Header logo is


2011


no image
Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery

Gomez Rodriguez, M., Peters, J., Hill, J., Schölkopf, B., Gharabaghi, A., Grosse-Wentrup, M.

Journal of Neural Engineering, 8(3):1-12, June 2011 (article)

Abstract
The combination of brain–computer interfaces (BCIs) with robot-assisted physical therapy constitutes a promising approach to neurorehabilitation of patients with severe hemiparetic syndromes caused by cerebrovascular brain damage (e.g. stroke) and other neurological conditions. In such a scenario, a key aspect is how to reestablish the disrupted sensorimotor feedback loop. However, to date it is an open question how artificially closing the sensorimotor feedback loop influences the decoding performance of a BCI. In this paper, we answer this issue by studying six healthy subjects and two stroke patients. We present empirical evidence that haptic feedback, provided by a seven degrees of freedom robotic arm, facilitates online decoding of arm movement intention. The results support the feasibility of future rehabilitative treatments based on the combination of robot-assisted physical therapy with BCIs.

ei

PDF PDF DOI [BibTex]


no image
Greedy Learning of Binary Latent Trees

Harmeling, S., Williams, C.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(6):1087-1097, June 2011 (article)

Abstract
Inferring latent structures from observations helps to model and possibly also understand underlying data generating processes. A rich class of latent structures are hierarchical latent class (HLC) models. Zhang (2004) proposed a search algorithm for learning such models that can find good solutions but is often computationally expensive. As an alternative we investigate two greedy procedures: the BIN-G algorithm determines both the structure of the tree and the cardinality of the latent variables in a bottom-up fashion. The BIN-A algorithm first determines the tree structure using agglomerative hierarchical clustering, and then determines the cardinality of the latent variables as for BIN-G. We show that even with restricting ourselves to binary trees we obtain HLC models of comparable quality to Zhang‘s solutions, while being faster to compute. This claim is validated by a comprehensive comparison on several datasets. Furthermore, we demonstrate that our methods are able to estimate int erpretable latent structures on real-world data with a large number of variables. By applying our method to a restricted version of the 20 newsgroups data these models turn out to be related to topic models, and on data from the PASCAL Visual Object Classes (VOC) 2007 challenge we show how such tree-structured models help us understand how objects co-occur in images.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Learning Dynamic Tactile Sensing with Robust Vision-based Training

Kroemer, O., Lampert, C., Peters, J.

IEEE Transactions on Robotics, 27(3):545-557 , June 2011 (article)

Abstract
Dynamic tactile sensing is a fundamental ability to recognize materials and objects. However, while humans are born with partially developed dynamic tactile sensing and quickly master this skill, today's robots remain in their infancy. The development of such a sense requires not only better sensors but the right algorithms to deal with these sensors' data as well. For example, when classifying a material based on touch, the data are noisy, high-dimensional, and contain irrelevant signals as well as essential ones. Few classification methods from machine learning can deal with such problems. In this paper, we propose an efficient approach to infer suitable lower dimensional representations of the tactile data. In order to classify materials based on only the sense of touch, these representations are autonomously discovered using visual information of the surfaces during training. However, accurately pairing vision and tactile samples in real-robot applications is a difficult problem. The proposed approach, therefore, works with weak pairings between the modalities. Experiments show that the resulting approach is very robust and yields significantly higher classification performance based on only dynamic tactile sensing.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Algebraic polynomials and moments of stochastic integrals

Langovoy, M.

Statistics & Probability Letters, 81(6):627-631, June 2011 (article)

Abstract
We propose an algebraic method for proving estimates on moments of stochastic integrals. The method uses qualitative properties of roots of algebraic polynomials from certain general classes. As an application, we give a new proof of a variation of the Burkholder–Davis–Gundy inequality for the case of stochastic integrals with respect to real locally square integrable martingales. Further possible applications and extensions of the method are outlined.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Inference for psychometric functions in the presence of nonstationary behavior

Fründ, I., Haenel, N., Wichmann, F.

Journal of Vision, 11(6):1-19, May 2011 (article)

Abstract
Measuring sensitivity is at the heart of psychophysics. Often, sensitivity is derived from estimates of the psychometric function. This function relates response probability to stimulus intensity. In estimating these response probabilities, most studies assume stationary observers: Responses are expected to be dependent only on the intensity of a presented stimulus and not on other factors such as stimulus sequence, duration of the experiment, or the responses on previous trials. Unfortunately, a number of factors such as learning, fatigue, or fluctuations in attention and motivation will typically result in violations of this assumption. The severity of these violations is yet unknown. We use Monte Carlo simulations to show that violations of these assumptions can result in underestimation of confidence intervals for parameters of the psychometric function. Even worse, collecting more trials does not eliminate this misestimation of confidence intervals. We present a simple adjustment of the confidence intervals that corrects for the underestimation almost independently of the number of trials and the particular type of violation.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Transition from the locked in to the completely locked-in state: A physiological analysis

Ramos Murguialday, A., Hill, J., Bensch, M., Martens, S., Halder, S., Nijboer, F., Schölkopf, B., Birbaumer, N., Gharabaghi, A.

Clinical Neurophysiology, 122(5):925-933 , May 2011 (article)

Abstract
Objective To clarify the physiological and behavioral boundaries between locked-in (LIS) and the completely locked-in state (CLIS) (no voluntary eye movements, no communication possible) through electrophysiological data and to secure brain–computer-interface (BCI) communication. Methods Electromyography from facial muscles, external anal sphincter (EAS), electrooculography and electrocorticographic data during different psychophysiological tests were acquired to define electrophysiological differences in an amyotrophic lateral sclerosis (ALS) patient with an intracranially implanted grid of 112 electrodes for nine months while the patient passed from the LIS to the CLIS. Results At the very end of the LIS there was no facial muscle activity, nor external anal sphincter but eye control. Eye movements were slow and lasted for short periods only. During CLIS event related brain potentials (ERP) to passive limb movements and auditory stimuli were recorded, vibrotactile stimulation of different body parts resulted in no ERP response. Conclusions The results presented contradict the commonly accepted assumption that the EAS is the last remaining muscle under voluntary control and demonstrate complete loss of eye movements in CLIS. The eye muscle was shown to be the last muscle group under voluntary control. The findings suggest ALS as a multisystem disorder, even affecting afferent sensory pathways. Significance Auditory and proprioceptive brain–computer-interface (BCI) systems are the only remaining communication channels in CLIS.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Incremental online sparsification for model learning in real-time robot control

Nguyen-Tuong, D., Peters, J.

Neurocomputing, 74(11):1859-1867, May 2011 (article)

Abstract
For many applications such as compliant, accurate robot tracking control, dynamics models learned from data can help to achieve both compliant control performance as well as high tracking quality. Online learning of these dynamics models allows the robot controller to adapt itself to changes in the dynamics (e.g., due to time-variant nonlinearities or unforeseen loads). However, online learning in real-time applications -- as required in control -- cannot be realized by straightforward usage of off-the-shelf machine learning methods such as Gaussian process regression or support vector regression. In this paper, we propose a framework for online, incremental sparsification with a fixed budget designed for fast real-time model learning. The proposed approach employs a sparsification method based on an independence measure. In combination with an incremental learning approach such as incremental Gaussian process regression, we obtain a model approximation method which is applicable in real-time online learning. It exhibits competitive learning accuracy when compared with standard regression techniques. Implementation on a real Barrett WAM robot demonstrates the applicability of the approach in real-time online model learning for real world systems.

ei

PDF DOI [BibTex]


no image
Causal Influence of Gamma Oscillations on the Sensorimotor Rhythm

Grosse-Wentrup, M., Schölkopf, B., Hill, J.

NeuroImage, 56(2):837-842, May 2011 (article)

Abstract
Gamma oscillations of the electromagnetic field of the brain are known to be involved in a variety of cognitive processes, and are believed to be fundamental for information processing within the brain. While gamma oscillations have been shown to be correlated with brain rhythms at different frequencies, to date no empirical evidence has been presented that supports a causal influence of gamma oscillations on other brain rhythms. In this work, we study the relation of gamma oscillations and the sensorimotor rhythm (SMR) in healthy human subjects using electroencephalography. We first demonstrate that modulation of the SMR, induced by motor imagery of either the left or right hand, is positively correlated with the power of frontal and occipital gamma oscillations, and negatively correlated with the power of centro-parietal gamma oscillations. We then demonstrate that the most simple causal structure, capable of explaining the observed correlation of gamma oscillations and the SMR, entails a causal influence of gamma oscillations on the SMR. This finding supports the fundamental role attributed to gamma oscillations for information processing within the brain, and is of particular importance for brain–computer interfaces (BCIs). As modulation of the SMR is typically used in BCIs to infer a subject's intention, our findings entail that gamma oscillations have a causal influence on a subject's capability to utilize a BCI for means of communication.

ei

PDF DOI [BibTex]


no image
The effect of patient positioning aids on PET quantification in PET/MR imaging

Mantlik, F., Hofmann, M., Werner, M., Sauter, A., Kupferschläger, J., Schölkopf, B., Pichler, B., Beyer, T.

European Journal of Nuclear Medicine and Molecular Imaging, 38(5):920-929, May 2011 (article)

Abstract
Objectives Clinical PET/MR requires the use of patient positioning aids to immobilize and support patients for the duration of the combined examination. Ancillary immobilization devices contribute to overall attenuation of the PET signal, but are not detected with conventional MR sequences and, hence, are ignored in standard MR-based attenuation correction (MR-AC). We report on the quantitative effect of not accounting for the attenuation of patient positioning aids in combined PET/MR imaging. Methods We used phantom and patient data acquired with positioning aids on a PET/CT scanner (Biograph 16, HI-REZ) to mimic PET/MR imaging conditions. Reference CT-based attenuation maps were generated from measured (original) CT transmission images (origCT-AC). We also created MR-like attenuation maps by following the same conversion procedure of the attenuation values except for the prior delineation and subtraction of the positioning aids from the CT images (modCT-AC). First, a uniform 68Ge cylinder was positioned centrally in the PET/CT scanner and fixed with a vacuum mattress (10 cm thick) and, in a repeat examination, with MR positioning foam pads. Second, 16 patient datasets were selected for subsequent processing. All patients were regionally immobilized with positioning aids: a vacuum mattress for head/neck imaging (nine patients) and a foam mattress for imaging of the lower extremities (seven patients). PET images were reconstructed following CT-based attenuation and scatter correction using the original and modified (MR-like) CT images: PETorigCT-AC and PETmodCT-AC, respectively. PET images following origCT-AC and modCT-AC were compared visually and in terms of mean differences of voxels with a standardized uptake value of at least 1.0. In addition, we report maximum activity concentration in lesions for selected patients. Results In the phantom study employing the vacuum mattress the average voxel activity in PETmodCT-AC was underestimated by 6.4% compared to PETorigCT-AC, with 3.4% of the PET voxels being underestimated by 10% or more. When the MR foam pads were not accounted for during AC, PETmodCT-AC was underestimated by 1.1% on average, with none of the PET voxels being underestimated by 10% or more. Evaluation of the head/neck patient data showed a decrease of 8.4% ([68Ga]DOTATOC) and 7.4% ([18F]FDG) when patient positioning aids were not accounted for during AC, while the corresponding decrease was insignificant for the lower extremities. Conclusion Depending on the size and density of the positioning aids used, a regionally variable underestimation of PET activity following AC is observed when positioning aids are not accounted for. This underestimation may become relevant in combined PET/MR imaging of patients with neuropsychiatric indications, but appears to be of no clinical relevance in imaging the extremities.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


Thumb xl sigalijcv11
Loose-limbed People: Estimating 3D Human Pose and Motion Using Non-parametric Belief Propagation

Sigal, L., Isard, M., Haussecker, H., Black, M. J.

International Journal of Computer Vision, 98(1):15-48, Springer Netherlands, May 2011 (article)

Abstract
We formulate the problem of 3D human pose estimation and tracking as one of inference in a graphical model. Unlike traditional kinematic tree representations, our model of the body is a collection of loosely-connected body-parts. In particular, we model the body using an undirected graphical model in which nodes correspond to parts and edges to kinematic, penetration, and temporal constraints imposed by the joints and the world. These constraints are encoded using pair-wise statistical distributions, that are learned from motion-capture training data. Human pose and motion estimation is formulated as inference in this graphical model and is solved using Particle Message Passing (PaMPas). PaMPas is a form of non-parametric belief propagation that uses a variation of particle filtering that can be applied over a general graphical model with loops. The loose-limbed model and decentralized graph structure allow us to incorporate information from "bottom-up" visual cues, such as limb and head detectors, into the inference process. These detectors enable automatic initialization and aid recovery from transient tracking failures. We illustrate the method by automatically tracking people in multi-view imagery using a set of calibrated cameras and present quantitative evaluation using the HumanEva dataset.

ps

pdf publisher's site link (url) Project Page Project Page [BibTex]

pdf publisher's site link (url) Project Page Project Page [BibTex]


no image
Improving quantification of functional networks with EEG inverse problem: Evidence from a decoding point of view

Besserve, M., Martinerie, J., Garnero, L.

NeuroImage, 55(4):1536-1547, April 2011 (article)

Abstract
Decoding experimental conditions from single trial Electroencephalographic (EEG) signals is becoming a major challenge for the study of brain function and real-time applications such as Brain Computer Interface. EEG source reconstruction offers principled ways to estimate the cortical activities from EEG signals. But to what extent it can enhance informative brain signals in single trial has not been addressed in a general setting. We tested this using the minimum norm estimate solution (MNE) to estimate spectral power and coherence features at the cortical level. With a fast implementation, we computed a support vector machine (SVM) classifier output from these quantities in real-time, without prior on the relevant functional networks. We applied this approach to single trial decoding of ongoing mental imagery tasks using EEG data recorded in 5 subjects. Our results show that reconstructing the underlying cortical network dynamics significantly outperforms a usual electrode level approach in terms of information transfer and also reduces redundancy between coherence and power features, supporting a decrease of volume conduction effects. Additionally, the classifier coefficients reflect the most informative features of network activity, showing an important contribution of localized motor and sensory brain areas, and of coherence between areas up to 6 cm distance. This study provides a computationally efficient and interpretable strategy to extract information from functional networks at the cortical level in single trial. Moreover, this sets a general framework to evaluate the performance of EEG source reconstruction methods by their decoding abilities.

ei

Web DOI [BibTex]


no image
Using brain–computer interfaces to induce neural plasticity and restore function

Grosse-Wentrup, M., Mattia, D., Oweiss, K.

Journal of Neural Engineering, 8(2):1-5, April 2011 (article)

Abstract
Analyzing neural signals and providing feedback in real-time is one of the core characteristics of a brain-computer interface (BCI). As this feature may be employed to induce neural plasticity, utilizing BCI-technology for therapeutic purposes is increasingly gaining popularity in the BCI-community. In this review, we discuss the state-of-the-art of research on this topic, address the principles of and challenges in inducing neural plasticity by means of a BCI, and delineate the problems of study design and outcome evaluation arising in this context. The review concludes with a list of open questions and recommendations for future research in this field.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
EPIBLASTER-fast exhaustive two-locus epistasis detection strategy using graphical processing units

Kam-Thong, T., Czamara, D., Tsuda, K., Borgwardt, K., Lewis, C., Erhardt-Lehmann, A., Hemmer, B., Rieckmann, P., Daake, M., Weber, F., Wolf, C., Ziegler, A., Pütz, B., Holsboer, F., Schölkopf, B., Müller-Myhsok, B.

European Journal of Human Genetics, 19(4):465-471, April 2011 (article)

Abstract
Detection of epistatic interaction between loci has been postulated to provide a more in-depth understanding of the complex biological and biochemical pathways underlying human diseases. Studying the interaction between two loci is the natural progression following traditional and well-established single locus analysis. However, the added costs and time duration required for the computation involved have thus far deterred researchers from pursuing a genome-wide analysis of epistasis. In this paper, we propose a method allowing such analysis to be conducted very rapidly. The method, dubbed EPIBLASTER, is applicable to case–control studies and consists of a two-step process in which the difference in Pearson‘s correlation coefficients is computed between controls and cases across all possible SNP pairs as an indication of significant interaction warranting further analysis. For the subset of interactions deemed potentially significant, a second-stage analysis is performed using the likelihood ratio test from the logistic regression to obtain the P-value for the estimated coefficients of the individual effects and the interaction term. The algorithm is implemented using the parallel computational capability of commercially available graphical processing units to greatly reduce the computation time involved. In the current setup and example data sets (211 cases, 222 controls, 299468 SNPs; and 601 cases, 825 controls, 291095 SNPs), this coefficient evaluation stage can be completed in roughly 1 day. Our method allows for exhaustive and rapid detection of significant SNP pair interactions without imposing significant marginal effects of the single loci involved in the pair.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Model learning for robot control: a survey

Nguyen-Tuong, D., Peters, J.

Cognitive Processing, 12(4):319-340, April 2011 (article)

Abstract
Models are among the most essential tools in robotics, such as kinematics and dynamics models of the robot’s own body and controllable external objects. It is widely believed that intelligent mammals also rely on internal models in order to generate their actions. However, while classical robotics relies on manually generated models that are based on human insights into physics, future autonomous, cognitive robots need to be able to automatically generate models that are based on information which is extracted from the data streams accessible to the robot. In this paper, we survey the progress in model learning with a strong focus on robot control on a kinematic as well as dynamical level. Here, a model describes essential information about the behavior of the environment and the influence of an agent on this environment. In the context of model-based learning control, we view the model from three different perspectives. First, we need to study the different possible model learning architectures for robotics. Second, we discuss what kind of problems these architecture and the domain of robotics imply for the applicable learning methods. From this discussion, we deduce future directions of real-time learning algorithms. Third, we show where these scenarios have been used successfully in several case studies.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Critical issues in state-of-the-art brain–computer interface signal processing

Krusienski, D., Grosse-Wentrup, M., Galan, F., Coyle, D., Miller, K., Forney, E., Anderson, C.

Journal of Neural Engineering, 8(2):1-8, April 2011 (article)

Abstract
This paper reviews several critical issues facing signal processing for brain–computer interfaces (BCIs) and suggests several recent approaches that should be further examined. The topics were selected based on discussions held during the 4th International BCI Meeting at a workshop organized to review and evaluate the current state of, and issues relevant to, feature extraction and translation of field potentials for BCIs. The topics presented in this paper include the relationship between electroencephalography and electrocorticography, novel features for performance prediction, time-embedded signal representations, phase information, signal non-stationarity, and unsupervised adaptation.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


Thumb xl pointclickimagewide
Point-and-Click Cursor Control With an Intracortical Neural Interface System by Humans With Tetraplegia

Kim, S., Simeral, J. D., Hochberg, L. R., Donoghue, J. P., Friehs, G. M., Black, M. J.

IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19(2):193-203, April 2011 (article)

Abstract
We present a point-and-click intracortical neural interface system (NIS) that enables humans with tetraplegia to volitionally move a 2D computer cursor in any desired direction on a computer screen, hold it still and click on the area of interest. This direct brain-computer interface extracts both discrete (click) and continuous (cursor velocity) signals from a single small population of neurons in human motor cortex. A key component of this system is a multi-state probabilistic decoding algorithm that simultaneously decodes neural spiking activity and outputs either a click signal or the velocity of the cursor. The algorithm combines a linear classifier, which determines whether the user is intending to click or move the cursor, with a Kalman filter that translates the neural population activity into cursor velocity. We present a paradigm for training the multi-state decoding algorithm using neural activity observed during imagined actions. Two human participants with tetraplegia (paralysis of the four limbs) performed a closed-loop radial target acquisition task using the point-and-click NIS over multiple sessions. We quantified point-and-click performance using various human-computer interaction measurements for pointing devices. We found that participants were able to control the cursor motion accurately and click on specified targets with a small error rate (< 3% in one participant). This study suggests that signals from a small ensemble of motor cortical neurons (~40) can be used for natural point-and-click 2D cursor control of a personal computer.

ps

pdf publishers's site pub med link (url) Project Page [BibTex]

pdf publishers's site pub med link (url) Project Page [BibTex]


no image
A Blind Deconvolution Approach for Improving the Resolution of Cryo-EM Density Maps

Hirsch, M., Schölkopf, B., Habeck, M.

Journal of Computational Biology, 18(3):335-346, March 2011 (article)

Abstract
Cryo-electron microscopy (cryo-EM) plays an increasingly prominent role in structure elucidation of macromolecular assemblies. Advances in experimental instrumentation and computational power have spawned numerous cryo-EM studies of large biomolecular complexes resulting in the reconstruction of three-dimensional density maps at intermediate and low resolution. In this resolution range, identification and interpretation of structural elements and modeling of biomolecular structure with atomic detail becomes problematic. In this article, we present a novel algorithm that enhances the resolution of intermediate- and low-resolution density maps. Our underlying assumption is to model the low-resolution density map as a blurred and possibly noise-corrupted version of an unknown high-resolution map that we seek to recover by deconvolution. By exploiting the nonnegativity of both the high-resolution map and blur kernel, we derive multiplicative updates reminiscent of those used in nonnegative matrix factorization. Our framework allows for easy incorporation of additional prior knowledge such as smoothness and sparseness, on both the sharpened density map and the blur kernel. A probabilistic formulation enables us to derive updates for the hyperparameters; therefore, our approach has no parameter that needs adjustment. We apply the algorithm to simulated three-dimensional electron microscopic data. We show that our method provides better resolved density maps when compared with B-factor sharpening, especially in the presence of noise. Moreover, our method can use additional information provided by homologous structures, which helps to improve the resolution even further.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Dynamics of excitable neural networks with heterogeneous connectivity

Chavez, M., Besserve, M., Le Van Quyen, M.

Progress in Biophysics and Molecular Biology, 105(1-2):29-33, March 2011 (article)

Abstract
A central issue of neuroscience is to understand how neural units integrates internal and external signals to create coherent states. Recently, it has been shown that the sensitivity and dynamic range of neural assemblies are optimal at a critical coupling among its elements. Complex architectures of connections seem to play a constructive role on the reliable coordination of neural units. Here we show that, the synchronizability and sensitivity of excitable neural networks can be tuned by diversity in the connections strengths. We illustrate our findings for weighted networks with regular, random and complex topologies. Additional comparisons of real brain networks support previous studies suggesting that heterogeneity in the connectivity may play a constructive role on information processing. These findings provide insights into the relationship between structure and function of neural circuits.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Combining computational modeling with sparse and low-resolution data

Habeck, M., Nilges, M.

Journal of Structural Biology, 173(3):419, March 2011 (article)

Abstract
Structural biology is moving into a new era by shifting its focus from static structures of single proteins and protein domains to large and often fragile multi-component complexes. Over the past decade, structural genomics initiatives aimed to fill the voids in fold space and to provide a census of all protein structures. Completion of such an atlas of protein structures is still ongoing, but not sufficient for a mechanistic understanding of how living cells function. One of the great challenges is to bridge the gap between atomic resolution detail and the more fuzzy description of the molecular complexes that govern cellular processes or host–pathogen interactions. We want to move from cartoon-like representations of multi-component complexes to atomic resolution structures. To characterize the structures of the increasingly large and often flexible complexes, high resolution structure determination (as was possible for example for the ribosome) will likely stay the exception. Rather, data from many different methods providing information on the shape (X-ray crystallography, electron microscopy, SAXS, AFM, etc.) or on contacts between components (mass spectrometry, co-purification, or spectroscopic methods) need to be integrated with prior structural knowledge to build a consistent model of the complex. A particular difficulty is that the ratio between the number of conformational degrees of freedom and the number of measurements becomes unfavorable as we work with large complexes: data become increasingly sparse. Structural characterization of large molecular assemblies often involves a loss in resolution as well as in number and quality of data. We are good at solving structures of single proteins, but classical high-resolution structure determination by X-ray crystallography and NMR spectroscopy is often facing its limits as we move to higher molecular mass and increased flexibility. Therefore, structural studies on large complexes rely on new experimental techniques that complement the classical high resolution methods. But also computational approaches are becoming more important when it comes to integrating and analyzing structural information of often heterogeneous nature. Cryoelectron microscopy may serve as an example of how experimental methods can benefit from computation. Low-resolution data from cryo-EM show their true power when combined with modeling and bioinformatics methods such rigid docking and secondary structure hunting. Even in high resolution structure determination, molecular modeling is always necessary to calculate structures from data, to complement the missing information and to evaluate and score the obtained structures. With sparse data, all these three aspects become increasingly difficult, and the quality of the modeling approach becomes more important. With data alone, algorithms may not converge any more; scoring against data becomes meaningless; and the potential energy function becomes central not only as a help in making algorithms converge but also to score and evaluate the structures. In addition to the sparsity of the data, hybrid approaches bring the additional difficulty that the different sources of data may have rather different quality, and may be in the extreme case incompatible with each other. In addition to scoring the structures, modeling should also score in some way the data going into the calculation. This special issue brings together some of the numerous efforts to solve the problems that come from sparsity of data and from integrating data from different sources in hybrid approaches. The methods range from predominantly force-field based to mostly data based. Systems of very different sizes, ranging from single domains to multi-component complexes, are treated. We hope that you will enjoy reading the issue and find it a useful and inspiring resource.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Batch-Mode Active-Learning Methods for the Interactive Classification of Remote Sensing Images

Demir, B., Persello, C., Bruzzone, L.

IEEE Transactions on Geoscience and Remote Sensing, 49(3):1014-1031, March 2011 (article)

Abstract
This paper investigates different batch-mode active-learning (AL) techniques for the classification of remote sensing (RS) images with support vector machines. This is done by generalizing to multiclass problem techniques defined for binary classifiers. The investigated techniques exploit different query functions, which are based on the evaluation of two criteria: uncertainty and diversity. The uncertainty criterion is associated to the confidence of the supervised algorithm in correctly classifying the considered sample, while the diversity criterion aims at selecting a set of unlabeled samples that are as more diverse (distant one another) as possible, thus reducing the redundancy among the selected samples. The combination of the two criteria results in the selection of the potentially most informative set of samples at each iteration of the AL process. Moreover, we propose a novel query function that is based on a kernel-clustering technique for assessing the diversity of samples and a new strategy for selecting the most informative representative sample from each cluster. The investigated and proposed techniques are theoretically and experimentally compared with state-of-the-art methods adopted for RS applications. This is accomplished by considering very high resolution multispectral and hyperspectral images. By this comparison, we observed that the proposed method resulted in better accuracy with respect to other investigated and state-of-the art methods on both the considered data sets. Furthermore, we derived some guidelines on the design of AL systems for the classification of different types of RS images.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Statistical mechanics analysis of sparse data

Habeck, M.

Journal of Structural Biology, 173(3):541-548, March 2011 (article)

Abstract
Inferential structure determination uses Bayesian theory to combine experimental data with prior structural knowledge into a posterior probability distribution over protein conformational space. The posterior distribution encodes everything one can say objectively about the native structure in the light of the available data and additional prior assumptions and can be searched for structural representatives. Here an analogy is drawn between the posterior distribution and the canonical ensemble of statistical physics. A statistical mechanics analysis assesses the complexity of a structure calculation globally in terms of ensemble properties. Analogs of the free energy and density of states are introduced; partition functions evaluate the consistency of prior assumptions with data. Critical behavior is observed with dwindling restraint density, which impairs structure determination with too sparse data. However, prior distributions with improved realism ameliorate the situation by lowering the critical number of observations. An in-depth analysis of various experimentally accessible structural parameters and force field terms will facilitate a statistical approach to protein structure determination with sparse data that avoids bias as much as possible.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Large Scale Bayesian Inference and Experimental Design for Sparse Linear Models

Seeger, M., Nickisch, H.

SIAM Journal on Imaging Sciences, 4(1):166-199, March 2011 (article)

Abstract
Many problems of low-level computer vision and image processing, such as denoising, deconvolution, tomographic reconstruction or super-resolution, can be addressed by maximizing the posterior distribution of a sparse linear model (SLM). We show how higher-order Bayesian decision-making problems, such as optimizing image acquisition in magnetic resonance scanners, can be addressed by querying the SLM posterior covariance, unrelated to the density‘s mode. We propose a scalable algorithmic framework, with which SLM posteriors over full, high-resolution images can be approximated for the first time, solving a variational optimization problem which is convex iff posterior mode finding is convex. These methods successfully drive the optimization of sampling trajectories for real-world magnetic resonance imaging through Bayesian experimental design, which has not been attempted before. Our methodology provides new insight into similarities and differences between sparse reconstruction and approximate Bayesian inference, and has important implications for compressive sensing of real-world images.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Learning grasp affordance densities

Detry, R., Kraft, D., Kroemer, O., Peters, J., Krüger, N., Piater, J.

Paladyn: Journal of Behavioral Robotics, 2(1):1-17, March 2011 (article)

Abstract
We address the issue of learning and representing object grasp affordance models. We model grasp affordances with continuous probability density functions (grasp densities) which link object-relative grasp poses to their success probability. The underlying function representation is nonparametric and relies on kernel density estimation to provide a continuous model. Grasp densities are learned and refined from exploration, by letting a robot “play” with an object in a sequence of grasp-and-drop actions: the robot uses visual cues to generate a set of grasp hypotheses, which it then executes and records their outcomes. When a satisfactory amount of grasp data is available, an importance-sampling algorithm turns it into a grasp density. We evaluate our method in a largely autonomous learning experiment, run on three objects with distinct shapes. The experiment shows how learning increases success rates. It also measures the success rate of grasps chosen to maximize the probability of success, given reaching constraints.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


Thumb xl middleburyimagesmall
A Database and Evaluation Methodology for Optical Flow

Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M. J., Szeliski, R.

International Journal of Computer Vision, 92(1):1-31, March 2011 (article)

Abstract
The quantitative evaluation of optical flow algorithms by Barron et al. (1994) led to significant advances in performance. The challenges for optical flow algorithms today go beyond the datasets and evaluation methods proposed in that paper. Instead, they center on problems associated with complex natural scenes, including nonrigid motion, real sensor noise, and motion discontinuities. We propose a new set of benchmarks and evaluation methods for the next generation of optical flow algorithms. To that end, we contribute four types of data to test different aspects of optical flow algorithms: (1) sequences with nonrigid motion where the ground-truth flow is determined by tracking hidden fluorescent texture, (2) realistic synthetic sequences, (3) high frame-rate video used to study interpolation error, and (4) modified stereo sequences of static scenes. In addition to the average angular error used by Barron et al., we compute the absolute flow endpoint error, measures for frame interpolation error, improved statistics, and results at motion discontinuities and in textureless regions. In October 2007, we published the performance of several well-known methods on a preliminary version of our data to establish the current state of the art. We also made the data freely available on the web at http://vision.middlebury.edu/flow/ . Subsequently a number of researchers have uploaded their results to our website and published papers using the data. A significant improvement in performance has already been achieved. In this paper we analyze the results obtained to date and draw a large number of conclusions from them.

ps

pdf pdf from publisher Middlebury Flow Evaluation Website [BibTex]

pdf pdf from publisher Middlebury Flow Evaluation Website [BibTex]


no image
Client–Server Multitask Learning From Distributed Datasets

Dinuzzo, F., Pillonetto, G., De Nicolao, G.

IEEE Transactions on Neural Networks, 22(2):290-303, February 2011 (article)

Abstract
A client-server architecture to simultaneously solve multiple learning tasks from distributed datasets is described. In such architecture, each client corresponds to an individual learning task and the associated dataset of examples. The goal of the architecture is to perform information fusion from multiple datasets while preserving privacy of individual data. The role of the server is to collect data in real time from the clients and codify the information in a common database. Such information can be used by all the clients to solve their individual learning task, so that each client can exploit the information content of all the datasets without actually having access to private data of others. The proposed algorithmic framework, based on regularization and kernel methods, uses a suitable class of “mixed effect” kernels. The methodology is illustrated through a simulated recommendation system, as well as an experiment involving pharmacological data coming from a multicentric clinical trial.

ei

DOI [BibTex]

DOI [BibTex]


no image
Extraction of functional information from ongoing brain electrical activity: Extraction en temps-réel d’informations fonctionnelles à partir de l’activité électrique cérébrale

Besserve, M., Martinerie, J.

IRBM, 32(1):27-34, February 2011 (article)

Abstract
The modern analysis of multivariate electrical brain signals requires advanced statistical tools to automatically extract and quantify their information content. These tools include machine learning techniques and information theory. They are currently used both in basic neuroscience and challenging applications such as brain computer interfaces. We review here how these methods have been used at the Laboratoire d’Électroencéphalographie et de Neurophysiologie Appliquée (LENA) to develop a general tool for the real time analysis of functional brain signals. We then give some perspectives on how these tools can help understanding the biological mechanisms of information processing.

ei

PDF DOI [BibTex]


no image
Learning Visual Representations for Perception-Action Systems

Piater, J., Jodogne, S., Detry, R., Kraft, D., Krüger, N., Kroemer, O., Peters, J.

International Journal of Robotics Research, 30(3):294-307, February 2011 (article)

Abstract
We discuss vision as a sensory modality for systems that interact flexibly with uncontrolled environments. Instead of trying to build a generic vision system that produces task-independent representations, we argue in favor of task-specific, learnable representations. This concept is illustrated by two examples of our own work. First, our RLVC algorithm performs reinforcement learning directly on the visual input space. To make this very large space manageable, RLVC interleaves the reinforcement learner with a supervised classification algorithm that seeks to split perceptual states so as to reduce perceptual aliasing. This results in an adaptive discretization of the perceptual space based on the presence or absence of visual features. Its extension, RLJC, additionally handles continuous action spaces. In contrast to the minimalistic visual representations produced by RLVC and RLJC, our second method learns structural object models for robust object detection and pose estimation by probabilistic inference. To these models, the method associates grasp experiences autonomously learned by trial and error. These experiences form a non-parametric representation of grasp success likelihoods over gripper poses, which we call a grasp density. Thus, object detection in a novel scene simultaneously produces suitable grasping options.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Multi-way set enumeration in weight tensors

Georgii, E., Tsuda, K., Schölkopf, B.

Machine Learning, 82(2):123-155, February 2011 (article)

Abstract
The analysis of n-ary relations receives attention in many different fields, for instance biology, web mining, and social studies. In the basic setting, there are n sets of instances, and each observation associates n instances, one from each set. A common approach to explore these n-way data is the search for n-set patterns, the n-way equivalent of itemsets. More precisely, an n-set pattern consists of specific subsets of the n instance sets such that all possible associations between the corresponding instances are observed in the data. In contrast, traditional itemset mining approaches consider only two-way data, namely items versus transactions. The n-set patterns provide a higher-level view of the data, revealing associative relationships between groups of instances. Here, we generalize this approach in two respects. First, we tolerate missing observations to a certain degree, that means we are also interested in n-sets where most (although not all) of the possible associations have been recorded in the data. Second, we take association weights into account. In fact, we propose a method to enumerate all n-sets that satisfy a minimum threshold with respect to the average association weight. Technically, we solve the enumeration task using a reverse search strategy, which allows for effective pruning of the search space. In addition, our algorithm provides a ranking of the solutions and can consider further constraints. We show experimental results on artificial and real-world datasets from different domains.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Learning, planning, and control for quadruped locomotion over challenging terrain

Kalakrishnan, Mrinal, Buchli, Jonas, Pastor, Peter, Mistry, Michael, Schaal, S.

International Journal of Robotics Research, 30(2):236-258, February 2011 (article)

am

[BibTex]

[BibTex]


no image
A graphical model framework for decoding in the visual ERP-based BCI speller

Martens, S., Mooij, J., Hill, N., Farquhar, J., Schölkopf, B.

Neural Computation, 23(1):160-182, January 2011 (article)

Abstract
We present a graphical model framework for decoding in the visual ERP-based speller system. The proposed framework allows researchers to build generative models from which the decoding rules are obtained in a straightforward manner. We suggest two models for generating brain signals conditioned on the stimulus events. Both models incorporate letter frequency information but assume different dependencies between brain signals and stimulus events. For both models, we derive decoding rules and perform a discriminative training. We show on real visual speller data how decoding performance improves by incorporating letter frequency information and using a more realistic graphical model for the dependencies between the brain signals and the stimulus events. Furthermore, we discuss how the standard approach to decoding can be seen as a special case of the graphical model framework. The letter also gives more insight into the discriminative approach for decoding in the visual speller system.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Robust Control of Teleoperation Systems Interacting with Viscoelastic Soft Tissues

Cho, JH., Son, HI., Bhattacharjee, T., Lee, DG., Lee, DY.

IEEE Transactions on Control Systems Technology, January 2011 (article) In revision

ei

[BibTex]

[BibTex]


no image
Effect of Control Parameters and Haptic Cues on Human Perception for Remote Operations

Son, HI., Bhattacharjee, T., Jung, H., Lee, DY.

Experimental Brain Research, January 2011 (article) Submitted

ei

[BibTex]

[BibTex]


no image
Joint Genetic Analysis of Gene Expression Data with Inferred Cellular Phenotypes

Parts, L., Stegle, O., Winn, J., Durbin, R.

PLoS Genetics, 7(1):1-10, January 2011 (article)

Abstract
Even within a defined cell type, the expression level of a gene differs in individual samples. The effects of genotype, measured factors such as environmental conditions, and their interactions have been explored in recent studies. Methods have also been developed to identify unmeasured intermediate factors that coherently influence transcript levels of multiple genes. Here, we show how to bring these two approaches together and analyse genetic effects in the context of inferred determinants of gene expression. We use a sparse factor analysis model to infer hidden factors, which we treat as intermediate cellular phenotypes that in turn affect gene expression in a yeast dataset. We find that the inferred phenotypes are associated with locus genotypes and environmental conditions and can explain genetic associations to genes in trans. For the first time, we consider and find interactions between genotype and intermediate phenotypes inferred from gene expression levels, complementing and extending established results.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Reinforcement Learning with Bounded Information Loss

Peters, J., Peters, J., Mülling, K., Altun, Y.

AIP Conference Proceedings, 1305(1):365-372, 2011 (article)

Abstract
Policy search is a successful approach to reinforcement learning. However, policy improvements often result in the loss of information. Hence, it has been marred by premature convergence and implausible solutions. As first suggested in the context of covariant or natural policy gradients, many of these problems may be addressed by constraining the information loss. In this paper, we continue this path of reasoning and suggest two reinforcement learning methods, i.e., a model‐based and a model free algorithm that bound the loss in relative entropy while maximizing their return. The resulting methods differ significantly from previous policy gradient approaches and yields an exact update step. It works well on typical reinforcement learning benchmark problems as well as novel evaluations in robotics. We also show a Bayesian bound motivation of this new approach [8].

ei

Web DOI [BibTex]

Web DOI [BibTex]


Thumb xl toc image
Quantum-Cascade Laser-Based Vibrational Circular Dichroism

Luedeke, S., Pfeifer, M., Fischer, P.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 133(15):5704-5707, 2011 (article)

Abstract
Vibrational circular dichroism (VCD) spectra were recorded with a tunable external-cavity quantum-cascade laser (QCL). In comparison with standard thermal light sources in the IR, QCLs provide orders of magnitude more power and are therefore promising for VCD studies in strongly absorbing solvents. The brightness of this novel light source is demonstrated with VCD and IR absorption measurements of a number of compounds, including proline in water.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Actively coupled cavity ringdown spectroscopy with low-power broadband sources

Petermann, C., Fischer, P.

OPTICS EXPRESS, 19(11):10164-10173, 2011 (article)

Abstract
We demonstrate a coupling scheme for cavity enhanced absorption spectroscopy that makes use of an intracavity acousto-optical modulator to actively switch light into (and out of) a resonator. This allows cavity ringdown spectroscopy (CRDS) to be implemented with broadband nonlaser light sources with spectral power densities of less than 30 mu W/nm. Although the acousto-optical element reduces the ultimate detection limit by introducing additional losses, it permits absorptivities to be measured with a high dynamic range, especially in lossy environments. Absorption measurements for the forbidden transition of gaseous oxygen in air at similar to 760nm are presented using a low-coherence cw-superluminescent diode. The same setup was electronically configured to cover absorption losses from 1.8 x 10(-8)cm(-1) to 7.5\% per roundtrip. This could be of interest in process analytical applications. (C) 2011 Optical Society of America

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Magnetically actuated propulsion at low Reynolds numbers: towards nanoscale control

Fischer, P., Ghosh, A.

NANOSCALE, 3(2):557-563, 2011 (article)

Abstract
Significant progress has been made in the fabrication of micron and sub-micron structures whose motion can be controlled in liquids under ambient conditions. The aim of many of these engineering endeavors is to be able to build and propel an artificial micro-structure that rivals the versatility of biological swimmers of similar size, e. g. motile bacterial cells. Applications for such artificial ``micro-bots'' are envisioned to range from microrheology to targeted drug delivery and microsurgery, and require full motion-control under ambient conditions. In this Mini-Review we discuss the construction, actuation, and operation of several devices that have recently been reported, especially systems that can be controlled by and propelled with homogenous magnetic fields. We describe the fabrication and associated experimental challenges and discuss potential applications.

pf

Video - Nanospropellers DOI [BibTex]


no image
Design and application of a wire-driven bidirectional telescopic mechanism for workspace expansion with a focus on shipbuilding tasks

Lee, D., Chang, D., Shin, Y., Son, D., Kim, T., Lee, K., Kim, J.

Advanced Robotics, 25, 2011 (article)

pi

[BibTex]

[BibTex]


no image
Bayesian robot system identification with input and output noise

Ting, J., D’Souza, A., Schaal, S.

Neural Networks, 24(1):99-108, 2011, clmc (article)

Abstract
For complex robots such as humanoids, model-based control is highly beneficial for accurate tracking while keeping negative feedback gains low for compliance. However, in such multi degree-of-freedom lightweight systems, conventional identification of rigid body dynamics models using CAD data and actuator models is inaccurate due to unknown nonlinear robot dynamic effects. An alternative method is data-driven parameter estimation, but significant noise in measured and inferred variables affects it adversely. Moreover, standard estimation procedures may give physically inconsistent results due to unmodeled nonlinearities or insufficiently rich data. This paper addresses these problems, proposing a Bayesian system identification technique for linear or piecewise linear systems. Inspired by Factor Analysis regression, we develop a computationally efficient variational Bayesian regression algorithm that is robust to ill-conditioned data, automatically detects relevant features, and identifies input and output noise. We evaluate our approach on rigid body parameter estimation for various robotic systems, achieving an error of up to three times lower than other state-of-the-art machine learning methods

am

link (url) [BibTex]

link (url) [BibTex]


no image
The Oxidation of Fe(111)

Davies, R., Edwards, D., Gräfe, J., Gilbert, L., Davies, P., Hutchings, G., Bowker, M.

Surface Science, 605(17-18):1754-1762, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Learning variable impedance control

Buchli, J., Stulp, F., Theodorou, E., Schaal, S.

International Journal of Robotics Research, 2011, clmc (article)

Abstract
One of the hallmarks of the performance, versatility, and robustness of biological motor control is the ability to adapt the impedance of the overall biomechanical system to different task requirements and stochastic disturbances. A transfer of this principle to robotics is desirable, for instance to enable robots to work robustly and safely in everyday human environments. It is, however, not trivial to derive variable impedance controllers for practical high degree-of-freedom (DOF) robotic tasks. In this contribution, we accomplish such variable impedance control with the reinforcement learning (RL) algorithm PISq ({f P}olicy {f I}mprovement with {f P}ath {f I}ntegrals). PISq is a model-free, sampling based learning method derived from first principles of stochastic optimal control. The PISq algorithm requires no tuning of algorithmic parameters besides the exploration noise. The designer can thus fully focus on cost function design to specify the task. From the viewpoint of robotics, a particular useful property of PISq is that it can scale to problems of many DOFs, so that reinforcement learning on real robotic systems becomes feasible. We sketch the PISq algorithm and its theoretical properties, and how it is applied to gain scheduling for variable impedance control. We evaluate our approach by presenting results on several simulated and real robots. We consider tasks involving accurate tracking through via-points, and manipulation tasks requiring physical contact with the environment. In these tasks, the optimal strategy requires both tuning of a reference trajectory emph{and} the impedance of the end-effector. The results show that we can use path integral based reinforcement learning not only for planning but also to derive variable gain feedback controllers in realistic scenarios. Thus, the power of variable impedance control is made available to a wide variety of robotic systems and practical applications.

am

link (url) [BibTex]

link (url) [BibTex]


Thumb xl toc image
Weak value amplified optical activity measurements

Pfeifer, M., Fischer, P.

Opt. Express, 19(17):16508-16517, OSA, 2011 (article)

Abstract
We present a new form of optical activity measurement based on a modified weak value amplification scheme. It has recently been shown experimentally that the left- and right-circular polarization components refract with slightly different angles of refraction at a chiral interface causing a linearly polarized light beam to split into two. By introducing a polarization modulation that does not give rise to a change in the optical rotation it is possible to differentiate between the two circular polarization components even after post-selection with a linear polarizer. We show that such a modified weak value amplification measurement permits the sign of the splitting and thus the handedness of the optically active medium to be determined. Angular beam separations of Δθ ∼ 1 nanoradian, which corresponds to a circular birefringence of Δn ∼ 1 × 10−9, could be measured with a relative error of less than 1%.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
High-resolution x-ray absorption spectroscopy of BaTiO_3: Experiment and first-principles calculations

Chassé, A., Borek, S., Schindler, K., Trautmann, M., Huth, M., Steudel, F., Makhova, L., Gräfe, J., Denecke, R.

Physical Review B, 84, pages: 195135, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Waalbot II: Adhesion recovery and improved performance of a climbing robot using fibrillar adhesives

Murphy, M. P., Kute, C., Mengüç, Y., Sitti, M.

The International Journal of Robotics Research, 30(1):118-133, SAGE Publications Sage UK: London, England, 2011 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Automated 2-D nanoparticle manipulation using atomic force microscopy

Onal, C. D., Ozcan, O., Sitti, M.

IEEE Transactions on Nanotechnology, 10(3):472-481, IEEE, 2011 (article)

pi

[BibTex]

[BibTex]


no image
Biaxial mechanical modeling of the small intestine

Bellini, C., Glass, P., Sitti, M., Di Martino, E. S.

Journal of the mechanical behavior of biomedical materials, 4(8):1727-1740, Elsevier, 2011 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl 1000dayimagesmall
Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array

(J. Neural Engineering Highlights of 2011 Collection. JNE top 10 cited papers of 2010-2011.)

Simeral, J. D., Kim, S., Black, M. J., Donoghue, J. P., Hochberg, L. R.

J. of Neural Engineering, 8(2):025027, 2011 (article)

Abstract
The ongoing pilot clinical trial of the BrainGate neural interface system aims in part to assess the feasibility of using neural activity obtained from a small-scale, chronically implanted, intracortical microelectrode array to provide control signals for a neural prosthesis system. Critical questions include how long implanted microelectrodes will record useful neural signals, how reliably those signals can be acquired and decoded, and how effectively they can be used to control various assistive technologies such as computers and robotic assistive devices, or to enable functional electrical stimulation of paralyzed muscles. Here we examined these questions by assessing neural cursor control and BrainGate system characteristics on five consecutive days 1000 days after implant of a 4 × 4 mm array of 100 microelectrodes in the motor cortex of a human with longstanding tetraplegia subsequent to a brainstem stroke. On each of five prospectively-selected days we performed time-amplitude sorting of neuronal spiking activity, trained a population-based Kalman velocity decoding filter combined with a linear discriminant click state classifier, and then assessed closed-loop point-and-click cursor control. The participant performed both an eight-target center-out task and a random target Fitts metric task which was adapted from a human-computer interaction ISO standard used to quantify performance of computer input devices. The neural interface system was further characterized by daily measurement of electrode impedances, unit waveforms and local field potentials. Across the five days, spiking signals were obtained from 41 of 96 electrodes and were successfully decoded to provide neural cursor point-and-click control with a mean task performance of 91.3% ± 0.1% (mean ± s.d.) correct target acquisition. Results across five consecutive days demonstrate that a neural interface system based on an intracortical microelectrode array can provide repeatable, accurate point-and-click control of a computer interface to an individual with tetraplegia 1000 days after implantation of this sensor.

ps

pdf pdf from publisher link (url) Project Page [BibTex]


no image
Electron theory of fast and ultrafast dissipative magnetization dynamics

Fähnle, M., Illg, C.

{Journal of Physics: Condensed Matter}, 23, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Large-area hard magnetic L10-FePt nanopatterns by nanoimprint lithography

Bublat, T., Goll, D.

{Nanotechnology}, 22(31), 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]