Header logo is


2017


Thumb xl publications toc
Endo-VMFuseNet: Deep Visual-Magnetic Sensor Fusion Approach for Uncalibrated, Unsynchronized and Asymmetric Endoscopic Capsule Robot Localization Data

Turan, M., Almalioglu, Y., Gilbert, H., Eren Sari, A., Soylu, U., Sitti, M.

ArXiv e-prints, September 2017 (article)

Abstract
In the last decade, researchers and medical device companies have made major advances towards transforming passive capsule endoscopes into active medical robots. One of the major challenges is to endow capsule robots with accurate perception of the environment inside the human body, which will provide necessary information and enable improved medical procedures. We extend the success of deep learning approaches from various research fields to the problem of uncalibrated, asynchronous, and asymmetric sensor fusion for endoscopic capsule robots. The results performed on real pig stomach datasets show that our method achieves sub-millimeter precision for both translational and rotational movements and contains various advantages over traditional sensor fusion techniques.

pi

link (url) Project Page [BibTex]


Thumb xl comp 5d copy
Magnetotactic Bacteria Powered Biohybrids Target E. coli Biofilms

Stanton, M. M., Park, B., Vilela, D., Bente, K., Faivre, D., Sitti, M., Sánchez, S.

ACS Nano, 0(0):null, September 2017, PMID: 28933815 (article)

Abstract
Biofilm colonies are typically resistant to general antibiotic treatment and require targeted methods for their removal. One of these methods includes the use of nanoparticles as carriers for antibiotic delivery, where they randomly circulate in fluid until they make contact with the infected areas. However, the required proximity of the particles to the biofilm results in only moderate efficacy. We demonstrate here that the nonpathogenic magnetotactic bacteria Magnetosopirrillum gryphiswalense (MSR-1) can be integrated with drug-loaded mesoporous silica microtubes to build controllable microswimmers (biohybrids) capable of antibiotic delivery to target an infectious biofilm. Applying external magnetic guidance capability and swimming power of the MSR-1 cells, the biohybrids are directed to and forcefully pushed into matured Escherichia coli (E. coli) biofilms. Release of the antibiotic, ciprofloxacin, is triggered by the acidic microenvironment of the biofilm, ensuring an efficient drug delivery system. The results reveal the capabilities of a nonpathogenic bacteria species to target and dismantle harmful biofilms, indicating biohybrid systems have great potential for antibiofilm applications.

pi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Thumb xl jeong et al 2017 advanced science
Corrosion-Protected Hybrid Nanoparticles

Jeong, H. H., Alarcon-Correa, M., Mark, A. G., Son, K., Lee, T., Fischer, P.

Advanced Science, 4(12):1700234, September 2017 (article)

Abstract
Nanoparticles composed of functional materials hold great promise for applications due to their unique electronic, optical, magnetic, and catalytic properties. However, a number of functional materials are not only difficult to fabricate at the nanoscale, but are also chemically unstable in solution. Hence, protecting nanoparticles from corrosion is a major challenge for those applications that require stability in aqueous solutions and biological fluids. Here, this study presents a generic scheme to grow hybrid 3D nanoparticles that are completely encapsulated by a nm thick protective shell. The method consists of vacuum-based growth and protection, and combines oblique physical vapor deposition with atomic layer deposition. It provides wide flexibility in the shape and composition of the nanoparticles, and the environments against which particles are protected. The work demonstrates the approach with multifunctional nanoparticles possessing ferromagnetic, plasmonic, and chiral properties. The present scheme allows nanocolloids, which immediately corrode without protection, to remain functional, at least for a week, in acidic solutions.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Undulatory Swimming Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model

Ardian Jusufi, D. M. V. R. J. W. G. V. L.

Soft Robotics, September 2017 (article)

Abstract
Undulatory motion of the body is the dominant mode of locomotion in fishes, and numerous studies of body kinematics and muscle activity patterns have provided insights into the mechanics of swimming. However, it has not been possible to investigate how key parameters such as the extent of bilateral muscle activation affect propulsive performance due to the inability to manipulate muscle activation in live, freely swimming fishes. In this article we extend previous work on passive flexible mechanical models of undulatory propulsion by using actively controlled pneumatic actuators attached to a flexible foil to gain insight into undulatory locomotion and mechanisms for body stiffness control. Two soft actuators were attached on each side of a flexible panel with stiffness comparable to that of a fish body. To study how bilateral contraction can be used to modify axial body stiffness during swimming, we ran a parameter sweep of actuator contraction phasing and frequency. Thrust production by the soft pneumatic actuators was tested at cyclic undulation frequencies ranging from 0.3 to 1.2 Hz in a recirculating flow tank at flow speeds up to 28 cm/s. Overall, this system generated more thrust at higher tail beat frequencies, with a plateau in thrust above 0.8 Hz. Self-propelled speed was found to be 0.8 foil lengths per second or ∼13 cm/s when actuated at 0.55 Hz. This active pneumatic model is capable of producing substantial trailing edge amplitudes with a maximum excursion equivalent to 1.4 foil lengths, and of generating considerable thrust. Altering the extent of bilateral co-contraction in a range from −22% to 17% of the cycle period showed that thrust was maximized with some amount of simultaneous left-right actuation of ∼3% to 6% of the cycle period. When the system is exposed to water flow, thrust was substantially reduced for conditions of greatest antagonistic overlap in left-right actuation, and also for the largest latencies introduced. This experimental platform provides a soft robotic testbed for studying aquatic propulsion with active control of undulatory kinematics.

[BibTex]


no image
Using Contact Forces and Robot Arm Accelerations to Automatically Rate Surgeon Skill at Peg Transfer

Brown, J. D., O’Brien, C. E., Leung, S. C., Dumon, K. R., Lee, D. I., Kuchenbecker, K. J.

IEEE Transactions on Biomedical Engineering, 64(9):2263-2275, September 2017 (article)

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl publications toc
Sparse-then-Dense Alignment based 3D Map Reconstruction Method for Endoscopic Capsule Robots

Turan, M., Yigit Pilavci, Y., Ganiyusufoglu, I., Araujo, H., Konukoglu, E., Sitti, M.

ArXiv e-prints, August 2017 (article)

Abstract
Since the development of capsule endoscopcy technology, substantial progress were made in converting passive capsule endoscopes to robotic active capsule endoscopes which can be controlled by the doctor. However, robotic capsule endoscopy still has some challenges. In particular, the use of such devices to generate a precise and globally consistent three-dimensional (3D) map of the entire inner organ remains an unsolved problem. Such global 3D maps of inner organs would help doctors to detect the location and size of diseased areas more accurately, precisely, and intuitively, thus permitting more accurate and intuitive diagnoses. The proposed 3D reconstruction system is built in a modular fashion including preprocessing, frame stitching, and shading-based 3D reconstruction modules. We propose an efficient scheme to automatically select the key frames out of the huge quantity of raw endoscopic images. Together with a bundle fusion approach that aligns all the selected key frames jointly in a globally consistent way, a significant improvement of the mosaic and 3D map accuracy was reached. To the best of our knowledge, this framework is the first complete pipeline for an endoscopic capsule robot based 3D map reconstruction containing all of the necessary steps for a reliable and accurate endoscopic 3D map. For the qualitative evaluations, a real pig stomach is employed. Moreover, for the first time in literature, a detailed and comprehensive quantitative analysis of each proposed pipeline modules is performed using a non-rigid esophagus gastro duodenoscopy simulator, four different endoscopic cameras, a magnetically activated soft capsule robot (MASCE), a sub-millimeter precise optical motion tracker and a fine-scale 3D optical scanner.

pi

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Dipole codes attractively encode glue functions

Ipparthi, D., Mastrangeli, M., Winslow, A.

Theoretical Computer Science, 671, pages: 19 - 25, August 2017, Computational Self-Assembly (article)

Abstract
Dipole words are sequences of magnetic dipoles, in which alike elements repel and opposite elements attract. Magnetic dipoles contrast with more general sets of bonding types, called glues, in which pairwise bonding strength is specified by a glue function. We prove that every glue function g has a set of dipole words, called a dipole code, that attractively encodes g: the pairwise attractions (positive or non-positive bond strength) between the words are identical to those of g. Moreover, we give such word sets of asymptotically optimal length. Similar results are obtained for a commonly used subclass of glue functions.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Ungrounded Haptic Augmented Reality System for Displaying Texture and Friction

Culbertson, H., Kuchenbecker, K. J.

IEEE/ASME Transactions on Mechatronics, 22(4):1839-1849, August 2017 (article)

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Hypoxia‐enhanced adhesion of red blood cells in microscale flow

Kim, M., Alapan, Y., Adhikari, A., Little, J. A., Gurkan, U. A.

Microcirculation, 24(5):e12374, July 2017 (article)

Abstract
Abstract Objectives The advancement of microfluidic technology has facilitated the simulation of physiological conditions of the microcirculation, such as oxygen tension, fluid flow, and shear stress in these devices. Here, we present a micro‐gas exchanger integrated with microfluidics to study RBC adhesion under hypoxic flow conditions mimicking postcapillary venules. Methods We simulated a range of physiological conditions and explored RBC adhesion to endothelial or subendothelial components (FN or LN). Blood samples were injected into microchannels at normoxic or hypoxic physiological flow conditions. Quantitative evaluation of RBC adhesion was performed on 35 subjects with homozygous SCD. Results Significant heterogeneity in RBC adherence response to hypoxia was seen among SCD patients. RBCs from a HEA population showed a significantly greater increase in adhesion compared to RBCs from a HNA population, for both FN and LN. Conclusions The approach presented here enabled the control of oxygen tension in blood during microscale flow and the quantification of RBC adhesion in a cost‐efficient and patient‐specific manner. We identified a unique patient population in which RBCs showed enhanced adhesion in hypoxia in vitro. Clinical correlates suggest a more severe clinical phenotype in this subgroup.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Event-based State Estimation: An Emulation-based Approach

Trimpe, S.

IET Control Theory & Applications, 11(11):1684-1693, July 2017 (article)

Abstract
An event-based state estimation approach for reducing communication in a networked control system is proposed. Multiple distributed sensor agents observe a dynamic process and sporadically transmit their measurements to estimator agents over a shared bus network. Local event-triggering protocols ensure that data is transmitted only when necessary to meet a desired estimation accuracy. The event-based design is shown to emulate the performance of a centralised state observer design up to guaranteed bounds, but with reduced communication. The stability results for state estimation are extended to the distributed control system that results when the local estimates are used for feedback control. Results from numerical simulations and hardware experiments illustrate the effectiveness of the proposed approach in reducing network communication.

am ics

arXiv Supplementary material PDF DOI Project Page [BibTex]

arXiv Supplementary material PDF DOI Project Page [BibTex]


no image
Learning Movement Primitive Libraries through Probabilistic Segmentation

Lioutikov, R., Neumann, G., Maeda, G., Peters, J.

International Journal of Robotics Research, 36(8):879-894, July 2017 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl imahe toc
Soiled adhesive pads shear clean by slipping: a robust self-cleaning mechanism in climbing beetles

Amador, G., Endlein, T., Sitti, M.

Journal of The Royal Society Interface, 14(131):20170134, The Royal Society, June 2017 (article)

Abstract
Animals using adhesive pads to climb smooth surfaces face the problem of keeping their pads clean and functional. Here, a self-cleaning mechanism is proposed whereby soiled feet would slip on the surface due to a lack of adhesion but shed particles in return. Our study offers an in situ quantification of self-cleaning performance in fibrillar adhesives, using the dock beetle as a model organism. After beetles soiled their pads by stepping into patches of spherical beads, we found that their gait was significantly affected. Specifically, soiled pads slipped 10 times further than clean pads, with more particles deposited for longer slips. Like previous studies, we found that particle size affected cleaning performance. Large (45 μm) beads were removed most effectively, followed by medium (10 μm) and small (1 μm). Consistent with our results from climbing beetles, force measurements on freshly severed legs revealed larger detachment forces of medium particles from adhesive pads compared to a flat surface, possibly due to interlocking between fibres. By contrast, dock leaves showed an overall larger affinity to the beads and thus reduced the need for cleaning. Self-cleaning through slippage provides a mechanism robust to particle size and may inspire solutions for artificial adhesives.

pi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl comp 3e 00000 copy
Non-Equilibrium Assembly of Light-Activated Colloidal Mixtures

Singh, D. P., Choudhury, U., Fischer, P., Mark, A. G.

Advanced Materials, 29, pages: 1701328, June 2017, 32 (article)

Abstract
The collective phenomena exhibited by artificial active matter systems present novel routes to fabricating out-of-equilibrium microscale assemblies. Here, the crystallization of passive silica colloids into well-controlled 2D assemblies is shown, which is directed by a small number of self-propelled active colloids. The active colloids are titania–silica Janus particles that are propelled when illuminated by UV light. The strength of the attractive interaction and thus the extent of the assembled clusters can be regulated by the light intensity. A remarkably small number of the active colloids is sufficient to induce the assembly of the dynamic crystals. The approach produces rationally designed colloidal clusters and crystals with controllable sizes, shapes, and symmetries. This multicomponent active matter system offers the possibility of obtaining structures and assemblies that cannot be found in equilibrium systems.

pf

link (url) DOI [BibTex]


no image
Yield prediction in parallel homogeneous assembly

Ipparthi, D., Winslow, A., Sitti, M., Dorigo, M., Mastrangeli, M.

Soft Matter, 13, pages: 7595-7608, The Royal Society of Chemistry, June 2017 (article)

Abstract
We investigate the parallel assembly of two-dimensional{,} geometrically-closed modular target structures out of homogeneous sets of macroscopic components of varying anisotropy. The yield predicted by a chemical reaction network (CRN)-based model is quantitatively shown to reproduce experimental results over a large set of conditions. Scaling laws for parallel assembling systems are then derived from the model. By extending the validity of the CRN-based modelling{,} this work prompts analysis and solutions to the incompatible substructure problem.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl kim et al 2017 advanced materials
Nanodiamonds That Swim

Kim, J. T., Choudhury, U., Hyeon-Ho, J., Fischer, P.

Advanced Materials, 29(30):1701024, June 2017, Back Cover (article)

Abstract
Nanodiamonds are emerging as nanoscale quantum probes for bio-sensing and imaging. This necessitates the development of new methods to accurately manipulate their position and orientation in aqueous solutions. The realization of an “active” nanodiamond (ND) swimmer in fluids, composed of a ND crystal containing nitrogen vacancy centers and a light-driven self-thermophoretic micromotor, is reported. The swimmer is propelled by a local temperature gradient created by laser illumination on its metal-coated side. Its locomotion—from translational to rotational motion—is successfully controlled by shape-dependent hydrodynamic interactions. The precise engineering of the swimmer's geometry is achieved by self-assembly combined with physical vapor shadow growth. The optical addressability of the suspended ND swimmers is demonstrated by observing the electron spin resonance in the presence of magnetic fields. Active motion at the nanoscale enables new sensing capabilities combined with active transport including, potentially, in living organisms.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Three‐dimensional patterning in biomedicine: Importance and applications in neuropharmacology

Ajay, V. S., Tanmay, G., Madu, B., Byung‐Wook, P., Thomas, E., Metin, S.

Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106(3):1369-1382, June 2017 (article)

Abstract
Abstract Nature manufactures biological systems in three dimensions with precisely controlled spatiotemporal profiles on hierarchical length and time scales. In this article, we review 3D patterning of biological systems on synthetic platforms for neuropharmacological applications. We briefly describe 3D versus 2D chemical and topographical patterning methods and their limitations. Subsequently, an overview of introducing a third dimension in neuropharmacological research with delineation of chemical and topographical roles is presented. Finally, toward the end of this article, an explanation of how 3D patterning has played a pivotal role in relevant fields of neuropharmacology to understand neurophysiology during development, normal health, and disease conditions is described. The future prospects of organs‐on‐a‐‐like devices to mimic patterned blood–brain barrier in the context of neurotherapeutic discovery and development for the prioritization of lead candidates, membrane potential, and toxicity testing are also described. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1369–1382, 2018.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Perception of Force and Stiffness in the Presence of Low-Frequency Haptic Noise

Gurari, N., Okamura, A. M., Kuchenbecker, K. J.

PLoS ONE, 12(6):e0178605, June 2017 (article)

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl 07873311 toc
Tail-Assisted Mobility and Stability Enhancement in Yaw/Pitch Motions of a Water-Running Robot

Kim, H., Sitti, M., Seo, T.

IEEE/ASME Transactions on Mechatronics, 22(3):1207–1217, IEEE, June 2017 (article)

Abstract
Water-running robots have been developed inspired by a basilisk lizard, which demonstrates highly agile, stable, and energy-efficient locomotion on water surfaces. Current water-running robots are not as stable and agile as their biological counterparts. This study shows how the stability of a water-running robot in the pitch direction can be improved by using an active tail to enable increased propulsion. The mobility of the robot is also increased. To generate force in the pitch and yaw directions, a two-degrees-of-freedom tail is implemented with two circular plates to provide drag. We developed two types of dynamic models for pitch and yaw behavior, and the results are recursively calculated by considering the correlation between the models. The relationship between pitch motion and propulsion was analyzed by simulations. The steering behavior of the robot is also validated while considering the pitch behavior. Experiments were conducted to verify the simulation results.

pi

DOI [BibTex]

DOI [BibTex]


no image
Evaluation of a Vibrotactile Simulator for Dental Caries Detection

Kuchenbecker, K. J., Parajon, R., Maggio, M. P.

Simulation in Healthcare, 12(3):148-156, June 2017 (article)

hi

DOI [BibTex]

DOI [BibTex]


Thumb xl image toc
Propulsion and Chemotaxis in Bacteria-Driven Microswimmers

Zhuang, J., Park, B., Sitti, M.

Advanced Science, 4(9):1700109, May 2017 (article)

Abstract
Despite the large body of experimental work recently on biohybrid microsystems, few studies have focused on theoretical modeling of such systems, which is essential to understand their underlying functioning mechanisms and hence design them optimally for a given application task. Therefore, this study focuses on developing a mathematical model to describe the 3D motion and chemotaxis of a type of widely studied biohybrid microswimmer, where spherical microbeads are driven by multiple attached bacteria. The model is developed based on the biophysical observations of the experimental system and is validated by comparing the model simulation with experimental 3D swimming trajectories and other motility characteristics, including mean squared displacement, speed, diffusivity, and turn angle. The chemotaxis modeling results of the microswimmers also agree well with the experiments, where a collective chemotactic behavior among multiple bacteria is observed. The simulation result implies that such collective chemotaxis behavior is due to a synchronized signaling pathway across the bacteria attached to the same microswimmer. Furthermore, the dependencies of the motility and chemotaxis of the microswimmers on certain system parameters, such as the chemoattractant concentration gradient, swimmer body size, and number of attached bacteria, toward an optimized design of such biohybrid system are studied. The optimized microswimmers would be used in targeted cargo, e.g., drug, imaging agent, gene, and RNA, transport and delivery inside the stagnant or low-velocity fluids of the human body as one of their potential biomedical applications.

pi

DOI Project Page [BibTex]


Thumb xl image toc
Dynamic and programmable self-assembly of micro-rafts at the air-water interface

Wang, W., Giltinan, J., Zakharchenko, S., Sitti, M.

Science Advances, 3(5):e1602522, American Association for the Advancement of Science, May 2017 (article)

Abstract
Dynamic self-assembled material systems constantly consume energy to maintain their spatiotemporal structures and functions. Programmable self-assembly translates information from individual parts to the collective whole. Combining dynamic and programmable self-assembly in a single platform opens up the possibilities to investigate both types of self-assembly simultaneously and to explore their synergy. This task is challenging because of the difficulty in finding suitable interactions that are both dissipative and programmable. We present a dynamic and programmable self-assembling material system consisting of spinning at the air-water interface circular magnetic micro-rafts of radius 50 μm and with cosinusoidal edge-height profiles. The cosinusoidal edge-height profiles not only create a net dissipative capillary repulsion that is sustained by continuous torque input but also enable directional assembly of micro-rafts. We uncover the layered arrangement of micro-rafts in the patterns formed by dynamic self-assembly and offer mechanistic insights through a physical model and geometric analysis. Furthermore, we demonstrate programmable self-assembly and show that a 4-fold rotational symmetry encoded in individual micro-rafts translates into 90° bending angles and square-based tiling in the assembled structures of micro-rafts. We anticipate that our dynamic and programmable material system will serve as a model system for studying nonequilibrium dynamics and statistical mechanics in the future

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl emthy 01
Presentation of functional groups on self-assembled supramolecular peptide nanofibers mimicking glycosaminoglycans for directed mesenchymal stem cell differentiation

Yasa, O., Uysal, O., Ekiz, M. S., Guler, M. O., Tekinay, A. B.

J. Mater. Chem. B, 5, pages: 4890-4900, The Royal Society of Chemistry, May 2017 (article)

Abstract
Organizational complexity and functional diversity of the extracellular matrix regulate cellular behaviors. The extracellular matrix is composed of various proteins in the form of proteoglycans{,} glycoproteins{,} and nanofibers whose types and combinations change depending on the tissue type. Proteoglycans{,} which are proteins that are covalently attached to glycosaminoglycans{,} contribute to the complexity of the microenvironment of the cells. The sulfation degree of the glycosaminoglycans is an important and distinct feature at specific developmental stages and tissue types. Peptide amphiphile nanofibers can mimic natural glycosaminoglycans and/or proteoglycans{,} and they form a synthetic nanofibrous microenvironment where cells can proliferate and differentiate towards different lineages. In this study{,} peptide nanofibers were used to provide varying degrees of sulfonation mimicking the natural glycosaminoglycans by forming a microenvironment for the survival and differentiation of stem cells. The effects of glucose{,} carboxylate{,} and sulfonate groups on the peptide nanofibers were investigated by considering the changes in the differentiation profiles of rat mesenchymal stem cells in the absence of any specific differentiation inducers in the culture medium. The results showed that a higher sulfonate-to-glucose ratio is associated with adipogenic differentiation and a higher carboxylate-to-glucose ratio is associated with osteochondrogenic differentiation of the rat mesenchymal stem cells. Overall{,} these results demonstrate that supramolecular peptide nanosystems can be used to understand the fine-tunings of the extracellular matrix such as sulfation profile on specific cell types.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl drotlef et al 2017 advanced materials
Bioinspired Composite Microfibers for Skin Adhesion and Signal Amplification of Wearable Sensors

Drotlef, D., Amjadi, M., Yunusa, M., Sitti, M.

Advanced Materials, 29(28):1701353, May 2017, Back Cover (article)

Abstract
A facile approach is proposed for superior conformation and adhesion of wearable sensors to dry and wet skin. Bioinspired skin-adhesive films are composed of elastomeric microfibers decorated with conformal and mushroom-shaped vinylsiloxane tips. Strong skin adhesion is achieved by crosslinking the viscous vinylsiloxane tips directly on the skin surface. Furthermore, composite microfibrillar adhesive films possess a high adhesion strength of 18 kPa due to the excellent shape adaptation of the vinylsiloxane tips to the multiscale roughness of the skin. As a utility of the skin-adhesive films in wearable-device applications, they are integrated with wearable strain sensors for respiratory and heart-rate monitoring. The signal-to-noise ratio of the strain sensor is significantly improved to 59.7 because of the considerable signal amplification of microfibrillar skin-adhesive films.

pi

DOI [BibTex]


Thumb xl mostaghaci et al 2017 advanced science
Bioadhesive Bacterial Microswimmers for Targeted Drug Delivery in the Urinary and Gastrointestinal Tracts

Mostaghaci, B., Yasa, O., Zhuang, J., Sitti, M.

Advanced Science, 4(6):1700058, May 2017 (article)

Abstract
Bacteria-driven biohybrid microswimmers (bacteriabots), which integrate motile bacterial cells and functional synthetic cargo parts (e.g., microparticles encapsulating drug), are recently studied for targeted drug delivery. However, adhesion of such bacteriabots to the tissues on the site of a disease (which can increase the drug delivery efficiency) is not studied yet. Here, this paper proposes an approach to attach bacteriabots to certain types of epithelial cells (expressing mannose on the membrane), based on the affinity between lectin molecules on the tip of bacterial type I pili and mannose molecules on the epithelial cells. It is shown that the bacteria can anchor their cargo particles to mannose-functionalized surfaces and mannose-expressing cells (ATCC HTB-9) using the lectin–mannose bond. The attachment mechanism is confirmed by comparing the adhesion of bacteriabots fabricated from bacterial strains with or without type I pili to mannose-covered surfaces and cells. The proposed bioadhesive motile system can be further improved by expressing more specific adhesion moieties on the membrane of the bacteria.

pi

DOI Project Page [BibTex]


Thumb xl image toc
Six Degree-of-Freedom Localization of Endoscopic Capsule Robots using Recurrent Neural Networks embedded into a Convolutional Neural Network

Turan, M., Abdullah, A., Jamiruddin, R., Araujo, H., Konukoglu, E., Sitti, M.

arXiv preprint arXiv:1705.06196, May 2017 (article)

Abstract
Since its development, ingestible wireless endoscopy is considered to be a painless diagnostic method to detect a number of diseases inside GI tract. Medical related engineering companies have made significant improvements in this technology in last decade; however, some major limitations still residue. Localization of the next generation steerable endoscopic capsule robot in six degreeof-freedom (DoF) and active motion control are some of these limitations. The significance of localization capability concerns with the doctors correct diagnosis of the disease area. This paper presents a very robust 6-DoF localization method based on supervised training of an architecture consisting of recurrent networks (RNN) embedded into a convolutional neural network (CNN) to make use of both just-in-moment information obtained by CNN and correlative information across frames obtained by RNN. To our knowledge, our idea of embedding RNNs into a CNN architecture is for the first time proposed in literature. The experimental results show that the proposed RNN-in-CNN architecture performs very well for endoscopic capsule robot localization in cases vignetting, reflection distortions, noise, sudden camera movements and lack of distinguishable features.

pi

DOI Project Page [BibTex]


Thumb xl publications toc
Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces

Song, S., Drotlef, D., Majidi, C., Sitti, M.

Proceedings of the National Academy of Sciences, 114(22):E4344–E4353, National Acad Sciences, May 2017 (article)

Abstract
For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ∼26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad.

pi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl image toc
A Non-Rigid Map Fusion-Based RGB-Depth SLAM Method for Endoscopic Capsule Robots

Turan, M., Almalioglu, Y., Araujo, H., Konukoglu, E., Sitti, M.

arXiv preprint arXiv:1705.05444, May 2017 (article)

Abstract
In the gastrointestinal (GI) tract endoscopy field, ingestible wireless capsule endoscopy is considered as a minimally invasive novel diagnostic technology to inspect the entire GI tract and to diagnose various diseases and pathologies. Since the development of this technology, medical device companies and many groups have made significant progress to turn such passive capsule endoscopes into robotic active capsule endoscopes to achieve almost all functions of current active flexible endoscopes. However, the use of robotic capsule endoscopy still has some challenges. One such challenge is the precise localization of such active devices in 3D world, which is essential for a precise three-dimensional (3D) mapping of the inner organ. A reliable 3D map of the explored inner organ could assist the doctors to make more intuitive and correct diagnosis. In this paper, we propose to our knowledge for the first time in literature a visual simultaneous localization and mapping (SLAM) method specifically developed for endoscopic capsule robots. The proposed RGB-Depth SLAM method is capable of capturing comprehensive dense globally consistent surfel-based maps of the inner organs explored by an endoscopic capsule robot in real time. This is achieved by using dense frame-to-model camera tracking and windowed surfelbased fusion coupled with frequent model refinement through non-rigid surface deformations.

pi

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb xl image  1
Human Shape Estimation using Statistical Body Models

Loper, M. M.

University of Tübingen, May 2017 (thesis)

Abstract
Human body estimation methods transform real-world observations into predictions about human body state. These estimation methods benefit a variety of health, entertainment, clothing, and ergonomics applications. State may include pose, overall body shape, and appearance. Body state estimation is underconstrained by observations; ambiguity presents itself both in the form of missing data within observations, and also in the form of unknown correspondences between observations. We address this challenge with the use of a statistical body model: a data-driven virtual human. This helps resolve ambiguity in two ways. First, it fills in missing data, meaning that incomplete observations still result in complete shape estimates. Second, the model provides a statistically-motivated penalty for unlikely states, which enables more plausible body shape estimates. Body state inference requires more than a body model; we therefore build obser- vation models whose output is compared with real observations. In this thesis, body state is estimated from three types of observations: 3D motion capture markers, depth and color images, and high-resolution 3D scans. In each case, a forward process is proposed which simulates observations. By comparing observations to the results of the forward process, state can be adjusted to minimize the difference between simulated and observed data. We use gradient-based methods because they are critical to the precise estimation of state with a large number of parameters. The contributions of this work include three parts. First, we propose a method for the estimation of body shape, nonrigid deformation, and pose from 3D markers. Second, we present a concise approach to differentiating through the rendering process, with application to body shape estimation. And finally, we present a statistical body model trained from human body scans, with state-of-the-art fidelity, good runtime performance, and compatibility with existing animation packages.

ps

Official Version [BibTex]


Thumb xl hydrophobic toc
Hydrophobic pinning with copper nanowhiskers leads to bactericidal properties

Singh, A. V., Baylan, S., Park, B., Richter, G., Sitti, M.

PloS One, 12(4):e0175428, Public Library of Science, April 2017 (article)

Abstract
The considerable morbidity associated with hospitalized patients and clinics in developed countries due to biofilm formation on biomedical implants and surgical instruments is a heavy economic burden. An alternative to chemically treated surfaces for bactericidal activity started emerging from micro/nanoscale topographical cues in the last decade. Here, we demonstrate a putative antibacterial surface using copper nanowhiskers deposited by molecular beam epitaxy. Furthermore, the control of biological response is based on hydrophobic pinning of water droplets in the Wenzel regime, causing mechanical injury and cell death. Scanning electron microscopy images revealed the details of the surface morphology and non-contact mode laser scanning of the surface revealed the microtopography-associated quantitative parameters. Introducing the bacterial culture over nanowhiskers produces mechanical injury to cells, leading to a reduction in cell density over time due to local pinning of culture medium to whisker surfaces. Extended culture to 72 hours to observe biofilm formation revealed biofilm inhibition with scattered microcolonies and significantly reduced biovolume on nanowhiskers. Therefore, surfaces patterned with copper nanowhiskers can serve as potential antibiofilm surfaces. The topography-based antibacterial surfaces introduce a novel prospect in developing mechanoresponsive nanobiomaterials to reduce the risk of medical device biofilm-associated infections, contrary to chemical leaching of copper as a traditional bactericidal agent.

pi

link (url) [BibTex]

link (url) [BibTex]


no image
Estimating B0 inhomogeneities with projection FID navigator readouts

Loktyushin, A., Ehses, P., Schölkopf, B., Scheffler, K.

25th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), April 2017 (poster)

ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl fig  quali  arm
Probabilistic Articulated Real-Time Tracking for Robot Manipulation

(Best Paper of RA-L 2017, Finalist of Best Robotic Vision Paper Award of ICRA 2017)

Garcia Cifuentes, C., Issac, J., Wüthrich, M., Schaal, S., Bohg, J.

IEEE Robotics and Automation Letters (RA-L), 2(2):577-584, April 2017 (article)

Abstract
We propose a probabilistic filtering method which fuses joint measurements with depth images to yield a precise, real-time estimate of the end-effector pose in the camera frame. This avoids the need for frame transformations when using it in combination with visual object tracking methods. Precision is achieved by modeling and correcting biases in the joint measurements as well as inaccuracies in the robot model, such as poor extrinsic camera calibration. We make our method computationally efficient through a principled combination of Kalman filtering of the joint measurements and asynchronous depth-image updates based on the Coordinate Particle Filter. We quantitatively evaluate our approach on a dataset recorded from a real robotic platform, annotated with ground truth from a motion capture system. We show that our approach is robust and accurate even under challenging conditions such as fast motion, significant and long-term occlusions, and time-varying biases. We release the dataset along with open-source code of our approach to allow for quantitative comparison with alternative approaches.

am

arXiv video code and dataset video PDF DOI Project Page [BibTex]


Thumb xl toc image
Soft 3D-Printed Phantom of the Human Kidney with Collecting System

Adams, F., Qiu, T., Mark, A., Fritz, B., Kramer, L., Schlager, D., Wetterauer, U., Miernik, A., Fischer, P.

Ann. of Biomed. Eng., 45(4):963-972, April 2017 (article)

Abstract
Organ models are used for planning and simulation of operations, developing new surgical instruments, and training purposes. There is a substantial demand for in vitro organ phantoms, especially in urological surgery. Animal models and existing simulator systems poorly mimic the detailed morphology and the physical properties of human organs. In this paper, we report a novel fabrication process to make a human kidney phantom with realistic anatomical structures and physical properties. The detailed anatomical structure was directly acquired from high resolution CT data sets of human cadaveric kidneys. The soft phantoms were constructed using a novel technique that combines 3D wax printing and polymer molding. Anatomical details and material properties of the phantoms were validated in detail by CT scan, ultrasound, and endoscopy. CT reconstruction, ultrasound examination, and endoscopy showed that the designed phantom mimics a real kidney's detailed anatomy and correctly corresponds to the targeted human cadaver's upper urinary tract. Soft materials with a tensile modulus of 0.8-1.5 MPa as well as biocompatible hydrogels were used to mimic human kidney tissues. We developed a method of constructing 3D organ models from medical imaging data using a 3D wax printing and molding process. This method is cost-effective means for obtaining a reproducible and robust model suitable for surgical simulation and training purposes.

pf

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Image Quality Improvement by Applying Retrospective Motion Correction on Quantitative Susceptibility Mapping and R2*

Feng, X., Loktyushin, A., Deistung, A., Reichenbach, J.

25th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), April 2017 (poster)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Guiding Trajectory Optimization by Demonstrated Distributions

Osa, T., Ghalamzan E., A. M., Stolkin, R., Lioutikov, R., Peters, J., Neumann, G.

IEEE Robotics and Automation Letters, 2(2):819-826, April 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Whole-body multi-contact motion in humans and humanoids: Advances of the CoDyCo European project

Padois, V., Ivaldi, S., Babic, J., Mistry, M., Peters, J., Nori, F.

Robotics and Autonomous Systems, 90, pages: 97-117, April 2017, Special Issue on New Research Frontiers for Intelligent Autonomous Systems (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl image toc
Biohybrid microtube swimmers driven by single captured bacteria

Stanton, M. M., Park, B., Miguel-López, A., Ma, X., Sitti, M., Sánchez, S.

Small, 13(19), March 2017 (article)

Abstract
Bacteria biohybrids employ the motility and power of swimming bacteria to carry and maneuver microscale particles. They have the potential to perform microdrug and cargo delivery in vivo, but have been limited by poor design, reduced swimming capabilities, and impeded functionality. To address these challenge, motile Escherichia coli are captured inside electropolymerized microtubes, exhibiting the first report of a bacteria microswimmer that does not utilize a spherical particle chassis. Single bacterium becomes partially trapped within the tube and becomes a bioengine to push the microtube though biological media. Microtubes are modified with “smart” material properties for motion control, including a bacteria-attractant polydopamine inner layer, addition of magnetic components for external guidance, and a biochemical kill trigger to cease bacterium swimming on demand. Swimming dynamics of the bacteria biohybrid are quantified by comparing “length of protrusion” of bacteria from the microtubes with respect to changes in angular autocorrelation and swimmer mean squared displacement. The multifunctional microtubular swimmers present a new generation of biocompatible micromotors toward future microbiorobots and minimally invasive medical applications.

pi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Probabilistic Movement Primitives for Coordination of Multiple Human-Robot Collaborative Tasks

Maeda, G., Neumann, G., Ewerton, M., Lioutikov, R., Kroemer, O., Peters, J.

Autonomous Robots, 41(3):593-612, March 2017 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Bioinspired tactile sensor for surface roughness discrimination

Yi, Z., Zhang, Y., Peters, J.

Sensors and Actuators A: Physical, 255, pages: 46-53, March 2017 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Sticky Solution Provides Grip for the First Robotic Pollinator

Amador, G. J., Hu, D. L.

Chem, 2(2):162 - 164, Febuary 2017 (article)

Abstract
Bees, move over. A lily has been pollinated by a remote-controlled flying robot. The robot is hairy, just like a real bee, and sticks to pollen by virtue of an ionic liquid gel, whose fabrication is discussed by Svetlana Chechetka et al. in this issue of Chem.

pi

link (url) DOI [BibTex]


Thumb xl toc image
Pattern formation and collective effects in populations of magnetic microswimmers

Vach, P. J., (Walker) Schamel, D., Fischer, P., Fratzl, P., Faivre, D.

J. of Phys. D: Appl. Phys., 50(11):11LT03, Febuary 2017 (article)

Abstract
Self-propelled particles are one prototype of synthetic active matter used to understand complex biological processes, such as the coordination of movement in bacterial colonies or schools of fishes. Collective patterns such as clusters were observed for such systems, reproducing features of biological organization. However, one limitation of this model is that the synthetic assemblies are made of identical individuals. Here we introduce an active system based on magnetic particles at colloidal scales. We use identical but also randomly-shaped magnetic micropropellers and show that they exhibit dynamic and reversible pattern formation.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl screen shot 2017 06 14 at 2.58.42 pm
Spinal joint compliance and actuation in a simulated bounding quadruped robot

Pouya, S., Khodabakhsh, M., Sproewitz, A., Ijspeert, A.

{Autonomous Robots}, pages: 437–452, Kluwer Academic Publishers, Springer, Dordrecht, New York, NY, Febuary 2017 (article)

dlg

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Thumb xl toc image
On-chip enzymatic microbiofuel cell-powered integrated circuits

Mark, A. G., Suraniti, E., Roche, J., Richter, H., Kuhn, A., Mano, N., Fischer, P.

Lab on a Chip, 17(10):1761-1768, Febuary 2017, Recent HOT Article (article)

Abstract
A variety of diagnostic and therapeutic medical technologies rely on long term implantation of an electronic device to monitor or regulate a patient's condition. One proposed approach to powering these devices is to use a biofuel cell to convert the chemical energy from blood nutrients into electrical current to supply the electronics. We present here an enzymatic microbiofuel cell whose electrodes are directly integrated into a digital electronic circuit. Glucose oxidizing and oxygen reducing enzymes are immobilized on microelectrodes of an application specific integrated circuit (ASIC) using redox hydrogels to produce an enzymatic biofuel cell, capable of harvesting electrical power from just a single droplet of 5 mM glucose solution. Optimisation of the fuel cell voltage and power to match the requirements of the electronics allow self-powered operation of the on-board digital circuitry. This study represents a step towards implantable self-powered electronic devices that gather their energy from physiological fluids.

Recent HOT Article.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Strong Rotational Anisotropies Affect Nonlinear Chiral Metamaterials

Hooper, D. C., Mark, A. G., Kuppe, C., Collins, J. T., Fischer, P., Valev, V. K.

Advanced Materials, 29(13):1605110, January 2017 (article)

Abstract
Masked by rotational anisotropies, the nonlinear chiroptical response of a metamaterial is initially completely inaccessible. Upon rotating the sample the chiral information emerges. These results highlight the need for a general method to extract the true chiral contributions to the nonlinear optical signal, which would be hugely valuable in the present context of increasingly complex chiral meta/nanomaterials.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl image toc
Rubbing Against Blood Clots Using Helical Robots: Modeling and In Vitro Experimental Validation

Khalil, I. S., Tabak, A. F., Sadek, K., Mahdy, D., Hamdi, N., Sitti, M.

IEEE Robotics and Automation Letters, 2(2):927-934, IEEE, January 2017 (article)

Abstract
The risk of side effects from thrombolytic agents can be minimized by using smaller doses, assisted by mechanical rubbing against blood clots using helical robots. Quantifying this observation, we study the influence of rubbing against clots on their removal rate in vitro. First, we present a hydrodynamic model of the helical robot based on the resistive-force theory to investigate the rubbing behavior of the clots using robot driven by two rotating dipole fields. Second, we experimentally evaluate the influence of the rubbing on the removal rate of the blood clots. Not only do we find that the removal rate of mechanical rubbing (-0.56 ± 0.27 mm3 /min) is approximately three times greater than the dissolution rate of chemical lysis using streptokinase (-0.17 ± 0.032 mm3/min), but we also show that this removal rate can be controlled via the rubbing speed of the robot.

pi

DOI [BibTex]

DOI [BibTex]


no image
Nanoscale topographical control of capillary assembly of nanoparticles

Flauraud, V., Mastrangeli, M., Bernasconi, G., Butet, J., Alexander, D., Shahrabi, E., Martin, O., Brugger, J.

Scientific Reports, Nature Nanotechnology, 12, pages: 73-80, January 2017 (article)

Abstract
Predetermined and selective placement of nanoparticles onto large-area substrates with nanometre-scale precision is essential to harness the unique properties of nanoparticle assemblies, in particular for functional optical and electro-optical nanodevices. Unfortunately, such high spatial organization is currently beyond the reach of top-down nanofabrication techniques alone. Here, we demonstrate that topographic features comprising lithographed funnelled traps and auxiliary sidewalls on a solid substrate can deterministically direct the capillary assembly of Au nanorods to attain simultaneous control of position, orientation and interparticle distance at the nanometre level. We report up to 100% assembly yield over centimetre-scale substrates. We achieve this by optimizing the three sequential stages of capillary nanoparticle assembly: insertion of nanorods into the traps, resilience against the receding suspension front and drying of the residual solvent. Finally, using electron energy-loss spectroscopy we characterize the spectral response and near-field properties of spatially programmable Au nanorod dimers, highlighting the opportunities for precise tunability of the plasmonic modes in larger assemblies.

pi

DOI [BibTex]

DOI [BibTex]


no image
Importance of Matching Physical Friction, Hardness, and Texture in Creating Realistic Haptic Virtual Surfaces

Culbertson, H., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 10(1):63-74, January 2017 (article)

hi

[BibTex]


no image
Effects of Grip-Force, Contact, and Acceleration Feedback on a Teleoperated Pick-and-Place Task

Khurshid, R. P., Fitter, N. T., Fedalei, E. A., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 10(1):40-53, January 2017 (article)

hi

[BibTex]

[BibTex]


no image
Multiaxial Polarity Determines Individual Cellular and Nuclear Chirality

Raymond, M. J., Ray, P., Kaur, G., Fredericks, M., Singh, A. V., Wan, L. Q.

Cellular and Molecular Bioengineering, 10(1):63-74, 2017 (article)

Abstract
Intrinsic cell chirality has been implicated in the left--right (LR) asymmetry of embryonic development. Impaired cell chirality could lead to severe birth defects in laterality. Previously, we detected cell chirality with an in vitro micropatterning system. Here, we demonstrate for the first time that chirality can be quantified as the coordination of multiaxial polarization of individual cells and nuclei. Using an object labeling, connected component based method, we characterized cell chirality based on cell and nuclear shape polarization and nuclear positioning of each cell in multicellular patterns of epithelial cells. We found that the cells adopted a LR bias the boundaries by positioning the sharp end towards the leading edge and leaving the nucleus at the rear. This behavior is consistent with the directional migration observed previously on the boundary of micropatterns. Although the nucleus is chirally aligned, it is not strongly biased towards or away from the boundary. As the result of the rear positioning of nuclei, the nuclear positioning has an opposite chirality to that of cell alignment. Overall, our results have revealed deep insights of chiral morphogenesis as the coordination of multiaxial polarization at the cellular and subcellular levels.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Model-based Contextual Policy Search for Data-Efficient Generalization of Robot Skills

Kupcsik, A., Deisenroth, M., Peters, J., Ai Poh, L., Vadakkepat, V., Neumann, G.

Artificial Intelligence, 247, pages: 415-439, 2017, Special Issue on AI and Robotics (article)

ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Anticipatory Action Selection for Human-Robot Table Tennis

Wang, Z., Boularias, A., Mülling, K., Schölkopf, B., Peters, J.

Artificial Intelligence, 247, pages: 399-414, 2017, Special Issue on AI and Robotics (article)

Abstract
Abstract Anticipation can enhance the capability of a robot in its interaction with humans, where the robot predicts the humans' intention for selecting its own action. We present a novel framework of anticipatory action selection for human-robot interaction, which is capable to handle nonlinear and stochastic human behaviors such as table tennis strokes and allows the robot to choose the optimal action based on prediction of the human partner's intention with uncertainty. The presented framework is generic and can be used in many human-robot interaction scenarios, for example, in navigation and human-robot co-manipulation. In this article, we conduct a case study on human-robot table tennis. Due to the limited amount of time for executing hitting movements, a robot usually needs to initiate its hitting movement before the opponent hits the ball, which requires the robot to be anticipatory based on visual observation of the opponent's movement. Previous work on Intention-Driven Dynamics Models (IDDM) allowed the robot to predict the intended target of the opponent. In this article, we address the problem of action selection and optimal timing for initiating a chosen action by formulating the anticipatory action selection as a Partially Observable Markov Decision Process (POMDP), where the transition and observation are modeled by the \{IDDM\} framework. We present two approaches to anticipatory action selection based on the \{POMDP\} formulation, i.e., a model-free policy learning method based on Least-Squares Policy Iteration (LSPI) that employs the \{IDDM\} for belief updates, and a model-based Monte-Carlo Planning (MCP) method, which benefits from the transition and observation model by the IDDM. Experimental results using real data in a simulated environment show the importance of anticipatory action selection, and that \{POMDPs\} are suitable to formulate the anticipatory action selection problem by taking into account the uncertainties in prediction. We also show that existing algorithms for POMDPs, such as \{LSPI\} and MCP, can be applied to substantially improve the robot's performance in its interaction with humans.

am ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]