Header logo is


2010


no image
Grain boundary ridges and triple lines

Straumal, B. B., Sursaeva, V. G., Baretzky, B.

{Scripta Materialia}, 62(12):924-927, 2010 (article)

mms

DOI [BibTex]

2010


DOI [BibTex]


no image
Contact angles by the solid-phase grain boundary wetting (coverage) in the Co-Cu system

Straumal, B. B., Kogtenkova, O. A., Straumal, A. B., Kuchyeyev, Y. O., Baretzky, B.

In 45, pages: 4271-4275, Glasgow, Scotland, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Expanding micelle nanolithography to the self-assembly of multicomponent core-shell nanoparticles

Mbenkum, B. N., D\’\iaz-Ortiz, A., Gu, L., van Aken, P. A., Schütz, G.

{Journal of the American Chemical Society}, 132(31):10671-10673, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Learning control in robotics – trajectory-based opitimal control techniques

Schaal, S., Atkeson, C. G.

Robotics and Automation Magazine, 17(2):20-29, 2010, clmc (article)

Abstract
In a not too distant future, robots will be a natural part of daily life in human society, providing assistance in many areas ranging from clinical applications, education and care giving, to normal household environments [1]. It is hard to imagine that all possible tasks can be preprogrammed in such robots. Robots need to be able to learn, either by themselves or with the help of human supervision. Additionally, wear and tear on robots in daily use needs to be automatically compensated for, which requires a form of continuous self-calibration, another form of learning. Finally, robots need to react to stochastic and dynamic environments, i.e., they need to learn how to optimally adapt to uncertainty and unforeseen changes. Robot learning is going to be a key ingredient for the future of autonomous robots. While robot learning covers a rather large field, from learning to perceive, to plan, to make decisions, etc., we will focus this review on topics of learning control, in particular, as it is concerned with learning control in simulated or actual physical robots. In general, learning control refers to the process of acquiring a control strategy for a particular control system and a particular task by trial and error. Learning control is usually distinguished from adaptive control [2] in that the learning system can have rather general optimization objectivesâ??not just, e.g., minimal tracking errorâ??and is permitted to fail during the process of learning, while adaptive control emphasizes fast convergence without failure. Thus, learning control resembles the way that humans and animals acquire new movement strategies, while adaptive control is a special case of learning control that fulfills stringent performance constraints, e.g., as needed in life-critical systems like airplanes. Learning control has been an active topic of research for at least three decades. However, given the lack of working robots that actually use learning components, more work needs to be done before robot learning will make it beyond the laboratory environment. This article will survey some ongoing and past activities in robot learning to assess where the field stands and where it is going. We will largely focus on nonwheeled robots and less on topics of state estimation, as typically explored in wheeled robots [3]â??6], and we emphasize learning in continuous state-action spaces rather than discrete state-action spaces [7], [8]. We will illustrate the different topics of robot learning with examples from our own research with anthropomorphic and humanoid robots.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Learning, planning, and control for quadruped locomotion over challenging terrain

Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., Schaal, S.

International Journal of Robotics Research, 30(2):236-258, 2010, clmc (article)

Abstract
We present a control architecture for fast quadruped locomotion over rough terrain. We approach the problem by decomposing it into many sub-systems, in which we apply state-of-the-art learning, planning, optimization, and control techniques to achieve robust, fast locomotion. Unique features of our control strategy include: (1) a system that learns optimal foothold choices from expert demonstration using terrain templates, (2) a body trajectory optimizer based on the Zero- Moment Point (ZMP) stability criterion, and (3) a floating-base inverse dynamics controller that, in conjunction with force control, allows for robust, compliant locomotion over unperceived obstacles. We evaluate the performance of our controller by testing it on the LittleDog quadruped robot, over a wide variety of rough terrains of varying difficulty levels. The terrain that the robot was tested on includes rocks, logs, steps, barriers, and gaps, with obstacle sizes up to the leg length of the robot. We demonstrate the generalization ability of this controller by presenting results from testing performed by an independent external test team on terrain that has never been shown to us.

am

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Teleoperated 3-D force feedback from the nanoscale with an atomic force microscope

Onal, C. D., Sitti, M.

IEEE Transactions on nanotechnology, 9(1):46-54, IEEE, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Roll and pitch motion analysis of a biologically inspired quadruped water runner robot

Park, H. S., Floyd, S., Sitti, M.

The International Journal of Robotics Research, 29(10):1281-1297, SAGE Publications Sage UK: London, England, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing

Kim, Seok, Wu, Jian, Carlson, Andrew, Jin, Sung Hun, Kovalsky, Anton, Glass, Paul, Liu, Zhuangjian, Ahmed, Numair, Elgan, Steven L, Chen, Weiqiu, others

Proceedings of the National Academy of Sciences, 107(40):17095-17100, National Acad Sciences, 2010 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Tankbot: A palm-size, tank-like climbing robot using soft elastomer adhesive treads

Unver, O., Sitti, M.

The International Journal of Robotics Research, 29(14):1761-1777, SAGE Publications Sage UK: London, England, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Playful Machines: Tutorial

Der, R., Martius, G.

\urlhttp://robot.informatik.uni-leipzig.de/tutorial?lang=en, 2010 (misc)

al

[BibTex]

[BibTex]


no image
Entnetzung verspannter Filme

Reindl, A.

Universität Stuttgart, Stuttgart, 2010 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Advanced ferromagnetic nanostructures

Goll, D.

Universität Stuttgart, Stuttgart, 2010 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Wasserstoff in funktionellen Dünnschichtsystemen

Honert, J.

Universität Stuttgart, Stuttgart, 2010 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Hydrogen spillover measurements of unbridged and bridged metal-organic frameworks - revisited

Campesi, R., Cuevas, F., Latroche, M., Hirscher, M.

{Physical Chemistry Chemical Physics}, 12, pages: 10457-10459, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Relating Gilbert damping and ultrafast laser-induced demagnetization

Fähnle, M., Seib, J., Illg, C.

{Physical Review B}, 82, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ferromagnetic properties of the Mn-doped nanograined ZnO films

Straumal, B. B., Protasova, S. G., Mazilkin, A. A., Myatiev, A. A., Straumal, P. B., Schütz, G., Goering, E., Baretzky, B.

{Journal of Applied Physics}, 108, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Unusual super-ductility at room temperature in an ultrafine-grained aluminum alloy

Valiev, R. Z., Murashkin, M. Y., Kilmametov, A., Straumal, B., Chinh, N. Q., Langdon, T.

In 45, pages: 4718-4724, Seattle, WA, USA, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Demagnetization on the fs time-scale by the Elliott-Yafet mechanism

Steiauf, D., Illg, C., Fähnle, M.

In 200, Karlsruhe, Germany, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ubiquity of ferromagnetic signals in common diamagnetic oxide crystals

Khalid, M., Setzer, A., Ziese, M., Esquinazi, P., Spemann, D., Pöppl, A., Goering, E.

{Physical Review B}, 81(21), 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Calculation of the Gilbert damping matrix at low scattering rates in Gd

Seib, J., Fähnle, M.

{Physical Review B}, 82, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Adsorption technologies

Schmitz, B., Hirscher, M.

In Hydrogen and Fuel Cells, pages: 431-445, WILEY-VCH, Weinheim, 2010 (incollection)

mms

[BibTex]

[BibTex]


no image
Swift heavy ions for controlled modification of soft magnetic properties of Fe0.85N0.15 thin film

Gupta, R., Gupta, A., Bhatt, R., Rüffer, R., Avasthi, D. K.

{Journal of Physics: Condensed Matter}, 22(22), 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Constrained Accelerations for Controlled Geometric Reduction: Sagittal-Plane Decoupling for Bipedal Locomotion

Gregg, R., Righetti, L., Buchli, J., Schaal, S.

In 2010 10th IEEE-RAS International Conference on Humanoid Robots, pages: 1-7, IEEE, Nashville, USA, 2010 (inproceedings)

Abstract
Energy-shaping control methods have produced strong theoretical results for asymptotically stable 3D bipedal dynamic walking in the literature. In particular, geometric controlled reduction exploits robot symmetries to control momentum conservation laws that decouple the sagittal-plane dynamics, which are easier to stabilize. However, the associated control laws require high-dimensional matrix inverses multiplied with complicated energy-shaping terms, often making these control theories difficult to apply to highly-redundant humanoid robots. This paper presents a first step towards the application of energy-shaping methods on real robots by casting controlled reduction into a framework of constrained accelerations for inverse dynamics control. By representing momentum conservation laws as constraints in acceleration space, we construct a general expression for desired joint accelerations that render the constraint surface invariant. By appropriately choosing an orthogonal projection, we show that the unconstrained (reduced) dynamics are decoupled from the constrained dynamics. Any acceleration-based controller can then be used to stabilize this planar subsystem, including passivity-based methods. The resulting control law is surprisingly simple and represents a practical way to employ control theoretic stability results in robotic platforms. Simulated walking of a 3D compass-gait biped show correspondence between the new and original controllers, and simulated motions of a 16-DOF humanoid demonstrate the applicability of this method.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Variable impedance control - a reinforcement learning approach

Buchli, J., Theodorou, E., Stulp, F., Schaal, S.

In Robotics Science and Systems (2010), Zaragoza, Spain, June 27-30, 2010, clmc (inproceedings)

Abstract
One of the hallmarks of the performance, versatility, and robustness of biological motor control is the ability to adapt the impedance of the overall biomechanical system to different task requirements and stochastic disturbances. A transfer of this principle to robotics is desirable, for instance to enable robots to work robustly and safely in everyday human environments. It is, however, not trivial to derive variable impedance controllers for practical high DOF robotic tasks. In this contribution, we accomplish such gain scheduling with a reinforcement learning approach algorithm, PI2 (Policy Improvement with Path Integrals). PI2 is a model-free, sampling based learning method derived from first principles of optimal control. The PI2 algorithm requires no tuning of algorithmic parameters besides the exploration noise. The designer can thus fully focus on cost function design to specify the task. From the viewpoint of robotics, a particular useful property of PI2 is that it can scale to problems of many DOFs, so that RL on real robotic systems becomes feasible. We sketch the PI2 algorithm and its theoretical properties, and how it is applied to gain scheduling. We evaluate our approach by presenting results on two different simulated robotic systems, a 3-DOF Phantom Premium Robot and a 6-DOF Kuka Lightweight Robot. We investigate tasks where the optimal strategy requires both tuning of the impedance of the end-effector, and tuning of a reference trajectory. The results show that we can use path integral based RL not only for planning but also to derive variable gain feedback controllers in realistic scenarios. Thus, the power of variable impedance control is made available to a wide variety of robotic systems and practical applications.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Note: Aligned deposition and modal characterization of micron and submicron poly (methyl methacyrlate) fiber cantilevers

Nain, A. S., Filiz, S., Burak Ozdoganlar, O., Sitti, M., Amon, C.

Review of Scientific Instruments, 81(1):016102, AIP, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Surface tension driven water strider robot using circular footpads

Ozcan, O., Wang, H., Taylor, J. D., Sitti, M.

In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages: 3799-3804, 2010 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Atomic-Force-Microscopy-Based Nanomanipulation Systems

Onal, C. D., Ozcan, O., Sitti, M.

In Handbook of Nanophysics: Nanomedicine and Nanorobotics, pages: 1-15, CRC Press, 2010 (incollection)

pi

[BibTex]

[BibTex]


no image
Enhanced adhesion of dopamine methacrylamide elastomers via viscoelasticity tuning

Chung, H., Glass, P., Pothen, J. M., Sitti, M., Washburn, N. R.

Biomacromolecules, 12(2):342-347, American Chemical Society, 2010 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Taming the Beast: Guided Self-organization of Behavior in Autonomous Robots

Martius, G., Herrmann, J. M.

In From Animals to Animats 11, 6226, pages: 50-61, LNCS, Springer, 2010 (incollection)

al

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Inverse dynamics with optimal distribution of ground reaction forces for legged robot

Righetti, L., Buchli, J., Mistry, M., Schaal, S.

In Proceedings of the 13th International Conference on Climbing and Walking Robots (CLAWAR), pages: 580-587, Nagoya, Japan, sep 2010 (inproceedings)

Abstract
Contact interaction with the environment is crucial in the design of locomotion controllers for legged robots, to prevent slipping for example. Therefore, it is of great importance to be able to control the effects of the robots movements on the contact reaction forces. In this contribution, we extend a recent inverse dynamics algorithm for floating base robots to optimize the distribution of contact forces while achieving precise trajectory tracking. The resulting controller is algorithmically simple as compared to other approaches. Numerical simulations show that this result significantly increases the range of possible movements of a humanoid robot as compared to the previous inverse dynamics algorithm. We also present a simplification of the result where no inversion of the inertia matrix is needed which is particularly relevant for practical use on a real robot. Such an algorithm becomes interesting for agile locomotion of robots on difficult terrains where the contacts with the environment are critical, such as walking over rough or slippery terrain.

am mg

DOI [BibTex]

DOI [BibTex]


no image
Laterally driven interfaces in the three-dimensional Ising lattice gas

Smith, T. H. R., Vasilyev, O., Maciolek, A., Schmidt, M.

{Physical Review E}, 82(2), 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Samarium-cobalt 2:17 magnets: identifying Smn+1Co5n-1 phases stabilized by Zr

Stadelmaier, H. H., Kronmüller, H., Goll, D.

{Scripta Materialia}, 63, pages: 843-846, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Planar metamaterial analogue of electromagnetically induced transparancy for plasmonic sensing

Liu, N., Weiss, T., Mesch, M., Langguth, L., Eigenthaler, U., Hirscher, M., Sönnichsen, C., Giessen, H.

{Nano Letters}, 10, pages: 1103-1107, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Explaining the paradoxical diversity of ultrafast last-induced demagnetization

Koopmans, B., Malinowski, G., Dalla Longa, F., Steiauf, D., Fähnle, M., Roth, T., Cinchetti, M., Aeschlimann, M.

{Nature Materials}, 9, pages: 259-265, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
A high heat of adsorption for hydrogen in magnesium formate

Schmitz, B., Krkljus, I., Leung, E., Höffken, H. W., Müller, U., Hirscher, M.

{ChemSusChem}, 3, pages: 758-761, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Force induced destabilization of adhesion complexes at defined integrin spacings on nanostructured surfaces

de Beer, A. G. F., Cavalcanti-Adam, E. A., Majer, G., López-Garc\’\ia, M., Kessler, H., Spatz, J. P.

{Physical Review E}, 81, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
The X-ray microscopy beamline UE46-PGM2 at BESSY

Follath, R., Schmidt, J. S., Weigand, M., Fauth, K.

In 10th International Conference on Synchrotron Radiation Instrumentation, 1234, pages: 323-326, AIP Conference Proceedings, American Institute of Physics, Melbourne, Australia, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Anisotropic damping of the magnetization dynamics in Ni, Co, and Fe

Gilmore, K., Stiles, M. D., Seib, J., Steiauf, D., Fähnle, M.

{Physical Review B}, 81, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Influence of [Mo6Br8F6]2- cluster inclusion within the mesoporous solid MIL-101 on hydrogen storage performance

Dybtsev, D., Serre, C., Schmitz, B., Panella, B., Hirscher, M., Latroche, M., Llewellyn, P. L., Cordier, S., Molard, Y., Haouas, M., Taulelle, F., Férey, G.

{Langmuir}, 26(13):11283-11290, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Grain boundary layers in nanocrystalline ferromagnetic zinc oxide

Straumal, B. B., Myatiev, A. A., Straumal, P. B., Mazilkin, A. A., Protasova, S. G., Goering, E., Baretzky, B.

{JETP Letters}, 92(6):396-400, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]

2007


no image
A Tutorial on Spectral Clustering

von Luxburg, U.

Statistics and Computing, 17(4):395-416, December 2007 (article)

Abstract
In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. On the first glance spectral clustering appears slightly mysterious, and it is not obvious to see why it works at all and what it really does. The goal of this tutorial is to give some intuition on those questions. We describe different graph Laplacians and their basic properties, present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed.

ei

PDF PDF DOI [BibTex]

2007


PDF PDF DOI [BibTex]


no image
A Tutorial on Kernel Methods for Categorization

Jäkel, F., Schölkopf, B., Wichmann, F.

Journal of Mathematical Psychology, 51(6):343-358, December 2007 (article)

Abstract
The abilities to learn and to categorize are fundamental for cognitive systems, be it animals or machines, and therefore have attracted attention from engineers and psychologists alike. Modern machine learning methods and psychological models of categorization are remarkably similar, partly because these two fields share a common history in artificial neural networks and reinforcement learning. However, machine learning is now an independent and mature field that has moved beyond psychologically or neurally inspired algorithms towards providing foundations for a theory of learning that is rooted in statistics and functional analysis. Much of this research is potentially interesting for psychological theories of learning and categorization but also hardly accessible for psychologists. Here, we provide a tutorial introduction to a popular class of machine learning tools, called kernel methods. These methods are closely related to perceptrons, radial-basis-function neural networks and exemplar theories of catego rization. Recent theoretical advances in machine learning are closely tied to the idea that the similarity of patterns can be encapsulated in a positive definite kernel. Such a positive definite kernel can define a reproducing kernel Hilbert space which allows one to use powerful tools from functional analysis for the analysis of learning algorithms. We give basic explanations of some key concepts—the so-called kernel trick, the representer theorem and regularization—which may open up the possibility that insights from machine learning can feed back into psychology.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Accurate Splice site Prediction Using Support Vector Machines

Sonnenburg, S., Schweikert, G., Philips, P., Behr, J., Rätsch, G.

BMC Bioinformatics, 8(Supplement 10):1-16, December 2007 (article)

Abstract
Background: For splice site recognition, one has to solve two classification problems: discriminating true from decoy splice sites for both acceptor and donor sites. Gene finding systems typically rely on Markov Chains to solve these tasks. Results: In this work we consider Support Vector Machines for splice site recognition. We employ the so-called weighted degree kernel which turns out well suited for this task, as we will illustrate in several experiments where we compare its prediction accuracy with that of recently proposed systems. We apply our method to the genome-wide recognition of splice sites in Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, Danio rerio, and Homo sapiens. Our performance estimates indicate that splice sites can be recognized very accurately in these genomes and that our method outperforms many other methods including Markov Chains, GeneSplicer and SpliceMachine. We provide genome-wide predictions of splice sites and a stand-alone prediction tool ready to be used for incorporation in a gene finder. Availability: Data, splits, additional information on the model selection, the whole genome predictions, as well as the stand-alone prediction tool are available for download at http:// www.fml.mpg.de/raetsch/projects/splice.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Towards compliant humanoids: an experimental assessment of suitable task space position/orientation controllers

Nakanishi, J., Mistry, M., Peters, J., Schaal, S.

In IROS 2007, 2007, pages: 2520-2527, (Editors: Grant, E. , T. C. Henderson), IEEE Service Center, Piscataway, NJ, USA, IEEE/RSJ International Conference on Intelligent Robots and Systems, November 2007 (inproceedings)

Abstract
Compliant control will be a prerequisite for humanoid robotics if these robots are supposed to work safely and robustly in human and/or dynamic environments. One view of compliant control is that a robot should control a minimal number of degrees-of-freedom (DOFs) directly, i.e., those relevant DOFs for the task, and keep the remaining DOFs maximally compliant, usually in the null space of the task. This view naturally leads to task space control. However, surprisingly few implementations of task space control can be found in actual humanoid robots. This paper makes a first step towards assessing the usefulness of task space controllers for humanoids by investigating which choices of controllers are available and what inherent control characteristics they have—this treatment will concern position and orientation control, where the latter is based on a quaternion formulation. Empirical evaluations on an anthropomorphic Sarcos master arm illustrate the robustness of the different controllers as well as the eas e of implementing and tuning them. Our extensive empirical results demonstrate that simpler task space controllers, e.g., classical resolved motion rate control or resolved acceleration control can be quite advantageous in face of inevitable modeling errors in model-based control, and that well chosen formulations are easy to implement and quite robust, such that they are useful for humanoids.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Some Theoretical Aspects of Human Categorization Behavior: Similarity and Generalization

Jäkel, F.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, November 2007, passed with "ausgezeichnet", summa cum laude, published online (phdthesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Statistical Learning Theory Approaches to Clustering

Jegelka, S.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, November 2007 (diplomathesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Performance Stabilization and Improvement in Graph-based Semi-supervised Learning with Ensemble Method and Graph Sharpening

Choi, I., Shin, H.

In Korean Data Mining Society Conference, pages: 257-262, Korean Data Mining Society, Seoul, Korea, Korean Data Mining Society Conference, November 2007 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
A unifying framework for robot control with redundant DOFs

Peters, J., Mistry, M., Udwadia, F., Nakanishi, J., Schaal, S.

Autonomous Robots, 24(1):1-12, October 2007 (article)

Abstract
Recently, Udwadia (Proc. R. Soc. Lond. A 2003:1783–1800, 2003) suggested to derive tracking controllers for mechanical systems with redundant degrees-of-freedom (DOFs) using a generalization of Gauss’ principle of least constraint. This method allows reformulating control problems as a special class of optimal controllers. In this paper, we take this line of reasoning one step further and demonstrate that several well-known and also novel nonlinear robot control laws can be derived from this generic methodology. We show experimental verifications on a Sarcos Master Arm robot for some of the derived controllers. The suggested approach offers a promising unification and simplification of nonlinear control law design for robots obeying rigid body dynamics equations, both with or without external constraints, with over-actuation or underactuation, as well as open-chain and closed-chain kinematics.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
The Need for Open Source Software in Machine Learning

Sonnenburg, S., Braun, M., Ong, C., Bengio, S., Bottou, L., Holmes, G., LeCun, Y., Müller, K., Pereira, F., Rasmussen, C., Rätsch, G., Schölkopf, B., Smola, A., Vincent, P., Weston, J., Williamson, R.

Journal of Machine Learning Research, 8, pages: 2443-2466, October 2007 (article)

Abstract
Open source tools have recently reached a level of maturity which makes them suitable for building large-scale real-world systems. At the same time, the field of machine learning has developed a large body of powerful learning algorithms for diverse applications. However, the true potential of these methods is not realized, since existing implementations are not openly shared, resulting in software with low usability, and weak interoperability. We argue that this situation can be significantly improved by increasing incentives for researchers to publish their software under an open source model. Additionally, we outline the problems authors are faced with when trying to publish algorithmic implementations of machine learning methods. We believe that a resource of peer reviewed software accompanied by short articles would be highly valuable to both the machine learning and the general scientific community.

ei

PDF Web [BibTex]

PDF Web [BibTex]