independent component analysis (ICA) that the performance of HSIC is competitive with that of previously published kernel-based criteria, and of other recently published ICA methods.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Maximal Margin Classification for Metric Spaces

Hein, M., Bousquet, O., Schölkopf, B.

Journal of Computer and System Sciences, 71(3):333-359, October 2005 (article)

Abstract
In order to apply the maximum margin method in arbitrary metric spaces, we suggest to embed the metric space into a Banach or Hilbert space and to perform linear classification in this space. We propose several embeddings and recall that an isometric embedding in a Banach space is always possible while an isometric embedding in a Hilbert space is only possible for certain metric spaces. As a result, we obtain a general maximum margin classification algorithm for arbitrary metric spaces (whose solution is approximated by an algorithm of Graepel. Interestingly enough, the embedding approach, when applied to a metric which can be embedded into a Hilbert space, yields the SVM algorithm, which emphasizes the fact that its solution depends on the metric and not on the kernel. Furthermore we give upper bounds of the capacity of the function classes corresponding to both embeddings in terms of Rademacher averages. Finally we compare the capacities of these function classes directly.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
An Analysis of the Anti-Learning Phenomenon for the Class Symmetric Polyhedron

Kowalczyk, A., Chapelle, O.

In Algorithmic Learning Theory: 16th International Conference, pages: 78-92, Algorithmic Learning Theory, October 2005 (inproceedings)

Abstract
This paper deals with an unusual phenomenon where most machine learning algorithms yield good performance on the training set but systematically worse than random performance on the test set. This has been observed so far for some natural data sets and demonstrated for some synthetic data sets when the classification rule is learned from a small set of training samples drawn from some high dimensional space. The initial analysis presented in this paper shows that anti-learning is a property of data sets and is quite distinct from overfitting of a training data. Moreover, the analysis leads to a specification of some machine learning procedures which can overcome anti-learning and generate ma- chines able to classify training and test data consistently.

ei

PDF [BibTex]

PDF [BibTex]


no image
Selective integration of multiple biological data for supervised network inference

Kato, T., Tsuda, K., Asai, K.

Bioinformatics, 21(10):2488 , October 2005 (article)

ei

PDF [BibTex]

PDF [BibTex]


no image
Assessing Approximate Inference for Binary Gaussian Process Classification

Kuss, M., Rasmussen, C.

Journal of Machine Learning Research, 6, pages: 1679 , October 2005 (article)

Abstract
Gaussian process priors can be used to define flexible, probabilistic classification models. Unfortunately exact Bayesian inference is analytically intractable and various approximation techniques have been proposed. In this work we review and compare Laplace‘s method and Expectation Propagation for approximate Bayesian inference in the binary Gaussian process classification model. We present a comprehensive comparison of the approximations, their predictive performance and marginal likelihood estimates to results obtained by MCMC sampling. We explain theoretically and corroborate empirically the advantages of Expectation Propagation compared to Laplace‘s method.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Clustering on the Unit Hypersphere using von Mises-Fisher Distributions

Banerjee, A., Dhillon, I., Ghosh, J., Sra, S.

Journal of Machine Learning Research, 6, pages: 1345-1382, September 2005 (article)

Abstract
Several large scale data mining applications, such as text categorization and gene expression analysis, involve high-dimensional data that is also inherently directional in nature. Often such data is L2 normalized so that it lies on the surface of a unit hypersphere. Popular models such as (mixtures of) multi-variate Gaussians are inadequate for characterizing such data. This paper proposes a generative mixture-model approach to clustering directional data based on the von Mises-Fisher (vMF) distribution, which arises naturally for data distributed on the unit hypersphere. In particular, we derive and analyze two variants of the Expectation Maximization (EM) framework for estimating the mean and concentration parameters of this mixture. Numerical estimation of the concentration parameters is non-trivial in high dimensions since it involves functional inversion of ratios of Bessel functions. We also formulate two clustering algorithms corresponding to the variants of EM that we derive. Our approach provides a theoretical basis for the use of cosine similarity that has been widely employed by the information retrieval community, and obtains the spherical kmeans algorithm (kmeans with cosine similarity) as a special case of both variants. Empirical results on clustering of high-dimensional text and gene-expression data based on a mixture of vMF distributions show that the ability to estimate the concentration parameter for each vMF component, which is not present in existing approaches, yields superior results, especially for difficult clustering tasks in high-dimensional spaces.

ei

PDF [BibTex]

PDF [BibTex]


no image
Support Vector Machines for 3D Shape Processing

Steinke, F., Schölkopf, B., Blanz, V.

Computer Graphics Forum, 24(3, EUROGRAPHICS 2005):285-294, September 2005 (article)

Abstract
We propose statistical learning methods for approximating implicit surfaces and computing dense 3D deformation fields. Our approach is based on Support Vector (SV) Machines, which are state of the art in machine learning. It is straightforward to implement and computationally competitive; its parameters can be automatically set using standard machine learning methods. The surface approximation is based on a modified Support Vector regression. We present applications to 3D head reconstruction, including automatic removal of outliers and hole filling. In a second step, we build on our SV representation to compute dense 3D deformation fields between two objects. The fields are computed using a generalized SVMachine enforcing correspondence between the previously learned implicit SV object representations, as well as correspondences between feature points if such points are available. We apply the method to the morphing of 3D heads and other objects.

ei

PDF [BibTex]

PDF [BibTex]


no image
Fast Protein Classification with Multiple Networks

Tsuda, K., Shin, H., Schölkopf, B.

Bioinformatics, 21(Suppl. 2):59-65, September 2005 (article)

Abstract
Support vector machines (SVM) have been successfully used to classify proteins into functional categories. Recently, to integrate multiple data sources, a semidefinite programming (SDP) based SVM method was introduced Lanckriet et al (2004). In SDP/SVM, multiple kernel matrices corresponding to each of data sources are combined with weights obtained by solving an SDP. However, when trying to apply SDP/SVM to large problems, the computational cost can become prohibitive, since both converting the data to a kernel matrix for the SVM and solving the SDP are time and memory demanding. Another application-specific drawback arises when some of the data sources are protein networks. A common method of converting the network to a kernel matrix is the diffusion kernel method, which has time complexity of O(n^3), and produces a dense matrix of size n x n. We propose an efficient method of protein classification using multiple protein networks. Available protein networks, such as a physical interaction network or a metabolic network, can be directly incorporated. Vectorial data can also be incorporated after conversion into a network by means of neighbor point connection. Similarly to the SDP/SVM method, the combination weights are obtained by convex optimization. Due to the sparsity of network edges, the computation time is nearly linear in the number of edges of the combined network. Additionally, the combination weights provide information useful for discarding noisy or irrelevant networks. Experiments on function prediction of 3588 yeast proteins show promising results: the computation time is enormously reduced, while the accuracy is still comparable to the SDP/SVM method.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Iterative Kernel Principal Component Analysis for Image Modeling

Kim, K., Franz, M., Schölkopf, B.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(9):1351-1366, September 2005 (article)

Abstract
In recent years, Kernel Principal Component Analysis (KPCA) has been suggested for various image processing tasks requiring an image model such as, e.g., denoising or compression. The original form of KPCA, however, can be only applied to strongly restricted image classes due to the limited number of training examples that can be processed. We therefore propose a new iterative method for performing KPCA, the Kernel Hebbian Algorithm which iteratively estimates the Kernel Principal Components with only linear order memory complexity. In our experiments, we compute models for complex image classes such as faces and natural images which require a large number of training examples. The resulting image models are tested in single-frame super-resolution and denoising applications. The KPCA model is not specifically tailored to these tasks; in fact, the same model can be used in super-resolution with variable input resolution, or denoising with unknown noise characteristics. In spite of this, both super-resolution a nd denoising performance are comparable to existing methods.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Phenotypic characterization of chondrosarcoma-derived cell lines

Schorle, C., Finger, F., Zien, A., Block, J., Gebhard, P., Aigner, T.

Cancer Letters, 226(2):143-154, August 2005 (article)

Abstract
Gene expression profiling of three chondrosarcoma derived cell lines (AD, SM, 105KC) showed an increased proliferative activity and a reduced expression of chondrocytic-typical matrix products compared to primary chondrocytes. The incapability to maintain an adequate matrix synthesis as well as a notable proliferative activity at the same time is comparable to neoplastic chondrosarcoma cells in vivo which cease largely cartilage matrix formation as soon as their proliferative activity increases. Thus, the investigated cell lines are of limited value as substitute of primary chondrocytes but might have a much higher potential to investigate the behavior of neoplastic chondrocytes, i.e. chondrosarcoma biology.

ei

Web [BibTex]

Web [BibTex]


no image
Local Rademacher Complexities

Bartlett, P., Bousquet, O., Mendelson, S.

The Annals of Statistics, 33(4):1497-1537, August 2005 (article)

Abstract
We propose new bounds on the error of learning algorithms in terms of a data-dependent notion of complexity. The estimates we establish give optimal rates and are based on a local and empirical version of Rademacher averages, in the sense that the Rademacher averages are computed from the data, on a subset of functions with small empirical error. We present some applications to classification and prediction with convex function classes, and with kernel classes in particular.

ei

PDF PostScript Web [BibTex]

PDF PostScript Web [BibTex]


no image
Building Sparse Large Margin Classifiers

Wu, M., Schölkopf, B., BakIr, G.

In Proceedings of the 22nd International Conference on Machine Learning, pages: 996-1003, (Editors: L De Raedt and S Wrobel ), ACM, New York, NY, USA, ICML , August 2005 (inproceedings)

Abstract
This paper presents an approach to build Sparse Large Margin Classifiers (SLMC) by adding one more constraint to the standard Support Vector Machine (SVM) training problem. The added constraint explicitly controls the sparseness of the classifier and an approach is provided to solve the formulated problem. When considering the dual of this problem, it can be seen that building an SLMC is equivalent to constructing an SVM with a modified kernel function. Further analysis of this kernel function indicates that the proposed approach essentially finds a discriminating subspace that can be spanned by a small number of vectors, and in this subspace different classes of data are linearly well separated. Experimental results over several classification benchmarks show that in most cases the proposed approach outperforms the state-of-art sparse learning algorithms.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Learning from Labeled and Unlabeled Data on a Directed Graph

Zhou, D., Huang, J., Schölkopf, B.

In Proceedings of the 22nd International Conference on Machine Learning, pages: 1041 -1048, (Editors: L De Raedt and S Wrobel), ACM, New York, NY, USA, ICML, August 2005 (inproceedings)

Abstract
We propose a general framework for learning from labeled and unlabeled data on a directed graph in which the structure of the graph including the directionality of the edges is considered. The time complexity of the algorithm derived from this framework is nearly linear due to recently developed numerical techniques. In the absence of labeled instances, this framework can be utilized as a spectral clustering method for directed graphs, which generalizes the spectral clustering approach for undirected graphs. We have applied our framework to real-world web classification problems and obtained encouraging results.

ei

PostScript PDF [BibTex]

PostScript PDF [BibTex]


no image
Regularization on Discrete Spaces

Zhou, D., Schölkopf, B.

In Pattern Recognition, Lecture Notes in Computer Science, Vol. 3663, pages: 361-368, (Editors: WG Kropatsch and R Sablatnig and A Hanbury), Springer, Berlin, Germany, 27th DAGM Symposium, August 2005 (inproceedings)

Abstract
We consider the classification problem on a finite set of objects. Some of them are labeled, and the task is to predict the labels of the remaining unlabeled ones. Such an estimation problem is generally referred to as transductive inference. It is well-known that many meaningful inductive or supervised methods can be derived from a regularization framework, which minimizes a loss function plus a regularization term. In the same spirit, we propose a general discrete regularization framework defined on finite object sets, which can be thought of as the discrete analogue of classical regularization theory. A family of transductive inference schemes is then systemically derived from the framework, including our earlier algorithm for transductive inference, with which we obtained encouraging results on many practical classification problems. The discrete regularization framework is built on the discrete analysis and geometry developed by ourselves, in which a number of discrete differential operators of various orders are constructed, which can be thought of as the discrete analogue of their counterparts in the continuous case.

ei

PDF PostScript DOI [BibTex]

PDF PostScript DOI [BibTex]


no image
Large Margin Non-Linear Embedding

Zien, A., Candela, J.

In ICML 2005, pages: 1065-1072, (Editors: De Raedt, L. , S. Wrobel), ACM Press, New York, NY, USA, 22nd International Conference on Machine Learning, August 2005 (inproceedings)

Abstract
It is common in classification methods to first place data in a vector space and then learn decision boundaries. We propose reversing that process: for fixed decision boundaries, we ``learn‘‘ the location of the data. This way we (i) do not need a metric (or even stronger structure) -- pairwise dissimilarities suffice; and additionally (ii) produce low-dimensional embeddings that can be analyzed visually. We achieve this by combining an entropy-based embedding method with an entropy-based version of semi-supervised logistic regression. We present results for clustering and semi-supervised classification.

ei

PDF PostScript Web DOI [BibTex]

PDF PostScript Web DOI [BibTex]


no image
Face Detection: Efficient and Rank Deficient

Kienzle, W., BakIr, G., Franz, M., Schölkopf, B.

In Advances in Neural Information Processing Systems 17, pages: 673-680, (Editors: LK Saul and Y Weiss and L Bottou), MIT Press, Cambridge, MA, USA, 18th Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
This paper proposes a method for computing fast approximations to support vector decision functions in the field of object detection. In the present approach we are building on an existing algorithm where the set of support vectors is replaced by a smaller, so-called reduced set of synthesized input space points. In contrast to the existing method that finds the reduced set via unconstrained optimization, we impose a structural constraint on the synthetic points such that the resulting approximations can be evaluated via separable filters. For applications that require scanning an entire image, this decreases the computational complexity of a scan by a significant amount. We present experimental results on a standard face detection database.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Methods Towards Invasive Human Brain Computer Interfaces

Lal, T., Hinterberger, T., Widman, G., Schröder, M., Hill, J., Rosenstiel, W., Elger, C., Schölkopf, B., Birbaumer, N.

In Advances in Neural Information Processing Systems 17, pages: 737-744, (Editors: LK Saul and Y Weiss and L Bottou), MIT Press, Cambridge, MA, USA, 18th Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
During the last ten years there has been growing interest in the development of Brain Computer Interfaces (BCIs). The field has mainly been driven by the needs of completely paralyzed patients to communicate. With a few exceptions, most human BCIs are based on extracranial electroencephalography (EEG). However, reported bit rates are still low. One reason for this is the low signal-to-noise ratio of the EEG. We are currently investigating if BCIs based on electrocorticography (ECoG) are a viable alternative. In this paper we present the method and examples of intracranial EEG recordings of three epilepsy patients with electrode grids placed on the motor cortex. The patients were asked to repeatedly imagine movements of two kinds, e.g., tongue or finger movements. We analyze the classifiability of the data using Support Vector Machines (SVMs) and Recursive Channel Elimination (RCE).

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
A Machine Learning Approach to Conjoint Analysis

Chapelle, O., Harchaoui, Z.

In Advances in Neural Information Processing Systems 17, pages: 257-264, (Editors: Saul, L.K. , Y. Weiss, L. Bottou), MIT Press, Cambridge, MA, USA, Eighteenth Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
Choice-based conjoint analysis builds models of consumers preferences over products with answers gathered in questionnaires. Our main goal is to bring tools from the machine learning community to solve more efficiently this problem. Thus, we propose two algorithms to estimate quickly and accurately consumer preferences.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
An Auditory Paradigm for Brain-Computer Interfaces

Hill, N., Lal, T., Bierig, K., Birbaumer, N., Schölkopf, B.

In Advances in Neural Information Processing Systems 17, pages: 569-576, (Editors: LK Saul and Y Weiss and L Bottou), MIT Press, Cambridge, MA, USA, 18th Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
Motivated by the particular problems involved in communicating with "locked-in" paralysed patients, we aim to develop a brain-computer interface that uses auditory stimuli. We describe a paradigm that allows a user to make a binary decision by focusing attention on one of two concurrent auditory stimulus sequences. Using Support Vector Machine classification and Recursive Channel Elimination on the independent components of averaged event-related potentials, we show that an untrained user's EEG data can be classified with an encouragingly high level of accuracy. This suggests that it is possible for users to modulate EEG signals in a single trial by the conscious direction of attention, well enough to be useful in BCI.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Matrix Exponential Gradient Updates for On-line Learning and Bregman Projection

Tsuda, K., Rätsch, G., Warmuth, M.

In Advances in Neural Information Processing Systems 17, pages: 1425-1432, (Editors: Saul, L.K. , Y. Weiss, L. Bottou), MIT Press, Cambridge, MA, USA, Eighteenth Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
We address the problem of learning a symmetric positive definite matrix. The central issue is to design parameter updates that preserve positive definiteness. Our updates are motivated with the von Neumann divergence. Rather than treating the most general case, we focus on two key applications that exemplify our methods: On-line learning with a simple square loss and finding a symmetric positive definite matrix subject to symmetric linear constraints. The updates generalize the Exponentiated Gradient (EG) update and AdaBoost, respectively: the parameter is now a symmetric positive definite matrix of trace one instead of a probability vector (which in this context is a diagonal positive definite matrix with trace one). The generalized updates use matrix logarithms and exponentials to preserve positive definiteness. Most importantly, we show how the analysis of each algorithm generalizes to the non-diagonal case. We apply both new algorithms, called the Matrix Exponentiated Gradient (MEG) update and DefiniteBoost, to learn a kernel matrix from distance measurements.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Machine Learning Applied to Perception: Decision Images for Classification

Wichmann, F., Graf, A., Simoncelli, E., Bülthoff, H., Schölkopf, B.

In Advances in Neural Information Processing Systems 17, pages: 1489-1496, (Editors: LK, Saul and Y, Weiss and L, Bottou), MIT Press, Cambridge, MA, USA, 18th Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
We study gender discrimination of human faces using a combination of psychophysical classification and discrimination experiments together with methods from machine learning. We reduce the dimensionality of a set of face images using principal component analysis, and then train a set of linear classifiers on this reduced representation (linear support vector machines (SVMs), relevance vector machines (RVMs), Fisher linear discriminant (FLD), and prototype (prot) classifiers) using human classification data. Because we combine a linear preprocessor with linear classifiers, the entire system acts as a linear classifier, allowing us to visualise the decision-image corresponding to the normal vector of the separating hyperplanes (SH) of each classifier. We predict that the female-to-maleness transition along the normal vector for classifiers closely mimicking human classification (SVM and RVM 1) should be faster than the transition along any other direction. A psychophysical discrimination experiment using the decision images as stimuli is consistent with this prediction.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning the Kernel with Hyperkernels

Ong, CS., Smola, A., Williamson, R.

Journal of Machine Learning Research, 6, pages: 1043-1071, July 2005 (article)

Abstract
This paper addresses the problem of choosing a kernel suitable for estimation with a Support Vector Machine, hence further automating machine learning. This goal is achieved by defining a Reproducing Kernel Hilbert Space on the space of kernels itself. Such a formulation leads to a statistical estimation problem similar to the problem of minimizing a regularized risk functional. We state the equivalent representer theorem for the choice of kernels and present a semidefinite programming formulation of the resulting optimization problem. Several recipes for constructing hyperkernels are provided, as well as the details of common machine learning problems. Experimental results for classification, regression and novelty detection on UCI data show the feasibility of our approach.

ei

PDF [BibTex]

PDF [BibTex]


no image
Breaking SVM Complexity with Cross-Training

Bakir, G., Bottou, L., Weston, J.

In Advances in Neural Information Processing Systems 17, pages: 81-88, (Editors: Saul, L.K. , Y. Weiss, L. Bottou), MIT Press, Cambridge, MA, USA, Eighteenth Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
We propose an algorithm for selectively removing examples from the training set using probabilistic estimates related to editing algorithms (Devijver and Kittler82). The procedure creates a separable distribution of training examples with minimal impact on the decision boundary position. It breaks the linear dependency between the number of SVs and the number of training examples, and sharply reduces the complexity of SVMs during both the training and prediction stages.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Implicit Wiener series for higher-order image analysis

Franz, M., Schölkopf, B.

In Advances in Neural Information Processing Systems 17, pages: 465-472, (Editors: LK Saul and Y Weiss and L Bottou), MIT Press, Cambridge, MA, USA, 18th Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
The computation of classical higher-order statistics such as higher-order moments or spectra is difficult for images due to the huge number of terms to be estimated and interpreted. We propose an alternative approach in which multiplicative pixel interactions are described by a series of Wiener functionals. Since the functionals are estimated implicitly via polynomial kernels, the combinatorial explosion associated with the classical higher-order statistics is avoided. First results show that image structures such as lines or corners can be predicted correctly, and that pixel interactions up to the order of five play an important role in natural images.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Limits of Spectral Clustering

von Luxburg, U., Bousquet, O., Belkin, M.

In Advances in Neural Information Processing Systems 17, pages: 857-864, (Editors: Saul, L. K., Y. Weiss, L. Bottou), MIT Press, Cambridge, MA, USA, Eighteenth Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
An important aspect of clustering algorithms is whether the partitions constructed on finite samples converge to a useful clustering of the whole data space as the sample size increases. This paper investigates this question for normalized and unnormalized versions of the popular spectral clustering algorithm. Surprisingly, the convergence of unnormalized spectral clustering is more difficult to handle than the normalized case. Even though recently some first results on the convergence of normalized spectral clustering have been obtained, for the unnormalized case we have to develop a completely new approach combining tools from numerical integration, spectral and perturbation theory, and probability. It turns out that while in the normalized case, spectral clustering usually converges to a nice partition of the data space, in the unnormalized case the same only holds under strong additional assumptions which are not always satisfied. We conclude that our analysis gives strong evidence for the superiority of normalized spectral clustering. It also provides a basis for future exploration of other Laplacian-based methods.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Semi-supervised Learning on Directed Graphs

Zhou, D., Schölkopf, B., Hofmann, T.

In Advances in Neural Information Processing Systems 17, pages: 1633-1640, (Editors: LK Saul and Y Weiss and L Bottou), MIT Press, Cambridge, MA, USA, 18th Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
Given a directed graph in which some of the nodes are labeled, we investigate the question of how to exploit the link structure of the graph to infer the labels of the remaining unlabeled nodes. To that extent we propose a regularization framework for functions defined over nodes of a directed graph that forces the classification function to change slowly on densely linked subgraphs. A powerful, yet computationally simple classification algorithm is derived within the proposed framework. The experimental evaluation on real-world Web classification problems demonstrates encouraging results that validate our approach.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Splines with non positive kernels

Canu, S., Ong, CS., Mary, X.

In 5th International ISAAC Congress, pages: 1-10, (Editors: Begehr, H. G.W., F. Nicolosi), World Scientific, Singapore, 5th International ISAAC Congress, July 2005 (inproceedings)

Abstract
Non parametric regressions methods can be presented in two main clusters. The one of smoothing splines methods requiring positive kernels and the other one known as Nonparametric Kernel Regression allowing the use of non positive kernels such as the Epanechnikov kernel. We propose a generalization of the smoothing spline method to include kernels which are still symmetric but not positive semi definite (they are called indefinite). The general relationship between smoothing spline, Reproducing Kernel Hilbert Spaces and positive kernels no longer exists with indefinite kernel. Instead they are associated with functional spaces called Reproducing Kernel Krein Spaces (RKKS) embedded with an indefinite inner product and thus not directly associated with a norm. Smothing splines in RKKS have many of the interesting properties of splines in RKHS, such as orthogon ality, projection, representer theorem and generalization bounds. We show that smoothing splines can be defined in RKKS as the regularized solution of the interpolation problem. Since no norm is available in a RKKS, Tikhonov regularization cannot be defined. Instead, we proposed to use iterative methods of conjugate gradient type with early stopping as regularization mechanism. Several iterative algorithms were collected which can be used to solve the optimization problems associated with learning in indefinite spaces. Some preliminary experiments with indefinite kernels for spline smoothing are reported revealing the computational efficiency of the approach.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Kernel Methods for Implicit Surface Modeling

Schölkopf, B., Giesen, J., Spalinger, S.

In Advances in Neural Information Processing Systems 17, pages: 1193-1200, (Editors: LK Saul and Y Weiss and L Bottou), MIT Press, Cambridge, MA, USA, 18th Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
We describe methods for computing an implicit model of a hypersurface that is given only by a finite sampling. The methods work by mapping the sample points into a reproducing kernel Hilbert space and then determining regions in terms of hyperplanes.

ei

PDF Web [BibTex]

PDF Web [BibTex]