Header logo is


2010


no image
Enhanced wet adhesion and shear of elastomeric micro-fiber arrays with mushroom tip geometry and a photopolymerized p (DMA-co-MEA) tip coating

Glass, P., Chung, H., Washburn, N. R., Sitti, M.

Langmuir, 26(22):17357-17362, American Chemical Society, 2010 (article)

pi

Project Page [BibTex]

2010


Project Page [BibTex]


no image
Lateral transport of thermal capillary waves

Smith, T. H. R., Vasilyev, O., Maciolek, A., Schmidt, M.

{Europhysics Letters}, 89(1), 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
The formation and propagation of flux avalanches in tailored MgB2 films

Treiber, S., Albrecht, J.

{New Journal of Physics}, 12, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Direct imaging of current induced magnetic vortex gyration in an asymmetric potential well

Bisig, A., Rhensius, J., Kammerer, M., Curcic, M., Stoll, H., Schütz, G., Van Waeyenberge, B., Chou, K. W., Tyliszczak, T., Heyderman, L. J., Krzyk, S., von Bieren, A., Kläui, M.

{Applied Physics Letters}, 96, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Induced magnetism of carbon atoms at the graphene/Ni(111) interface

Weser, M., Rehder, Y., Horn, K., Sicot, M., Fonin, M., Preobrajenski, A. B., Voloshina, E. N., Goering, E., Dedkov, Y. S.

{Applied Physics Letters}, 96, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Photon counting system for time-resolved experiments in multibunch mode

Puzic, A., Korhonen, T., Kalantari, B., Raabe, J., Quitmann, C., Jüllig, P., Bommer, L., Goll, D., Schütz, G., Wintz, S., Strache, T., Körner, M., Markó, D., Bunce, C., Fassbender, J.

{Synchrotron Radiation News}, 23(2):26-32, 2010 (article)

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Coupling of Fe and uncompensated Mn moments in exchange-biased Fe/MnPd

Brück, S., Macke, S., Goering, E., Ji, X., Zhan, Q., Krishnan, K. M.

{Physical Review B}, 81(13), 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Remarks about spillover and hydrogen adsorption - Comments on the contributions of A.V. Talyzin and R.T. Yang

Hirscher, M.

{Microporous and Mesoporous Materials}, 135, pages: 209-210, 2010 (article)

mms

DOI [BibTex]


no image
Grain boundary ridges and triple lines

Straumal, B. B., Sursaeva, V. G., Baretzky, B.

{Scripta Materialia}, 62(12):924-927, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Expanding micelle nanolithography to the self-assembly of multicomponent core-shell nanoparticles

Mbenkum, B. N., D\’\iaz-Ortiz, A., Gu, L., van Aken, P. A., Schütz, G.

{Journal of the American Chemical Society}, 132(31):10671-10673, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Learning control in robotics – trajectory-based opitimal control techniques

Schaal, S., Atkeson, C. G.

Robotics and Automation Magazine, 17(2):20-29, 2010, clmc (article)

Abstract
In a not too distant future, robots will be a natural part of daily life in human society, providing assistance in many areas ranging from clinical applications, education and care giving, to normal household environments [1]. It is hard to imagine that all possible tasks can be preprogrammed in such robots. Robots need to be able to learn, either by themselves or with the help of human supervision. Additionally, wear and tear on robots in daily use needs to be automatically compensated for, which requires a form of continuous self-calibration, another form of learning. Finally, robots need to react to stochastic and dynamic environments, i.e., they need to learn how to optimally adapt to uncertainty and unforeseen changes. Robot learning is going to be a key ingredient for the future of autonomous robots. While robot learning covers a rather large field, from learning to perceive, to plan, to make decisions, etc., we will focus this review on topics of learning control, in particular, as it is concerned with learning control in simulated or actual physical robots. In general, learning control refers to the process of acquiring a control strategy for a particular control system and a particular task by trial and error. Learning control is usually distinguished from adaptive control [2] in that the learning system can have rather general optimization objectivesâ??not just, e.g., minimal tracking errorâ??and is permitted to fail during the process of learning, while adaptive control emphasizes fast convergence without failure. Thus, learning control resembles the way that humans and animals acquire new movement strategies, while adaptive control is a special case of learning control that fulfills stringent performance constraints, e.g., as needed in life-critical systems like airplanes. Learning control has been an active topic of research for at least three decades. However, given the lack of working robots that actually use learning components, more work needs to be done before robot learning will make it beyond the laboratory environment. This article will survey some ongoing and past activities in robot learning to assess where the field stands and where it is going. We will largely focus on nonwheeled robots and less on topics of state estimation, as typically explored in wheeled robots [3]â??6], and we emphasize learning in continuous state-action spaces rather than discrete state-action spaces [7], [8]. We will illustrate the different topics of robot learning with examples from our own research with anthropomorphic and humanoid robots.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Learning, planning, and control for quadruped locomotion over challenging terrain

Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., Schaal, S.

International Journal of Robotics Research, 30(2):236-258, 2010, clmc (article)

Abstract
We present a control architecture for fast quadruped locomotion over rough terrain. We approach the problem by decomposing it into many sub-systems, in which we apply state-of-the-art learning, planning, optimization, and control techniques to achieve robust, fast locomotion. Unique features of our control strategy include: (1) a system that learns optimal foothold choices from expert demonstration using terrain templates, (2) a body trajectory optimizer based on the Zero- Moment Point (ZMP) stability criterion, and (3) a floating-base inverse dynamics controller that, in conjunction with force control, allows for robust, compliant locomotion over unperceived obstacles. We evaluate the performance of our controller by testing it on the LittleDog quadruped robot, over a wide variety of rough terrains of varying difficulty levels. The terrain that the robot was tested on includes rocks, logs, steps, barriers, and gaps, with obstacle sizes up to the leg length of the robot. We demonstrate the generalization ability of this controller by presenting results from testing performed by an independent external test team on terrain that has never been shown to us.

am

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Teleoperated 3-D force feedback from the nanoscale with an atomic force microscope

Onal, C. D., Sitti, M.

IEEE Transactions on nanotechnology, 9(1):46-54, IEEE, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Roll and pitch motion analysis of a biologically inspired quadruped water runner robot

Park, H. S., Floyd, S., Sitti, M.

The International Journal of Robotics Research, 29(10):1281-1297, SAGE Publications Sage UK: London, England, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing

Kim, Seok, Wu, Jian, Carlson, Andrew, Jin, Sung Hun, Kovalsky, Anton, Glass, Paul, Liu, Zhuangjian, Ahmed, Numair, Elgan, Steven L, Chen, Weiqiu, others

Proceedings of the National Academy of Sciences, 107(40):17095-17100, National Acad Sciences, 2010 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Tankbot: A palm-size, tank-like climbing robot using soft elastomer adhesive treads

Unver, O., Sitti, M.

The International Journal of Robotics Research, 29(14):1761-1777, SAGE Publications Sage UK: London, England, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Hydrogen spillover measurements of unbridged and bridged metal-organic frameworks - revisited

Campesi, R., Cuevas, F., Latroche, M., Hirscher, M.

{Physical Chemistry Chemical Physics}, 12, pages: 10457-10459, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Relating Gilbert damping and ultrafast laser-induced demagnetization

Fähnle, M., Seib, J., Illg, C.

{Physical Review B}, 82, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ferromagnetic properties of the Mn-doped nanograined ZnO films

Straumal, B. B., Protasova, S. G., Mazilkin, A. A., Myatiev, A. A., Straumal, P. B., Schütz, G., Goering, E., Baretzky, B.

{Journal of Applied Physics}, 108, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ubiquity of ferromagnetic signals in common diamagnetic oxide crystals

Khalid, M., Setzer, A., Ziese, M., Esquinazi, P., Spemann, D., Pöppl, A., Goering, E.

{Physical Review B}, 81(21), 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Calculation of the Gilbert damping matrix at low scattering rates in Gd

Seib, J., Fähnle, M.

{Physical Review B}, 82, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Swift heavy ions for controlled modification of soft magnetic properties of Fe0.85N0.15 thin film

Gupta, R., Gupta, A., Bhatt, R., Rüffer, R., Avasthi, D. K.

{Journal of Physics: Condensed Matter}, 22(22), 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Note: Aligned deposition and modal characterization of micron and submicron poly (methyl methacyrlate) fiber cantilevers

Nain, A. S., Filiz, S., Burak Ozdoganlar, O., Sitti, M., Amon, C.

Review of Scientific Instruments, 81(1):016102, AIP, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Enhanced adhesion of dopamine methacrylamide elastomers via viscoelasticity tuning

Chung, H., Glass, P., Pothen, J. M., Sitti, M., Washburn, N. R.

Biomacromolecules, 12(2):342-347, American Chemical Society, 2010 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Laterally driven interfaces in the three-dimensional Ising lattice gas

Smith, T. H. R., Vasilyev, O., Maciolek, A., Schmidt, M.

{Physical Review E}, 82(2), 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Samarium-cobalt 2:17 magnets: identifying Smn+1Co5n-1 phases stabilized by Zr

Stadelmaier, H. H., Kronmüller, H., Goll, D.

{Scripta Materialia}, 63, pages: 843-846, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Planar metamaterial analogue of electromagnetically induced transparancy for plasmonic sensing

Liu, N., Weiss, T., Mesch, M., Langguth, L., Eigenthaler, U., Hirscher, M., Sönnichsen, C., Giessen, H.

{Nano Letters}, 10, pages: 1103-1107, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Explaining the paradoxical diversity of ultrafast last-induced demagnetization

Koopmans, B., Malinowski, G., Dalla Longa, F., Steiauf, D., Fähnle, M., Roth, T., Cinchetti, M., Aeschlimann, M.

{Nature Materials}, 9, pages: 259-265, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
A high heat of adsorption for hydrogen in magnesium formate

Schmitz, B., Krkljus, I., Leung, E., Höffken, H. W., Müller, U., Hirscher, M.

{ChemSusChem}, 3, pages: 758-761, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Force induced destabilization of adhesion complexes at defined integrin spacings on nanostructured surfaces

de Beer, A. G. F., Cavalcanti-Adam, E. A., Majer, G., López-Garc\’\ia, M., Kessler, H., Spatz, J. P.

{Physical Review E}, 81, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Anisotropic damping of the magnetization dynamics in Ni, Co, and Fe

Gilmore, K., Stiles, M. D., Seib, J., Steiauf, D., Fähnle, M.

{Physical Review B}, 81, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Influence of [Mo6Br8F6]2- cluster inclusion within the mesoporous solid MIL-101 on hydrogen storage performance

Dybtsev, D., Serre, C., Schmitz, B., Panella, B., Hirscher, M., Latroche, M., Llewellyn, P. L., Cordier, S., Molard, Y., Haouas, M., Taulelle, F., Férey, G.

{Langmuir}, 26(13):11283-11290, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Grain boundary layers in nanocrystalline ferromagnetic zinc oxide

Straumal, B. B., Myatiev, A. A., Straumal, P. B., Mazilkin, A. A., Protasova, S. G., Goering, E., Baretzky, B.

{JETP Letters}, 92(6):396-400, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]

2009


no image
Learning an Interactive Segmentation System

Nickisch, H., Kohli, P., Rother, C.

Max Planck Institute for Biological Cybernetics, December 2009 (techreport)

Abstract
Many successful applications of computer vision to image or video manipulation are interactive by nature. However, parameters of such systems are often trained neglecting the user. Traditionally, interactive systems have been treated in the same manner as their fully automatic counterparts. Their performance is evaluated by computing the accuracy of their solutions under some fixed set of user interactions. This paper proposes a new evaluation and learning method which brings the user in the loop. It is based on the use of an active robot user - a simulated model of a human user. We show how this approach can be used to evaluate and learn parameters of state-of-the-art interactive segmentation systems. We also show how simulated user models can be integrated into the popular max-margin method for parameter learning and propose an algorithm to solve the resulting optimisation problem.

ei

Web [BibTex]

2009


Web [BibTex]


no image
Efficient Subwindow Search: A Branch and Bound Framework for Object Localization

Lampert, C., Blaschko, M., Hofmann, T.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(12):2129-2142, December 2009 (article)

Abstract
Most successful object recognition systems rely on binary classification, deciding only if an object is present or not, but not providing information on the actual object location. To estimate the object‘s location, one can take a sliding window approach, but this strongly increases the computational cost because the classifier or similarity function has to be evaluated over a large set of candidate subwindows. In this paper, we propose a simple yet powerful branch and bound scheme that allows efficient maximization of a large class of quality functions over all possible subimages. It converges to a globally optimal solution typically in linear or even sublinear time, in contrast to the quadratic scaling of exhaustive or sliding window search. We show how our method is applicable to different object detection and image retrieval scenarios. The achieved speedup allows the use of classifiers for localization that formerly were considered too slow for this task, such as SVMs with a spatial pyramid kernel or nearest-neighbor classifiers based on the chi^2 distance. We demonstrate state-of-the-art localization performance of the resulting systems on the UIUC Cars data set, the PASCAL VOC 2006 data set, and in the PASCAL VOC 2007 competition.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Generation of three-dimensional random rotations in fitting and matching problems

Habeck, M.

Computational Statistics, 24(4):719-731, December 2009 (article)

Abstract
An algorithm is developed to generate random rotations in three-dimensional space that follow a probability distribution arising in fitting and matching problems. The rotation matrices are orthogonally transformed into an optimal basis and then parameterized using Euler angles. The conditional distributions of the three Euler angles have a very simple form: the two azimuthal angles can be decoupled by sampling their sum and difference from a von Mises distribution; the cosine of the polar angle is exponentially distributed and thus straighforward to generate. Simulation results are shown and demonstrate the effectiveness of the method. The algorithm is compared to other methods for generating random rotations such as a random walk Metropolis scheme and a Gibbs sampling algorithm recently introduced by Green and Mardia. Finally, the algorithm is applied to a probabilistic version of the Procrustes problem of fitting two point sets and applied in the context of protein structure superposition.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Adaptive Importance Sampling for Value Function Approximation in Off-policy Reinforcement Learning

Hachiya, H., Akiyama, T., Sugiyama, M., Peters, J.

Neural Networks, 22(10):1399-1410, December 2009 (article)

Abstract
Off-policy reinforcement learning is aimed at efficiently using data samples gathered from a policy that is different from the currently optimized policy. A common approach is to use importance sampling techniques for compensating for the bias of value function estimators caused by the difference between the data-sampling policy and the target policy. However, existing off-policy methods often do not take the variance of the value function estimators explicitly into account and therefore their performance tends to be unstable. To cope with this problem, we propose using an adaptive importance sampling technique which allows us to actively control the trade-off between bias and variance. We further provide a method for optimally determining the trade-off parameter based on a variant of cross-validation. We demonstrate the usefulness of the proposed approach through simulations.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Guest editorial: special issue on structured prediction

Parker, C., Altun, Y., Tadepalli, P.

Machine Learning, 77(2-3):161-164, December 2009 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Structured prediction by joint kernel support estimation

Lampert, CH., Blaschko, MB.

Machine Learning, 77(2-3):249-269, December 2009 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
A note on ethical aspects of BCI

Haselager, P., Vlek, R., Hill, J., Nijboer, F.

Neural Networks, 22(9):1352-1357, November 2009 (article)

Abstract
This paper focuses on ethical aspects of BCI, as a research and a clinical tool, that are challenging for practitioners currently working in the field. Specifically, the difficulties involved in acquiring informed consent from locked-in patients are investigated, in combination with an analysis of the shared moral responsibility in BCI teams, and the complications encountered in establishing effective communication with media.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Model Learning with Local Gaussian Process Regression

Nguyen-Tuong, D., Seeger, M., Peters, J.

Advanced Robotics, 23(15):2015-2034, November 2009 (article)

Abstract
Precise models of robot inverse dynamics allow the design of significantly more accurate, energy-efficient and compliant robot control. However, in some cases the accuracy of rigid-body models does not suffice for sound control performance due to unmodeled nonlinearities arising from hydraulic cable dynamics, complex friction or actuator dynamics. In such cases, estimating the inverse dynamics model from measured data poses an interesting alternative. Nonparametric regression methods, such as Gaussian process regression (GPR) or locally weighted projection regression (LWPR), are not as restrictive as parametric models and, thus, offer a more flexible framework for approximating unknown nonlinearities. In this paper, we propose a local approximation to the standard GPR, called local GPR (LGP), for real-time model online learning by combining the strengths of both regression methods, i.e., the high accuracy of GPR and the fast speed of LWPR. The approach is shown to have competitive learning performance for hig h-dimensional data while being sufficiently fast for real-time learning. The effectiveness of LGP is exhibited by a comparison with the state-of-the-art regression techniques, such as GPR, LWPR and ν-support vector regression. The applicability of the proposed LGP method is demonstrated by real-time online learning of the inverse dynamics model for robot model-based control on a Barrett WAM robot arm.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
An Incremental GEM Framework for Multiframe Blind Deconvolution, Super-Resolution, and Saturation Correction

Harmeling, S., Sra, S., Hirsch, M., Schölkopf, B.

(187), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2009 (techreport)

Abstract
We develop an incremental generalized expectation maximization (GEM) framework to model the multiframe blind deconvolution problem. A simplistic version of this problem was recently studied by Harmeling etal~cite{harmeling09}. We solve a more realistic version of this problem which includes the following major features: (i) super-resolution ability emph{despite} noise and unknown blurring; (ii) saturation-correction, i.e., handling of overexposed pixels that can otherwise confound the image processing; and (iii) simultaneous handling of color channels. These features are seamlessly integrated into our incremental GEM framework to yield simple but efficient multiframe blind deconvolution algorithms. We present technical details concerning critical steps of our algorithms, especially to highlight how all operations can be written using matrix-vector multiplications. We apply our algorithm to real-world images from astronomy and super resolution tasks. Our experimental results show that our methods yield improve d resolution and deconvolution at the same time.

ei

PDF [BibTex]

PDF [BibTex]


no image
Efficient Filter Flow for Space-Variant Multiframe Blind Deconvolution

Hirsch, M., Sra, S., Schölkopf, B., Harmeling, S.

(188), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2009 (techreport)

Abstract
Ultimately being motivated by facilitating space-variant blind deconvolution, we present a class of linear transformations, that are expressive enough for space-variant filters, but at the same time especially designed for efficient matrix-vector-multiplications. Successful results on astronomical imaging through atmospheric turbulences and on noisy magnetic resonance images of constantly moving objects demonstrate the practical significance of our approach.

ei

PDF [BibTex]

PDF [BibTex]


no image
Inferring textual entailment with a probabilistically sound calculus

Harmeling, S.

Natural Language Engineering, 15(4):459-477, October 2009 (article)

Abstract
We introduce a system for textual entailment that is based on a probabilistic model of entailment. The model is defined using a calculus of transformations on dependency trees, which is characterized by the fact that derivations in that calculus preserve the truth only with a certain probability. The calculus is successfully evaluated on the datasets of the PASCAL Challenge on Recognizing Textual Entailment.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Modeling and Visualizing Uncertainty in Gene Expression Clusters using Dirichlet Process Mixtures

Rasmussen, CE., de la Cruz, BJ., Ghahramani, Z., Wild, DL.

IEEE/ACM Transactions on Computational Biology and Bioinformatics, 6(4):615-628, October 2009 (article)

Abstract
Although the use of clustering methods has rapidly become one of the standard computational approaches in the literature of microarray gene expression data, little attention has been paid to uncertainty in the results obtained. Dirichlet process mixture models provide a non-parametric Bayesian alternative to the bootstrap approach to modeling uncertainty in gene expression clustering. Most previously published applications of Bayesian model based clustering methods have been to short time series data. In this paper we present a case study of the application of non-parametric Bayesian clustering methods to the clustering of high-dimensional non-time series gene expression data using full Gaussian covariances. We use the probability that two genes belong to the same cluster in a Dirichlet process mixture model as a measure of the similarity of these gene expression profiles. Conversely, this probability can be used to define a dissimilarity measure, which, for the purposes of visualization, can be input to one of the standard linkage algorithms used for hierarchical clustering. Biologically plausible results are obtained from the Rosetta compendium of expression profiles which extend previously published cluster analyses of this data.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Thermodynamic efficiency of information and heat flow

Allahverdyan, A., Janzing, D., Mahler, G.

Journal of Statistical Mechanics: Theory and Experiment, 2009(09):P09011, September 2009 (article)

Abstract
A basic task of information processing is information transfer (flow). P0 Here we study a pair of Brownian particles each coupled to a thermal bath at temperatures T1 and T2 . The information flow in such a system is defined via the time-shifted mutual information. The information flow nullifies at equilibrium, and its efficiency is defined as the ratio of the flow to the total entropy production in the system. For a stationary state the information flows from higher to lower temperatures, and its efficiency is bounded from above by (max[T1 , T2 ])/(|T1 − T2 |). This upper bound is imposed by the second law and it quantifies the thermodynamic cost for information flow in the present class of systems. It can be reached in the adiabatic situation, where the particles have widely different characteristic times. The efficiency of heat flow—defined as the heat flow over the total amount of dissipated heat—is limited from above by the same factor. There is a complementarity between heat and information flow: the set-up which is most efficient for the former is the least efficient for the latter and vice versa. The above bound for the efficiency can be (transiently) overcome in certain non-stationary situations, but the efficiency is still limited from above. We study yet another measure of information processing (transfer entropy) proposed in the literature. Though this measure does not require any thermodynamic cost, the information flow and transfer entropy are shown to be intimately related for stationary states.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Does Cognitive Science Need Kernels?

Jäkel, F., Schölkopf, B., Wichmann, F.

Trends in Cognitive Sciences, 13(9):381-388, September 2009 (article)

Abstract
Kernel methods are among the most successful tools in machine learning and are used in challenging data analysis problems in many disciplines. Here we provide examples where kernel methods have proven to be powerful tools for analyzing behavioral data, especially for identifying features in categorization experiments. We also demonstrate that kernel methods relate to perceptrons and exemplar models of categorization. Hence, we argue that kernel methods have neural and psychological plausibility, and theoretical results concerning their behavior are therefore potentially relevant for human category learning. In particular, we believe kernel methods have the potential to provide explanations ranging from the implementational via the algorithmic to the computational level.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Robot Learning

Peters, J., Morimoto, J., Tedrake, R., Roy, N.

IEEE Robotics and Automation Magazine, 16(3):19-20, September 2009 (article)

Abstract
Creating autonomous robots that can learn to act in unpredictable environments has been a long-standing goal of robotics, artificial intelligence, and the cognitive sciences. In contrast, current commercially available industrial and service robots mostly execute fixed tasks and exhibit little adaptability. To bridge this gap, machine learning offers a myriad set of methods, some of which have already been applied with great success to robotics problems. As a result, there is an increasing interest in machine learning and statistics within the robotics community. At the same time, there has been a growth in the learning community in using robots as motivating applications for new algorithms and formalisms. Considerable evidence of this exists in the use of learning in high-profile competitions such as RoboCup and the Defense Advanced Research Projects Agency (DARPA) challenges, and the growing number of research programs funded by governments around the world.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Kernel Methods in Computer Vision

Lampert, CH.

Foundations and Trends in Computer Graphics and Vision, 4(3):193-285, September 2009 (article)

Abstract
Over the last years, kernel methods have established themselves as powerful tools for computer vision researchers as well as for practitioners. In this tutorial, we give an introduction to kernel methods in computer vision from a geometric perspective, introducing not only the ubiquitous support vector machines, but also less known techniques for regression, dimensionality reduction, outlier detection and clustering. Additionally, we give an outlook on very recent, non-classical techniques for the prediction of structure data, for the estimation of statistical dependency and for learning the kernel function itself. All methods are illustrated with examples of successful application from the recent computer vision research literature.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Fast Kernel-Based Independent Component Analysis

Shen, H., Jegelka, S., Gretton, A.

IEEE Transactions on Signal Processing, 57(9):3498-3511, September 2009 (article)

Abstract
Recent approaches to independent component analysis (ICA) have used kernel independence measures to obtain highly accurate solutions, particularly where classical methods experience difficulty (for instance, sources with near-zero kurtosis). FastKICA (fast HSIC-based kernel ICA) is a new optimization method for one such kernel independence measure, the Hilbert-Schmidt Independence Criterion (HSIC). The high computational efficiency of this approach is achieved by combining geometric optimization techniques, specifically an approximate Newton-like method on the orthogonal group, with accurate estimates of the gradient and Hessian based on an incomplete Cholesky decomposition. In contrast to other efficient kernel-based ICA algorithms, FastKICA is applicable to any twice differentiable kernel function. Experimental results for problems with large numbers of sources and observations indicate that FastKICA provides more accurate solutions at a given cost than gradient descent on HSIC. Comparing with other recently published ICA methods, FastKICA is competitive in terms of accuracy, relatively insensitive to local minima when initialized far from independence, and more robust towards outliers. An analysis of the local convergence properties of FastKICA is provided.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]