Header logo is


2017


no image
Evaluation of a Vibrotactile Simulator for Dental Caries Detection

Kuchenbecker, K. J., Parajon, R., Maggio, M. P.

Simulation in Healthcare, 12(3):148-156, June 2017 (article)

hi

DOI [BibTex]

2017


DOI [BibTex]


Thumb xl image toc
Propulsion and Chemotaxis in Bacteria-Driven Microswimmers

Zhuang, J., Park, B., Sitti, M.

Advanced Science, 4(9):1700109, May 2017 (article)

Abstract
Despite the large body of experimental work recently on biohybrid microsystems, few studies have focused on theoretical modeling of such systems, which is essential to understand their underlying functioning mechanisms and hence design them optimally for a given application task. Therefore, this study focuses on developing a mathematical model to describe the 3D motion and chemotaxis of a type of widely studied biohybrid microswimmer, where spherical microbeads are driven by multiple attached bacteria. The model is developed based on the biophysical observations of the experimental system and is validated by comparing the model simulation with experimental 3D swimming trajectories and other motility characteristics, including mean squared displacement, speed, diffusivity, and turn angle. The chemotaxis modeling results of the microswimmers also agree well with the experiments, where a collective chemotactic behavior among multiple bacteria is observed. The simulation result implies that such collective chemotaxis behavior is due to a synchronized signaling pathway across the bacteria attached to the same microswimmer. Furthermore, the dependencies of the motility and chemotaxis of the microswimmers on certain system parameters, such as the chemoattractant concentration gradient, swimmer body size, and number of attached bacteria, toward an optimized design of such biohybrid system are studied. The optimized microswimmers would be used in targeted cargo, e.g., drug, imaging agent, gene, and RNA, transport and delivery inside the stagnant or low-velocity fluids of the human body as one of their potential biomedical applications.

pi

DOI Project Page [BibTex]


Thumb xl image toc
Dynamic and programmable self-assembly of micro-rafts at the air-water interface

Wang, W., Giltinan, J., Zakharchenko, S., Sitti, M.

Science Advances, 3(5):e1602522, American Association for the Advancement of Science, May 2017 (article)

Abstract
Dynamic self-assembled material systems constantly consume energy to maintain their spatiotemporal structures and functions. Programmable self-assembly translates information from individual parts to the collective whole. Combining dynamic and programmable self-assembly in a single platform opens up the possibilities to investigate both types of self-assembly simultaneously and to explore their synergy. This task is challenging because of the difficulty in finding suitable interactions that are both dissipative and programmable. We present a dynamic and programmable self-assembling material system consisting of spinning at the air-water interface circular magnetic micro-rafts of radius 50 μm and with cosinusoidal edge-height profiles. The cosinusoidal edge-height profiles not only create a net dissipative capillary repulsion that is sustained by continuous torque input but also enable directional assembly of micro-rafts. We uncover the layered arrangement of micro-rafts in the patterns formed by dynamic self-assembly and offer mechanistic insights through a physical model and geometric analysis. Furthermore, we demonstrate programmable self-assembly and show that a 4-fold rotational symmetry encoded in individual micro-rafts translates into 90° bending angles and square-based tiling in the assembled structures of micro-rafts. We anticipate that our dynamic and programmable material system will serve as a model system for studying nonequilibrium dynamics and statistical mechanics in the future

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl emthy 01
Presentation of functional groups on self-assembled supramolecular peptide nanofibers mimicking glycosaminoglycans for directed mesenchymal stem cell differentiation

Yasa, O., Uysal, O., Ekiz, M. S., Guler, M. O., Tekinay, A. B.

J. Mater. Chem. B, 5, pages: 4890-4900, The Royal Society of Chemistry, May 2017 (article)

Abstract
Organizational complexity and functional diversity of the extracellular matrix regulate cellular behaviors. The extracellular matrix is composed of various proteins in the form of proteoglycans{,} glycoproteins{,} and nanofibers whose types and combinations change depending on the tissue type. Proteoglycans{,} which are proteins that are covalently attached to glycosaminoglycans{,} contribute to the complexity of the microenvironment of the cells. The sulfation degree of the glycosaminoglycans is an important and distinct feature at specific developmental stages and tissue types. Peptide amphiphile nanofibers can mimic natural glycosaminoglycans and/or proteoglycans{,} and they form a synthetic nanofibrous microenvironment where cells can proliferate and differentiate towards different lineages. In this study{,} peptide nanofibers were used to provide varying degrees of sulfonation mimicking the natural glycosaminoglycans by forming a microenvironment for the survival and differentiation of stem cells. The effects of glucose{,} carboxylate{,} and sulfonate groups on the peptide nanofibers were investigated by considering the changes in the differentiation profiles of rat mesenchymal stem cells in the absence of any specific differentiation inducers in the culture medium. The results showed that a higher sulfonate-to-glucose ratio is associated with adipogenic differentiation and a higher carboxylate-to-glucose ratio is associated with osteochondrogenic differentiation of the rat mesenchymal stem cells. Overall{,} these results demonstrate that supramolecular peptide nanosystems can be used to understand the fine-tunings of the extracellular matrix such as sulfation profile on specific cell types.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl drotlef et al 2017 advanced materials
Bioinspired Composite Microfibers for Skin Adhesion and Signal Amplification of Wearable Sensors

Drotlef, D., Amjadi, M., Yunusa, M., Sitti, M.

Advanced Materials, 29(28):1701353, May 2017, Back Cover (article)

Abstract
A facile approach is proposed for superior conformation and adhesion of wearable sensors to dry and wet skin. Bioinspired skin-adhesive films are composed of elastomeric microfibers decorated with conformal and mushroom-shaped vinylsiloxane tips. Strong skin adhesion is achieved by crosslinking the viscous vinylsiloxane tips directly on the skin surface. Furthermore, composite microfibrillar adhesive films possess a high adhesion strength of 18 kPa due to the excellent shape adaptation of the vinylsiloxane tips to the multiscale roughness of the skin. As a utility of the skin-adhesive films in wearable-device applications, they are integrated with wearable strain sensors for respiratory and heart-rate monitoring. The signal-to-noise ratio of the strain sensor is significantly improved to 59.7 because of the considerable signal amplification of microfibrillar skin-adhesive films.

pi

DOI [BibTex]


Thumb xl mostaghaci et al 2017 advanced science
Bioadhesive Bacterial Microswimmers for Targeted Drug Delivery in the Urinary and Gastrointestinal Tracts

Mostaghaci, B., Yasa, O., Zhuang, J., Sitti, M.

Advanced Science, 4(6):1700058, May 2017 (article)

Abstract
Bacteria-driven biohybrid microswimmers (bacteriabots), which integrate motile bacterial cells and functional synthetic cargo parts (e.g., microparticles encapsulating drug), are recently studied for targeted drug delivery. However, adhesion of such bacteriabots to the tissues on the site of a disease (which can increase the drug delivery efficiency) is not studied yet. Here, this paper proposes an approach to attach bacteriabots to certain types of epithelial cells (expressing mannose on the membrane), based on the affinity between lectin molecules on the tip of bacterial type I pili and mannose molecules on the epithelial cells. It is shown that the bacteria can anchor their cargo particles to mannose-functionalized surfaces and mannose-expressing cells (ATCC HTB-9) using the lectin–mannose bond. The attachment mechanism is confirmed by comparing the adhesion of bacteriabots fabricated from bacterial strains with or without type I pili to mannose-covered surfaces and cells. The proposed bioadhesive motile system can be further improved by expressing more specific adhesion moieties on the membrane of the bacteria.

pi

DOI Project Page [BibTex]


Thumb xl image toc
Six Degree-of-Freedom Localization of Endoscopic Capsule Robots using Recurrent Neural Networks embedded into a Convolutional Neural Network

Turan, M., Abdullah, A., Jamiruddin, R., Araujo, H., Konukoglu, E., Sitti, M.

arXiv preprint arXiv:1705.06196, May 2017 (article)

Abstract
Since its development, ingestible wireless endoscopy is considered to be a painless diagnostic method to detect a number of diseases inside GI tract. Medical related engineering companies have made significant improvements in this technology in last decade; however, some major limitations still residue. Localization of the next generation steerable endoscopic capsule robot in six degreeof-freedom (DoF) and active motion control are some of these limitations. The significance of localization capability concerns with the doctors correct diagnosis of the disease area. This paper presents a very robust 6-DoF localization method based on supervised training of an architecture consisting of recurrent networks (RNN) embedded into a convolutional neural network (CNN) to make use of both just-in-moment information obtained by CNN and correlative information across frames obtained by RNN. To our knowledge, our idea of embedding RNNs into a CNN architecture is for the first time proposed in literature. The experimental results show that the proposed RNN-in-CNN architecture performs very well for endoscopic capsule robot localization in cases vignetting, reflection distortions, noise, sudden camera movements and lack of distinguishable features.

pi

DOI Project Page [BibTex]


Thumb xl publications toc
Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces

Song, S., Drotlef, D., Majidi, C., Sitti, M.

Proceedings of the National Academy of Sciences, 114(22):E4344–E4353, National Acad Sciences, May 2017 (article)

Abstract
For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ∼26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad.

pi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl image toc
A Non-Rigid Map Fusion-Based RGB-Depth SLAM Method for Endoscopic Capsule Robots

Turan, M., Almalioglu, Y., Araujo, H., Konukoglu, E., Sitti, M.

arXiv preprint arXiv:1705.05444, May 2017 (article)

Abstract
In the gastrointestinal (GI) tract endoscopy field, ingestible wireless capsule endoscopy is considered as a minimally invasive novel diagnostic technology to inspect the entire GI tract and to diagnose various diseases and pathologies. Since the development of this technology, medical device companies and many groups have made significant progress to turn such passive capsule endoscopes into robotic active capsule endoscopes to achieve almost all functions of current active flexible endoscopes. However, the use of robotic capsule endoscopy still has some challenges. One such challenge is the precise localization of such active devices in 3D world, which is essential for a precise three-dimensional (3D) mapping of the inner organ. A reliable 3D map of the explored inner organ could assist the doctors to make more intuitive and correct diagnosis. In this paper, we propose to our knowledge for the first time in literature a visual simultaneous localization and mapping (SLAM) method specifically developed for endoscopic capsule robots. The proposed RGB-Depth SLAM method is capable of capturing comprehensive dense globally consistent surfel-based maps of the inner organs explored by an endoscopic capsule robot in real time. This is achieved by using dense frame-to-model camera tracking and windowed surfelbased fusion coupled with frequent model refinement through non-rigid surface deformations.

pi

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb xl hydrophobic toc
Hydrophobic pinning with copper nanowhiskers leads to bactericidal properties

Singh, A. V., Baylan, S., Park, B., Richter, G., Sitti, M.

PloS One, 12(4):e0175428, Public Library of Science, April 2017 (article)

Abstract
The considerable morbidity associated with hospitalized patients and clinics in developed countries due to biofilm formation on biomedical implants and surgical instruments is a heavy economic burden. An alternative to chemically treated surfaces for bactericidal activity started emerging from micro/nanoscale topographical cues in the last decade. Here, we demonstrate a putative antibacterial surface using copper nanowhiskers deposited by molecular beam epitaxy. Furthermore, the control of biological response is based on hydrophobic pinning of water droplets in the Wenzel regime, causing mechanical injury and cell death. Scanning electron microscopy images revealed the details of the surface morphology and non-contact mode laser scanning of the surface revealed the microtopography-associated quantitative parameters. Introducing the bacterial culture over nanowhiskers produces mechanical injury to cells, leading to a reduction in cell density over time due to local pinning of culture medium to whisker surfaces. Extended culture to 72 hours to observe biofilm formation revealed biofilm inhibition with scattered microcolonies and significantly reduced biovolume on nanowhiskers. Therefore, surfaces patterned with copper nanowhiskers can serve as potential antibiofilm surfaces. The topography-based antibacterial surfaces introduce a novel prospect in developing mechanoresponsive nanobiomaterials to reduce the risk of medical device biofilm-associated infections, contrary to chemical leaching of copper as a traditional bactericidal agent.

pi

link (url) [BibTex]

link (url) [BibTex]


Thumb xl fig  quali  arm
Probabilistic Articulated Real-Time Tracking for Robot Manipulation

(Best Paper of RA-L 2017, Finalist of Best Robotic Vision Paper Award of ICRA 2017)

Garcia Cifuentes, C., Issac, J., Wüthrich, M., Schaal, S., Bohg, J.

IEEE Robotics and Automation Letters (RA-L), 2(2):577-584, April 2017 (article)

Abstract
We propose a probabilistic filtering method which fuses joint measurements with depth images to yield a precise, real-time estimate of the end-effector pose in the camera frame. This avoids the need for frame transformations when using it in combination with visual object tracking methods. Precision is achieved by modeling and correcting biases in the joint measurements as well as inaccuracies in the robot model, such as poor extrinsic camera calibration. We make our method computationally efficient through a principled combination of Kalman filtering of the joint measurements and asynchronous depth-image updates based on the Coordinate Particle Filter. We quantitatively evaluate our approach on a dataset recorded from a real robotic platform, annotated with ground truth from a motion capture system. We show that our approach is robust and accurate even under challenging conditions such as fast motion, significant and long-term occlusions, and time-varying biases. We release the dataset along with open-source code of our approach to allow for quantitative comparison with alternative approaches.

am

arXiv video code and dataset video PDF DOI Project Page [BibTex]


Thumb xl toc image
Soft 3D-Printed Phantom of the Human Kidney with Collecting System

Adams, F., Qiu, T., Mark, A., Fritz, B., Kramer, L., Schlager, D., Wetterauer, U., Miernik, A., Fischer, P.

Ann. of Biomed. Eng., 45(4):963-972, April 2017 (article)

Abstract
Organ models are used for planning and simulation of operations, developing new surgical instruments, and training purposes. There is a substantial demand for in vitro organ phantoms, especially in urological surgery. Animal models and existing simulator systems poorly mimic the detailed morphology and the physical properties of human organs. In this paper, we report a novel fabrication process to make a human kidney phantom with realistic anatomical structures and physical properties. The detailed anatomical structure was directly acquired from high resolution CT data sets of human cadaveric kidneys. The soft phantoms were constructed using a novel technique that combines 3D wax printing and polymer molding. Anatomical details and material properties of the phantoms were validated in detail by CT scan, ultrasound, and endoscopy. CT reconstruction, ultrasound examination, and endoscopy showed that the designed phantom mimics a real kidney's detailed anatomy and correctly corresponds to the targeted human cadaver's upper urinary tract. Soft materials with a tensile modulus of 0.8-1.5 MPa as well as biocompatible hydrogels were used to mimic human kidney tissues. We developed a method of constructing 3D organ models from medical imaging data using a 3D wax printing and molding process. This method is cost-effective means for obtaining a reproducible and robust model suitable for surgical simulation and training purposes.

pf

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Guiding Trajectory Optimization by Demonstrated Distributions

Osa, T., Ghalamzan E., A. M., Stolkin, R., Lioutikov, R., Peters, J., Neumann, G.

IEEE Robotics and Automation Letters, 2(2):819-826, April 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Whole-body multi-contact motion in humans and humanoids: Advances of the CoDyCo European project

Padois, V., Ivaldi, S., Babic, J., Mistry, M., Peters, J., Nori, F.

Robotics and Autonomous Systems, 90, pages: 97-117, April 2017, Special Issue on New Research Frontiers for Intelligent Autonomous Systems (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl fig1
Chapter 8 - Micro- and nanorobots in Newtonian and biological viscoelastic fluids

Palagi, S., (Walker) Schamel, D., Qiu, T., Fischer, P.

In Microbiorobotics, pages: 133 - 162, 8, Micro and Nano Technologies, Second edition, Elsevier, Boston, March 2017 (incollection)

Abstract
Swimming microorganisms are a source of inspiration for small scale robots that are intended to operate in fluidic environments including complex biomedical fluids. Nature has devised swimming strategies that are effective at small scales and at low Reynolds number. These include the rotary corkscrew motion that, for instance, propels a flagellated bacterial cell, as well as the asymmetric beat of appendages that sperm cells or ciliated protozoa use to move through fluids. These mechanisms can overcome the reciprocity that governs the hydrodynamics at small scale. The complex molecular structure of biologically important fluids presents an additional challenge for the effective propulsion of microrobots. In this chapter it is shown how physical and chemical approaches are essential in realizing engineered abiotic micro- and nanorobots that can move in biomedically important environments. Interestingly, we also describe a microswimmer that is effective in biological viscoelastic fluids that does not have a natural analogue.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl image toc
Biohybrid microtube swimmers driven by single captured bacteria

Stanton, M. M., Park, B., Miguel-López, A., Ma, X., Sitti, M., Sánchez, S.

Small, 13(19), March 2017 (article)

Abstract
Bacteria biohybrids employ the motility and power of swimming bacteria to carry and maneuver microscale particles. They have the potential to perform microdrug and cargo delivery in vivo, but have been limited by poor design, reduced swimming capabilities, and impeded functionality. To address these challenge, motile Escherichia coli are captured inside electropolymerized microtubes, exhibiting the first report of a bacteria microswimmer that does not utilize a spherical particle chassis. Single bacterium becomes partially trapped within the tube and becomes a bioengine to push the microtube though biological media. Microtubes are modified with “smart” material properties for motion control, including a bacteria-attractant polydopamine inner layer, addition of magnetic components for external guidance, and a biochemical kill trigger to cease bacterium swimming on demand. Swimming dynamics of the bacteria biohybrid are quantified by comparing “length of protrusion” of bacteria from the microtubes with respect to changes in angular autocorrelation and swimmer mean squared displacement. The multifunctional microtubular swimmers present a new generation of biocompatible micromotors toward future microbiorobots and minimally invasive medical applications.

pi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Probabilistic Movement Primitives for Coordination of Multiple Human-Robot Collaborative Tasks

Maeda, G., Neumann, G., Ewerton, M., Lioutikov, R., Kroemer, O., Peters, J.

Autonomous Robots, 41(3):593-612, March 2017 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Bioinspired tactile sensor for surface roughness discrimination

Yi, Z., Zhang, Y., Peters, J.

Sensors and Actuators A: Physical, 255, pages: 46-53, March 2017 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Sticky Solution Provides Grip for the First Robotic Pollinator

Amador, G. J., Hu, D. L.

Chem, 2(2):162 - 164, Febuary 2017 (article)

Abstract
Bees, move over. A lily has been pollinated by a remote-controlled flying robot. The robot is hairy, just like a real bee, and sticks to pollen by virtue of an ionic liquid gel, whose fabrication is discussed by Svetlana Chechetka et al. in this issue of Chem.

pi

link (url) DOI [BibTex]


Thumb xl toc image
Pattern formation and collective effects in populations of magnetic microswimmers

Vach, P. J., (Walker) Schamel, D., Fischer, P., Fratzl, P., Faivre, D.

J. of Phys. D: Appl. Phys., 50(11):11LT03, Febuary 2017 (article)

Abstract
Self-propelled particles are one prototype of synthetic active matter used to understand complex biological processes, such as the coordination of movement in bacterial colonies or schools of fishes. Collective patterns such as clusters were observed for such systems, reproducing features of biological organization. However, one limitation of this model is that the synthetic assemblies are made of identical individuals. Here we introduce an active system based on magnetic particles at colloidal scales. We use identical but also randomly-shaped magnetic micropropellers and show that they exhibit dynamic and reversible pattern formation.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl screen shot 2017 06 14 at 2.58.42 pm
Spinal joint compliance and actuation in a simulated bounding quadruped robot

Pouya, S., Khodabakhsh, M., Sproewitz, A., Ijspeert, A.

{Autonomous Robots}, pages: 437–452, Kluwer Academic Publishers, Springer, Dordrecht, New York, NY, Febuary 2017 (article)

dlg

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Thumb xl toc image
On-chip enzymatic microbiofuel cell-powered integrated circuits

Mark, A. G., Suraniti, E., Roche, J., Richter, H., Kuhn, A., Mano, N., Fischer, P.

Lab on a Chip, 17(10):1761-1768, Febuary 2017, Recent HOT Article (article)

Abstract
A variety of diagnostic and therapeutic medical technologies rely on long term implantation of an electronic device to monitor or regulate a patient's condition. One proposed approach to powering these devices is to use a biofuel cell to convert the chemical energy from blood nutrients into electrical current to supply the electronics. We present here an enzymatic microbiofuel cell whose electrodes are directly integrated into a digital electronic circuit. Glucose oxidizing and oxygen reducing enzymes are immobilized on microelectrodes of an application specific integrated circuit (ASIC) using redox hydrogels to produce an enzymatic biofuel cell, capable of harvesting electrical power from just a single droplet of 5 mM glucose solution. Optimisation of the fuel cell voltage and power to match the requirements of the electronics allow self-powered operation of the on-board digital circuitry. This study represents a step towards implantable self-powered electronic devices that gather their energy from physiological fluids.

Recent HOT Article.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Strong Rotational Anisotropies Affect Nonlinear Chiral Metamaterials

Hooper, D. C., Mark, A. G., Kuppe, C., Collins, J. T., Fischer, P., Valev, V. K.

Advanced Materials, 29(13):1605110, January 2017 (article)

Abstract
Masked by rotational anisotropies, the nonlinear chiroptical response of a metamaterial is initially completely inaccessible. Upon rotating the sample the chiral information emerges. These results highlight the need for a general method to extract the true chiral contributions to the nonlinear optical signal, which would be hugely valuable in the present context of increasingly complex chiral meta/nanomaterials.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl image toc
Rubbing Against Blood Clots Using Helical Robots: Modeling and In Vitro Experimental Validation

Khalil, I. S., Tabak, A. F., Sadek, K., Mahdy, D., Hamdi, N., Sitti, M.

IEEE Robotics and Automation Letters, 2(2):927-934, IEEE, January 2017 (article)

Abstract
The risk of side effects from thrombolytic agents can be minimized by using smaller doses, assisted by mechanical rubbing against blood clots using helical robots. Quantifying this observation, we study the influence of rubbing against clots on their removal rate in vitro. First, we present a hydrodynamic model of the helical robot based on the resistive-force theory to investigate the rubbing behavior of the clots using robot driven by two rotating dipole fields. Second, we experimentally evaluate the influence of the rubbing on the removal rate of the blood clots. Not only do we find that the removal rate of mechanical rubbing (-0.56 ± 0.27 mm3 /min) is approximately three times greater than the dissolution rate of chemical lysis using streptokinase (-0.17 ± 0.032 mm3/min), but we also show that this removal rate can be controlled via the rubbing speed of the robot.

pi

DOI [BibTex]

DOI [BibTex]


no image
Nanoscale topographical control of capillary assembly of nanoparticles

Flauraud, V., Mastrangeli, M., Bernasconi, G., Butet, J., Alexander, D., Shahrabi, E., Martin, O., Brugger, J.

Scientific Reports, Nature Nanotechnology, 12, pages: 73-80, January 2017 (article)

Abstract
Predetermined and selective placement of nanoparticles onto large-area substrates with nanometre-scale precision is essential to harness the unique properties of nanoparticle assemblies, in particular for functional optical and electro-optical nanodevices. Unfortunately, such high spatial organization is currently beyond the reach of top-down nanofabrication techniques alone. Here, we demonstrate that topographic features comprising lithographed funnelled traps and auxiliary sidewalls on a solid substrate can deterministically direct the capillary assembly of Au nanorods to attain simultaneous control of position, orientation and interparticle distance at the nanometre level. We report up to 100% assembly yield over centimetre-scale substrates. We achieve this by optimizing the three sequential stages of capillary nanoparticle assembly: insertion of nanorods into the traps, resilience against the receding suspension front and drying of the residual solvent. Finally, using electron energy-loss spectroscopy we characterize the spectral response and near-field properties of spatially programmable Au nanorod dimers, highlighting the opportunities for precise tunability of the plasmonic modes in larger assemblies.

pi

DOI [BibTex]

DOI [BibTex]


no image
Importance of Matching Physical Friction, Hardness, and Texture in Creating Realistic Haptic Virtual Surfaces

Culbertson, H., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 10(1):63-74, January 2017 (article)

hi

[BibTex]


no image
Effects of Grip-Force, Contact, and Acceleration Feedback on a Teleoperated Pick-and-Place Task

Khurshid, R. P., Fitter, N. T., Fedalei, E. A., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 10(1):40-53, January 2017 (article)

hi

[BibTex]

[BibTex]


no image
Multiaxial Polarity Determines Individual Cellular and Nuclear Chirality

Raymond, M. J., Ray, P., Kaur, G., Fredericks, M., Singh, A. V., Wan, L. Q.

Cellular and Molecular Bioengineering, 10(1):63-74, 2017 (article)

Abstract
Intrinsic cell chirality has been implicated in the left--right (LR) asymmetry of embryonic development. Impaired cell chirality could lead to severe birth defects in laterality. Previously, we detected cell chirality with an in vitro micropatterning system. Here, we demonstrate for the first time that chirality can be quantified as the coordination of multiaxial polarization of individual cells and nuclei. Using an object labeling, connected component based method, we characterized cell chirality based on cell and nuclear shape polarization and nuclear positioning of each cell in multicellular patterns of epithelial cells. We found that the cells adopted a LR bias the boundaries by positioning the sharp end towards the leading edge and leaving the nucleus at the rear. This behavior is consistent with the directional migration observed previously on the boundary of micropatterns. Although the nucleus is chirally aligned, it is not strongly biased towards or away from the boundary. As the result of the rear positioning of nuclei, the nuclear positioning has an opposite chirality to that of cell alignment. Overall, our results have revealed deep insights of chiral morphogenesis as the coordination of multiaxial polarization at the cellular and subcellular levels.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Model-based Contextual Policy Search for Data-Efficient Generalization of Robot Skills

Kupcsik, A., Deisenroth, M., Peters, J., Ai Poh, L., Vadakkepat, V., Neumann, G.

Artificial Intelligence, 247, pages: 415-439, 2017, Special Issue on AI and Robotics (article)

ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Anticipatory Action Selection for Human-Robot Table Tennis

Wang, Z., Boularias, A., Mülling, K., Schölkopf, B., Peters, J.

Artificial Intelligence, 247, pages: 399-414, 2017, Special Issue on AI and Robotics (article)

Abstract
Abstract Anticipation can enhance the capability of a robot in its interaction with humans, where the robot predicts the humans' intention for selecting its own action. We present a novel framework of anticipatory action selection for human-robot interaction, which is capable to handle nonlinear and stochastic human behaviors such as table tennis strokes and allows the robot to choose the optimal action based on prediction of the human partner's intention with uncertainty. The presented framework is generic and can be used in many human-robot interaction scenarios, for example, in navigation and human-robot co-manipulation. In this article, we conduct a case study on human-robot table tennis. Due to the limited amount of time for executing hitting movements, a robot usually needs to initiate its hitting movement before the opponent hits the ball, which requires the robot to be anticipatory based on visual observation of the opponent's movement. Previous work on Intention-Driven Dynamics Models (IDDM) allowed the robot to predict the intended target of the opponent. In this article, we address the problem of action selection and optimal timing for initiating a chosen action by formulating the anticipatory action selection as a Partially Observable Markov Decision Process (POMDP), where the transition and observation are modeled by the \{IDDM\} framework. We present two approaches to anticipatory action selection based on the \{POMDP\} formulation, i.e., a model-free policy learning method based on Least-Squares Policy Iteration (LSPI) that employs the \{IDDM\} for belief updates, and a model-based Monte-Carlo Planning (MCP) method, which benefits from the transition and observation model by the IDDM. Experimental results using real data in a simulated environment show the importance of anticipatory action selection, and that \{POMDPs\} are suitable to formulate the anticipatory action selection problem by taking into account the uncertainties in prediction. We also show that existing algorithms for POMDPs, such as \{LSPI\} and MCP, can be applied to substantially improve the robot's performance in its interaction with humans.

am ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
easyGWAS: A Cloud-based Platform for Comparing the Results of Genome-wide Association Studies

Grimm, D., Roqueiro, D., Salome, P., Kleeberger, S., Greshake, B., Zhu, W., Liu, C., Lippert, C., Stegle, O., Schölkopf, B., Weigel, D., Borgwardt, K.

The Plant Cell, 29(1):5-19, 2017 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A Novel Unsupervised Segmentation Approach Quantifies Tumor Tissue Populations Using Multiparametric MRI: First Results with Histological Validation

Katiyar, P., Divine, M. R., Kohlhofer, U., Quintanilla-Martinez, L., Schölkopf, B., Pichler, B. J., Disselhorst, J. A.

Molecular Imaging and Biology, 19(3):391-397, 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl early stopping teaser
Early Stopping Without a Validation Set

Mahsereci, M., Balles, L., Lassner, C., Hennig, P.

arXiv preprint arXiv:1703.09580, 2017 (article)

Abstract
Early stopping is a widely used technique to prevent poor generalization performance when training an over-expressive model by means of gradient-based optimization. To find a good point to halt the optimizer, a common practice is to split the dataset into a training and a smaller validation set to obtain an ongoing estimate of the generalization performance. In this paper we propose a novel early stopping criterion which is based on fast-to-compute, local statistics of the computed gradients and entirely removes the need for a held-out validation set. Our experiments show that this is a viable approach in the setting of least-squares and logistic regression as well as neural networks.

ps pn

link (url) Project Page Project Page [BibTex]


no image
Krylov Subspace Recycling for Fast Iterative Least-Squares in Machine Learning

Roos, F. D., Hennig, P.

arXiv preprint arXiv:1706.00241, 2017 (article)

Abstract
Solving symmetric positive definite linear problems is a fundamental computational task in machine learning. The exact solution, famously, is cubicly expensive in the size of the matrix. To alleviate this problem, several linear-time approximations, such as spectral and inducing-point methods, have been suggested and are now in wide use. These are low-rank approximations that choose the low-rank space a priori and do not refine it over time. While this allows linear cost in the data-set size, it also causes a finite, uncorrected approximation error. Authors from numerical linear algebra have explored ways to iteratively refine such low-rank approximations, at a cost of a small number of matrix-vector multiplications. This idea is particularly interesting in the many situations in machine learning where one has to solve a sequence of related symmetric positive definite linear problems. From the machine learning perspective, such deflation methods can be interpreted as transfer learning of a low-rank approximation across a time-series of numerical tasks. We study the use of such methods for our field. Our empirical results show that, on regression and classification problems of intermediate size, this approach can interpolate between low computational cost and numerical precision.

pn

link (url) Project Page [BibTex]


no image
Minimax Estimation of Kernel Mean Embeddings

Tolstikhin, I., Sriperumbudur, B., Muandet, K.

Journal of Machine Learning Research, 18(86):1-47, 2017 (article)

ei

link (url) Project Page [BibTex]


no image
Kernel Mean Embedding of Distributions: A Review and Beyond

Muandet, K., Fukumizu, K., Sriperumbudur, B., Schölkopf, B.

Foundations and Trends in Machine Learning, 10(1-2):1-141, 2017 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl appealingavatars
Appealing Avatars from 3D Body Scans: Perceptual Effects of Stylization

Fleming, R., Mohler, B. J., Romero, J., Black, M. J., Breidt, M.

In Computer Vision, Imaging and Computer Graphics Theory and Applications: 11th International Joint Conference, VISIGRAPP 2016, Rome, Italy, February 27 – 29, 2016, Revised Selected Papers, pages: 175-196, Springer International Publishing, 2017 (inbook)

Abstract
Using styles derived from existing popular character designs, we present a novel automatic stylization technique for body shape and colour information based on a statistical 3D model of human bodies. We investigate whether such stylized body shapes result in increased perceived appeal with two different experiments: One focuses on body shape alone, the other investigates the additional role of surface colour and lighting. Our results consistently show that the most appealing avatar is a partially stylized one. Importantly, avatars with high stylization or no stylization at all were rated to have the least appeal. The inclusion of colour information and improvements to render quality had no significant effect on the overall perceived appeal of the avatars, and we observe that the body shape primarily drives the change in appeal ratings. For body scans with colour information, we found that a partially stylized avatar was perceived as most appealing.

ps

publisher site pdf DOI [BibTex]

publisher site pdf DOI [BibTex]


no image
Convergence Analysis of Deterministic Kernel-Based Quadrature Rules in Misspecified Settings

Kanagawa, M., Sriperumbudur, B. K., Fukumizu, K.

Arxiv e-prints, arXiv:1709.00147v1 [math.NA], 2017 (article)

Abstract
This paper presents convergence analysis of kernel-based quadrature rules in misspecified settings, focusing on deterministic quadrature in Sobolev spaces. In particular, we deal with misspecified settings where a test integrand is less smooth than a Sobolev RKHS based on which a quadrature rule is constructed. We provide convergence guarantees based on two different assumptions on a quadrature rule: one on quadrature weights, and the other on design points. More precisely, we show that convergence rates can be derived (i) if the sum of absolute weights remains constant (or does not increase quickly), or (ii) if the minimum distance between distance design points does not decrease very quickly. As a consequence of the latter result, we derive a rate of convergence for Bayesian quadrature in misspecified settings. We reveal a condition on design points to make Bayesian quadrature robust to misspecification, and show that, under this condition, it may adaptively achieve the optimal rate of convergence in the Sobolev space of a lesser order (i.e., of the unknown smoothness of a test integrand), under a slightly stronger regularity condition on the integrand.

pn

arXiv [BibTex]

arXiv [BibTex]


no image
Prediction of intention during interaction with iCub with Probabilistic Movement Primitives

Dermy, O., Paraschos, A., Ewerton, M., Charpillet, F., Peters, J., Ivaldi, S.

Frontiers in Robotics and AI, 4, pages: 45, 2017 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Manifold-based multi-objective policy search with sample reuse

Parisi, S., Pirotta, M., Peters, J.

Neurocomputing, 263, pages: 3-14, (Editors: Madalina Drugan, Marco Wiering, Peter Vamplew, and Madhu Chetty), 2017, Special Issue on Multi-Objective Reinforcement Learning (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Robot Learning

Peters, J., Lee, D., Kober, J., Nguyen-Tuong, D., Bagnell, J., Schaal, S.

In Springer Handbook of Robotics, pages: 357-394, 15, 2nd, (Editors: Siciliano, Bruno and Khatib, Oussama), Springer International Publishing, 2017 (inbook)

am ei

Project Page [BibTex]

Project Page [BibTex]


no image
Spectral Clustering predicts tumor tissue heterogeneity using dynamic 18F-FDG PET: a complement to the standard compartmental modeling approach

Katiyar, P., Divine, M. R., Kohlhofer, U., Quintanilla-Martinez, L., Schölkopf, B., Pichler, B. J., Disselhorst, J. A.

Journal of Nuclear Medicine, 58(4):651-657, 2017 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Electroencephalographic identifiers of motor adaptation learning

Ozdenizci, O., Yalcin, M., Erdogan, A., Patoglu, V., Grosse-Wentrup, M., Cetin, M.

Journal of Neural Engineering, 14(4):046027, 2017 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Gene delivery particle engineering strategies for shape-dependent targeting of cells and tissues.

Kozielski, K., Sitti, M.

Current Gene Therapy, 17, 2017 (article)

Abstract
Background: Successful gene delivery requires overcoming both systemic and intracellular obstacles before the nucleic acid cargo can successfully reach its tissue and subcellular target location. Materials & Methods: Non-viral mechanisms to enable targeting while avoiding off-target delivery have arisen via biological, chemical, and physical engineering strategies. Discussion: Herein we will discuss the physical parameters in particle design that promote tissue- and cell-targeted delivery of genetic cargo. We will discuss systemic concerns, such as circulation, tissue localization, and clearance, as well as cell-scale obstacles, such as cellular uptake and nucleic acid packaging. Conclusion: In particular, we will focus on engineering particle shape and size in order to enhance delivery and promote precise targeting. We will also address methods to program or change particle shape in situ using environmentally triggered cues.

pi

DOI [BibTex]


no image
Self-Organized Behavior Generation for Musculoskeletal Robots

Der, R., Martius, G.

Frontiers in Neurorobotics, 11, pages: 8, 2017 (article)

al

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Detecting distortions of peripherally presented letter stimuli under crowded conditions

Wallis, T. S. A., Tobias, S., Bethge, M., Wichmann, F. A.

Attention, Perception, & Psychophysics, 79(3):850-862, 2017 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl image toc
Multi-fractal characterization of bacterial swimming dynamics: a case study on real and simulated Serratia marcescens

Koorehdavoudi, H., Bogdan, P., Wei, G., Marculescu, R., Zhuang, J., Carlsen, R. W., Sitti, M.

Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 473(2203), The Royal Society, 2017 (article)

Abstract
To add to the current state of knowledge about bacterial swimming dynamics, in this paper, we study the fractal swimming dynamics of populations of Serratia marcescens bacteria both in vitro and in silico, while accounting for realistic conditions like volume exclusion, chemical interactions, obstacles and distribution of chemoattractant in the environment. While previous research has shown that bacterial motion is non-ergodic, we demonstrate that, besides the non-ergodicity, the bacterial swimming dynamics is multi-fractal in nature. Finally, we demonstrate that the multi-fractal characteristic of bacterial dynamics is strongly affected by bacterial density and chemoattractant concentration.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl gcpr2017 nugget
Learning to Filter Object Detections

Prokudin, S., Kappler, D., Nowozin, S., Gehler, P.

In Pattern Recognition: 39th German Conference, GCPR 2017, Basel, Switzerland, September 12–15, 2017, Proceedings, pages: 52-62, Springer International Publishing, Cham, 2017 (inbook)

Abstract
Most object detection systems consist of three stages. First, a set of individual hypotheses for object locations is generated using a proposal generating algorithm. Second, a classifier scores every generated hypothesis independently to obtain a multi-class prediction. Finally, all scored hypotheses are filtered via a non-differentiable and decoupled non-maximum suppression (NMS) post-processing step. In this paper, we propose a filtering network (FNet), a method which replaces NMS with a differentiable neural network that allows joint reasoning and re-scoring of the generated set of hypotheses per image. This formulation enables end-to-end training of the full object detection pipeline. First, we demonstrate that FNet, a feed-forward network architecture, is able to mimic NMS decisions, despite the sequential nature of NMS. We further analyze NMS failures and propose a loss formulation that is better aligned with the mean average precision (mAP) evaluation metric. We evaluate FNet on several standard detection datasets. Results surpass standard NMS on highly occluded settings of a synthetic overlapping MNIST dataset and show competitive behavior on PascalVOC2007 and KITTI detection benchmarks.

ps

Paper link (url) DOI Project Page [BibTex]

Paper link (url) DOI Project Page [BibTex]


Thumb xl comp 5d wbkgng copy
Microemulsion-Based Soft Bacteria-Driven Microswimmers for Active Cargo Delivery

Singh, A. V., Hosseinidoust, Z., Park, B., Yasa, O., Sitti, M.

ACS Nano, 0(0):null, 2017, PMID: 28858477 (article)

Abstract
Biohybrid cell-driven microsystems offer unparalleled possibilities for realization of soft microrobots at the micron scale. Here, we introduce a bacteria-driven microswimmer that combines the active locomotion and sensing capabilities of bacteria with the desirable encapsulation and viscoelastic properties of a soft double-micelle microemulsion for active transport and delivery of cargo (e.g., imaging agents, genes, and drugs) to living cells. Quasi-monodisperse double emulsions were synthesized with an aqueous core that encapsulated the fluorescence imaging agents, as a proof-of-concept cargo in this study, and an outer oil shell that was functionalized with streptavidin for specific and stable attachment of biotin-conjugated Escherichia coli. Motile bacteria effectively propelled the soft microswimmers across a Transwell membrane, actively delivering imaging agents (i.e., dyes) encapsulated inside of the micelles to a monolayer of cultured MCF7 breast cancer and J744A.1 macrophage cells, which enabled real-time, live-cell imaging of cell organelles, namely mitochondria, endoplasmic reticulum, and Golgi body. This in vitro model demonstrates the proof-of-concept feasibility of the proposed soft microswimmers and offers promise for potential biomedical applications in active and/or targeted transport and delivery of imaging agents, drugs, stem cells, siRNA, and therapeutic genes to live tissue in in vitro disease models (e.g., organ-on-a-chip devices) and stagnant or low-flow-velocity fluidic regions of the human body.

pi

link (url) DOI Project Page [BibTex]