pn
Balles, L., Hennig, P.
Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients
In Proceedings of the 35th International Conference on Machine Learning (ICML), 2018 (inproceedings) Accepted
ei
Babbar, R., Schölkopf, B.
Adversarial Extreme Multi-label Classification
2018 (conference) Submitted
avg
Liao, Y., Donne, S., Geiger, A.
Deep Marching Cubes: Learning Explicit Surface Representations
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2018, 2018 (inproceedings)
avg
Schönberger, J., Pollefeys, M., Geiger, A., Sattler, T.
Semantic Visual Localization
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2018, 2018 (inproceedings)
avg
Alhaija, H., Mustikovela, S., Mescheder, L., Geiger, A., Rother, C.
Augmented Reality Meets Computer Vision: Efficient Data Generation for Urban Driving Scenes
International Journal of Computer Vision (IJCV), 2018, 2018 (article)
hi
Ambron, E., Miller, A., Kuchenbecker, K. J., Buxbaum, L. J., Coslett, H. B.
Immersive Low-Cost Virtual Reality Treatment for Phantom Limb Pain: Evidence from Two Cases
Frontiers in Neurology, 9(67):1-7, 2018 (article)
ei
Koc, O., Maeda, G., Peters, J.
Online optimal trajectory generation for robot table tennis
Robotics and Autonomous Systems, 105, pages: 121-137, 2018 (article)
Siavash Haghiri, Damien Garreau, Ulrike von Luxburg
Comparison-Based Random Forests
ICML, 2018 (conference)
Schoeller, F., Eskinazi, M., Garreau, D.
Dynamics of the knowledge instinct: Effects of incoherence on the cognitive system
Cognitive Systems Research, 2018 (article)
avg
Mescheder, L., Geiger, A., Nowozin, S.
Which Training Methods for GANs do actually Converge?
International Conference on Machine learning (ICML), 2018 (conference)
ei
Pfister*, N., Weichwald*, S., Bülmann, P., Schölkopf, B.
Robustifying Independent Component Analysis by Adjusting for Group-Wise Stationary Noise
2018, *equal contribution (article) Submitted
ei
pn
Muandet, K., Kanagawa, M., Saengkyongam, S., Marukata, S.
Counterfactual Mean Embedding: A Kernel Method for Nonparametric Causal Inference
Arxiv e-prints, arXiv:1805.08845v1 [stat.ML], 2018 (article)
pn
Nishiyama, Y., Kanagawa, M., Gretton, A., Fukumizu, K.
Model-based Kernel Sum Rule: Kernel Bayesian Inference with Probabilistic Models
Arxiv e-prints, arXiv:1409.5178v2 [stat.ML], 2018 (article)
al
Rolinek, M., Martius, G.
L4: Practical loss-based stepsize adaptation for deep learning
In Advances in Neural Information Processing Systems 31 (NeurIPS 2018), pages: 6434-6444, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 2018 (inproceedings)
ei
Osa, T., Peters, J., Neumann, G.
Hierarchical Reinforcement Learning of Multiple Grasping Strategies with Human Instructions
Advanced Robotics, 32(18):955-968, 2018 (article)
ei
Raj, A., Stich, S.
k–SVRG: Variance Reduction for Large Scale Optimization
In 2018 (inproceedings) Submitted
ei
Gebhard, T.
On the Applicability of Machine Learning to Aid the Search for Gravitational Waves at the LIGO Experiment
Karlsruhe Institute of Technology, Germany, 2018 (mastersthesis)
ei
Simon-Gabriel, C. J.
Distribution-Dissimilarities in Machine Learning
Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)
pi
Singh, A., Jahnke, T., Wang, S., Xiao, Y., Alapan, Y., Kharratian, S., Onbasli, M. C., Kozielski, K., David, H., Richter, G., Bill, J., Laux, P., Luch, A., Sitti, M.
Anisotropic Gold Nanostructures: Optimization via in Silico Modeling for Hyperthermia
ACS Applied Nano Materials, 1(11):6205-6216, 2018 (article)
pi
Wang, W., Kishore, V., Koens, L., Lauga, E., Sitti, M.
Collectives of Spinning Mobile Microrobots for Navigation and Object Manipulation at the Air-Water Interface
In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1-9, 2018 (inproceedings)
ei
Peharz, R., Vergari, A., Stelzner, K., Molina, A., Trapp, M., Kersting, K., Ghahramani, Z.
Probabilistic Deep Learning using Random Sum-Product Networks
2018 (conference) Submitted
mms
Minuto, F. D., Balderas-Xicohténcatl, R., Policicchio, A., Hirscher, M., Agostino, R. G.
Assessment methodology of promising porous materials for near ambient temperature hydrogen storage applications
{International Journal of Hydrogen Energy}, 43(31):14550-14556, Elsevier, Amsterdam, 2018 (article)
pn
Schober, M., Särkkä, S., Philipp Hennig,
A probabilistic model for the numerical solution of initial value problems
Statistics and Computing, Springer US, 2018 (article)
ei
Loktyushin, A., Ehses, P., Schölkopf, B., Scheffler, K.
Autofocusing-based phase correction
Magnetic Resonance in Medicine, 80(3):958-968, 2018 (article)
avg
Stutz, D., Geiger, A.
Learning 3D Shape Completion from Laser Scan Data with Weak Supervision
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2018, 2018 (inproceedings)
al
Pinneri, C., Martius, G.
Systematic self-exploration of behaviors for robots in a dynamical systems framework
In Proc. Artificial Life XI, pages: 319-326, MIT Press, Cambridge, MA, 2018 (inproceedings)
ei
Hohmann, M. R., Fomina, T., Jayaram, V., Emde, T., Just, J., Synofzik, M., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.
Case series: Slowing alpha rhythm in late-stage ALS patients
Clinical Neurophysiology, 129(2):406-408, 2018 (article)
ei
Šošić, A., Rueckert, E., Peters, J., Zoubir, A., Koeppl, H.
Inverse Reinforcement Learning via Nonparametric Spatio-Temporal Subgoal Modeling
Journal of Machine Learning Research, 19(69):1-45, 2018 (article)
ei
Veiga, F., Peters, J., Hermans, T.
Grip Stabilization of Novel Objects using Slip Prediction
IEEE Transactions on Haptics, 2018 (article) In press
slt
Vankadara, L., von Luxburg, U.
Measures of distortion for machine learning
In Proceedings Neural Information Processing Systems, Neural Information Processing Systems (NIPS 2018) , 2018 (inproceedings)
ei
Lechner, T.
Domain Adaptation Under Causal Assumptions
Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)
Nirody, J. L. L. J. A. H. D. F. R.
Geckos Race Across the Water’s Surface Using Multiple Mechanisms
Current Biology, 28(24):4046-4051.e2, Elsevier, 2018 (article)
pi
Son, D., Dong, X., Sitti, M.
A Simultaneous Calibration Method for Magnetic Robot Localization and Actuation Systems
IEEE Transactions on Robotics, 2018 (article)
mms
pi
Santomauro, G., Singh, A., Park, B. W., Mohammadrahimi, M., Erkoc, P., Goering, E., Schütz, G., Sitti, M., Bill, J.
Incorporation of Terbium into a Microalga Leads to Magnetotactic Swimmers
Advanced Biosystems, 2(12):1800039, 2018 (article)
pi
Turan, M., Almalioglu, Y., Gilbert, H. B., Sari, A. E., Soylu, U., Sitti, M.
Endo-VMFuseNet: A Deep Visual-Magnetic Sensor Fusion Approach for Endoscopic Capsule Robots
In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1-7, 2018 (inproceedings)
ei
Raj*, A., Law*, L., Sejdinovic*, D., Park, M.
A Differentially Private Kernel Two-Sample Test
2018, *equal contribution (conference) Submitted
ei
Kellmeyer, P., Grosse-Wentrup, M., Schulze-Bonhage, A., Ziemann, U., Ball, T.
Electrophysiological correlates of neurodegeneration in motor and non-motor brain regions in amyotrophic lateral sclerosis—implications for brain–computer interfacing
Journal of Neural Engineering, 15(4):041003, IOP Publishing, 2018 (article)
ei
Suter, R.
A Causal Perspective on Deep Representation Learning
ETH Zurich, 2018 (mastersthesis)
ei
Besserve, M., Sun, R., Schölkopf, B.
Counterfactuals uncover the modular structure of deep generative models
2018 (conference) Submitted
ei
Ciliberto, C., Herbster, M., Ialongo, A. D., Pontil, M., Rocchetto, A., Severini, S., Wossnig, L.
Quantum machine learning: a classical perspective
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474(2209):20170551, 2018 (article)
mms
Xiong, R., Balderas-Xicohténcatl, R., Zhang, L., Li, P., Yao, Y., Sang, G., Chen, C., Tang, T., Luo, D., Hirscher, M.
Thermodynamics, kinetics and selectivity of H2 and D2 on zeolite 5A below 77K
{Microporous and Mesoporous Materials}, 264, pages: 22-27, Elsevier, Amsterdam, 2018 (article)
mms
Balderas-Xicohténcatl, R., Schlichtenmayer, M., Hirscher, M.
Volumetric hydrogen storage capacity in metal-organic frameworks
{Energy Technology}, 6(3):578-582, Wiley-VCH, Weinheim, 2018 (article)
ei
Pfister, N., Bühlmann, P., Schölkopf, B., Peters, J.
Kernel-based tests for joint independence
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80(1):5-31, 2018 (article)
pn
Wahl, N., Hennig, P., Wieser, H., Bangert, M.
Analytical incorporation of fractionation effects in probabilistic treatment planning for intensity-modulated proton therapy
Medical Physics, 2018 (article)
ps
Zhang, Y., Sun, H., Tang, S., Neumann, H.
Temporal Human Action Segmentation via Dynamic Clustering
arXiv preprint arXiv:1803.05790, 2018 (article)
ei
Babbar, R., Heni, M., Peter, A., Hrabě de Angelis, M., Häring, H., Fritsche, A., Preissl, H., Schölkopf, B., Wagner, R.
Prediction of Glucose Tolerance without an Oral Glucose Tolerance Test
Frontiers in Endocrinology, 9, pages: 82, 2018 (article)
ei
Rojas-Carulla, M., Schölkopf, B., Turner, R., Peters, J.
Invariant Models for Causal Transfer Learning
Journal of Machine Learning Research, 19(36):1-34, 2018 (article)
ei
Jayaram, V., Barachant, A.
MOABB: Trustworthy algorithm benchmarking for BCIs
Journal of Neural Engineering, 15(6):066011, 2018 (article)
Huanbo Sun, Georg Martius
Robust and Cheap 3D Haptic Sensation using Deformation Patterns and Machine Learning
In IEEE-RAS International Conference on Humanoid Robots (Humanoids 2018), 2018, to appear (inproceedings)
ei
Belousov, B., Peters, J.
f-Divergence constrained policy improvement
Journal of Machine Learning Research, 2018 (article) Submitted