Header logo is


2014


no image
Synchronous precessional motion of multiple domain walls in a ferromagnetic nanowire by perpendicular field pulses

Kim, J., Mawass, M., Bisig, A., Krüger, B., Reeve, R. M., Schulz, T., Büttner, F., Yoon, J., You, C., Weigand, M., Stoll, H., Schütz, G., Swagten, H. J. M., Koopmans, B., Eisebitt, S., Kläui, M.

{Nature Communications}, 5, Nature Publishing Group, London, 2014 (article)

mms

DOI [BibTex]

2014


DOI [BibTex]


no image
An autonomous manipulation system based on force control and optimization

Righetti, L., Kalakrishnan, M., Pastor, P., Binney, J., Kelly, J., Voorhies, R. C., Sukhatme, G. S., Schaal, S.

Autonomous Robots, 36(1-2):11-30, January 2014 (article)

Abstract
In this paper we present an architecture for autonomous manipulation. Our approach is based on the belief that contact interactions during manipulation should be exploited to improve dexterity and that optimizing motion plans is useful to create more robust and repeatable manipulation behaviors. We therefore propose an architecture where state of the art force/torque control and optimization-based motion planning are the core components of the system. We give a detailed description of the modules that constitute the complete system and discuss the challenges inherent to creating such a system. We present experimental results for several grasping and manipulation tasks to demonstrate the performance and robustness of our approach.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Occam’s Razor in sensorimotor learning

Genewein, T, Braun, D

Proceedings of the Royal Society of London B, 281(1783):1-7, May 2014 (article)

Abstract
A large number of recent studies suggest that the sensorimotor system uses probabilistic models to predict its environment and makes inferences about unobserved variables in line with Bayesian statistics. One of the important features of Bayesian statistics is Occam's Razor—an inbuilt preference for simpler models when comparing competing models that explain some observed data equally well. Here, we test directly for Occam's Razor in sensorimotor control. We designed a sensorimotor task in which participants had to draw lines through clouds of noisy samples of an unobserved curve generated by one of two possible probabilistic models—a simple model with a large length scale, leading to smooth curves, and a complex model with a short length scale, leading to more wiggly curves. In training trials, participants were informed about the model that generated the stimulus so that they could learn the statistics of each model. In probe trials, participants were then exposed to ambiguous stimuli. In probe trials where the ambiguous stimulus could be fitted equally well by both models, we found that participants showed a clear preference for the simpler model. Moreover, we found that participants’ choice behaviour was quantitatively consistent with Bayesian Occam's Razor. We also show that participants’ drawn trajectories were similar to samples from the Bayesian predictive distribution over trajectories and significantly different from two non-probabilistic heuristics. In two control experiments, we show that the preference of the simpler model cannot be simply explained by a difference in physical effort or by a preference for curve smoothness. Our results suggest that Occam's Razor is a general behavioural principle already present during sensorimotor processing.

ei

DOI [BibTex]

DOI [BibTex]


no image
Generalized Thompson sampling for sequential decision-making and causal inference

Ortega, PA, Braun, DA

Complex Adaptive Systems Modeling, 2(2):1-23, March 2014 (article)

Abstract
Purpose Sampling an action according to the probability that the action is believed to be the optimal one is sometimes called Thompson sampling. Methods Although mostly applied to bandit problems, Thompson sampling can also be used to solve sequential adaptive control problems, when the optimal policy is known for each possible environment. The predictive distribution over actions can then be constructed by a Bayesian superposition of the policies weighted by their posterior probability of being optimal. Results Here we discuss two important features of this approach. First, we show in how far such generalized Thompson sampling can be regarded as an optimal strategy under limited information processing capabilities that constrain the sampling complexity of the decision-making process. Second, we show how such Thompson sampling can be extended to solve causal inference problems when interacting with an environment in a sequential fashion. Conclusion In summary, our results suggest that Thompson sampling might not merely be a useful heuristic, but a principled method to address problems of adaptive sequential decision-making and causal inference.

ei

DOI [BibTex]

DOI [BibTex]


no image
Liftoff of a Motor-Driven, Flapping-Wing Microaerial Vehicle Capable of Resonance

Hines, L., Campolo, D., Sitti, M.

IEEE Trans. on Robotics, 30(1):220-232, IEEE, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Untethered micro-robotic coding of three-dimensional material composition

Tasoglu, S, Diller, E, Guven, S, Sitti, M, Demirci, U

Nature Communications, 5, pages: DOI-10, Nature Publishing Group, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
The optimal shape of elastomer mushroom-like fibers for high and robust adhesion

Aksak, B., Sahin, K., Sitti, M.

Beilstein journal of nanotechnology, 5(1):630-638, Beilstein-Institut, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Mechanically Switchable Elastomeric Microfibrillar Adhesive Surfaces for Transfer Printing

Sariola, V., Sitti, M.

Advanced Materials Interfaces, 1(4):1300159, 2014 (article)

pi

[BibTex]

[BibTex]


no image
MultiMo-Bat: A biologically inspired integrated jumping–gliding robot

Woodward, M. A., Sitti, M.

The International Journal of Robotics Research, 33(12):1511-1529, SAGE Publications Sage UK: London, England, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Learning of grasp selection based on shape-templates

Herzog, A., Pastor, P., Kalakrishnan, M., Righetti, L., Bohg, J., Asfour, T., Schaal, S.

Autonomous Robots, 36(1-2):51-65, January 2014 (article)

Abstract
The ability to grasp unknown objects still remains an unsolved problem in the robotics community. One of the challenges is to choose an appropriate grasp configuration, i.e., the 6D pose of the hand relative to the object and its finger configuration. In this paper, we introduce an algorithm that is based on the assumption that similarly shaped objects can be grasped in a similar way. It is able to synthesize good grasp poses for unknown objects by finding the best matching object shape templates associated with previously demonstrated grasps. The grasp selection algorithm is able to improve over time by using the information of previous grasp attempts to adapt the ranking of the templates to new situations. We tested our approach on two different platforms, the Willow Garage PR2 and the Barrett WAM robot, which have very different hand kinematics. Furthermore, we compared our algorithm with other grasp planners and demonstrated its superior performance. The results presented in this paper show that the algorithm is able to find good grasp configurations for a large set of unknown objects from a relatively small set of demonstrations, and does improve its performance over time.

am mg

link (url) DOI [BibTex]


no image
Magnetic field distribution and characteristic fields of the vortex lattice for a clean superconducting niobium sample in an external field applied along a three-fold axis

Yaouanc, A., Maisuradze, A., Nakai, N., Machida, K., Khasanov, R., Amato, A., Biswas, P. K., Baines, C., Herlach, D., Henes, Rolf, Keppler, P., Keller, H.

{Physical Review B}, 89(18), American Physical Society, Woodbury, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Experimental assessment of Physical upper limit for hydrogen storage capacity at 20 K in densified MIL-101 monoliths

Oh, H., Lupu, D., Blanita, G., Hirscher, M.

{RSC Advances}, 4(6):2648-2651, Royal Society of Chemistry, Cambridge, UK, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Strengthening zones in the Co matrix of WC-Co cemented carbides

Konyashin, I., Lachmann, F., Ries, B., Mazilkin, A. A., Straumal, B. B., Kübel, C., Llanes, L., Baretzky, B.

{Scripta Materialia}, 83, pages: 17-20, Pergamon, Tarrytown, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Multilayer Fresnel zone plates for high energy radiation resolve 21 nm features at 1.2 keV

Keskinbora, K., Robisch, A., Mayer, M., Sanli, U., Grévent, C., Wolter, C., Weigand, M., Szeghalmi, A., Knez, M., Salditt, T., Schütz, G.

{Optics Express}, 22(15):18440-18453, Optical Society of America, Washington, DC, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Interplay of linker functionalization and hydrogen adsorption in the metal-organic framework MIL-101

Szilágyi, P. A., Weinrauch, I., Oh, H., Hirscher, M., Juan-Alcaniz, J., Serra-Crespo, P., de Respinis, M., Trzesniewski, B. J., Kapteijn, F., Geerlings, H., Gascon, J., Dam, B., Grzech, A., van de Krol, R.

{The Journal of Physical Chemistry C}, 118(34):19572-19579, American Chemical Society, Washington DC, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Application of magneto-optical Kerr effect to first-order reversal curve measurements

Gräfe, J., Schmidt, M., Audehm, P., Schütz, G., Goering, E.

{Review of Scientific Instruments}, 85, American Institute of Physics, Woodbury, N.Y. [etc.], 2014 (article)

mms

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling. Erratum

Mayer, M., Keskinbora, K., Grévent, C., Szeghalmi, A., Knez, M., Weigand, M., Snigirev, A., Snigireva, I., Schütz, G.

{Journal of Synchrotron Radiation}, 640, pages: 640-640, Published for the International Union of Crystallography by Munksgaard, Copenhagen, Denmark, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Low-amplitude magnetic vortex core reversal by non-linear interaction between azimuthal spin waves and the vortex gyromode

Sproll, M., Noske, M., Bauer, H., Kammerer, M., Gangwar, A., Dieterle, G., Weigand, M., Stoll, H., Woltersdorf, G., Back, C. H., Schütz, G.

{Applied Physics Letters}, 104(1), American Institute of Physics, Melville, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


Thumb xl ijcvflow2
A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles behind Them

Sun, D., Roth, S., Black, M. J.

International Journal of Computer Vision (IJCV), 106(2):115-137, 2014 (article)

Abstract
The accuracy of optical flow estimation algorithms has been improving steadily as evidenced by results on the Middlebury optical flow benchmark. The typical formulation, however, has changed little since the work of Horn and Schunck. We attempt to uncover what has made recent advances possible through a thorough analysis of how the objective function, the optimization method, and modern implementation practices influence accuracy. We discover that "classical'' flow formulations perform surprisingly well when combined with modern optimization and implementation techniques. One key implementation detail is the median filtering of intermediate flow fields during optimization. While this improves the robustness of classical methods it actually leads to higher energy solutions, meaning that these methods are not optimizing the original objective function. To understand the principles behind this phenomenon, we derive a new objective function that formalizes the median filtering heuristic. This objective function includes a non-local smoothness term that robustly integrates flow estimates over large spatial neighborhoods. By modifying this new term to include information about flow and image boundaries we develop a method that can better preserve motion details. To take advantage of the trend towards video in wide-screen format, we further introduce an asymmetric pyramid downsampling scheme that enables the estimation of longer range horizontal motions. The methods are evaluated on Middlebury, MPI Sintel, and KITTI datasets using the same parameter settings.

ps

pdf full text code [BibTex]

pdf full text code [BibTex]


no image
Assessing randomness and complexity in human motion trajectories through analysis of symbolic sequences

Peng, Z, Genewein, T, Braun, DA

Frontiers in Human Neuroscience, 8(168):1-13, March 2014 (article)

Abstract
Complexity is a hallmark of intelligent behavior consisting both of regular patterns and random variation. To quantitatively assess the complexity and randomness of human motion, we designed a motor task in which we translated subjects' motion trajectories into strings of symbol sequences. In the first part of the experiment participants were asked to perform self-paced movements to create repetitive patterns, copy pre-specified letter sequences, and generate random movements. To investigate whether the degree of randomness can be manipulated, in the second part of the experiment participants were asked to perform unpredictable movements in the context of a pursuit game, where they received feedback from an online Bayesian predictor guessing their next move. We analyzed symbol sequences representing subjects' motion trajectories with five common complexity measures: predictability, compressibility, approximate entropy, Lempel-Ziv complexity, as well as effective measure complexity. We found that subjects’ self-created patterns were the most complex, followed by drawing movements of letters and self-paced random motion. We also found that participants could change the randomness of their behavior depending on context and feedback. Our results suggest that humans can adjust both complexity and regularity in different movement types and contexts and that this can be assessed with information-theoretic measures of the symbolic sequences generated from movement trajectories.

ei

DOI [BibTex]

DOI [BibTex]


no image
Rotating Magnetic Miniature Swimming Robots With Multiple Flexible Flagella

Ye, Z., Régnier, S., Sitti, M.

IEEE Trans. on Robotics, 30(1):3-13, 2014 (article)

pi

[BibTex]

[BibTex]


no image
Three-Dimensional Programmable Assembly by Untethered Magnetic Robotic Micro-Grippers

Diller, E., Sitti, M.

Advanced Functional Materials, 24, pages: 4397-4404, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Mechanics of Load–Drag–Unload Contact Cleaning of Gecko-Inspired Fibrillar Adhesives

Abusomwan, U. A., Sitti, M.

Langmuir, 30(40):11913-11918, American Chemical Society, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
The local magnetic properties of [MnIII6 CrIII]3+ and [FeIII6 CrIII]3+ single-molecule magnets deposited on surfaces studied by spin-polarized photoemission and XMCD with circularly polarized synchrotron radiation

Heinzmann, U., Helmstedt, A., Dohmeier, N., Müller, N., Gryzia, A., Brechling, A., Hoeke, V., Krickemeyer, E., Glaser, T., Fonin, M., Bouvron, S., Leicht, P., Tietze, T., Goering, E., Kuepper, K.

{Journal of Physics: Conference Series}, 488(13), IOP Publishing, Bristol, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
A fluorene based covalent triazine framework with high CO2 and H2 capture and storage capacities

Hug, S., Mesch, M. B., Oh, H., Popp, N., Hirscher, M., Senker, J., Lotsch, B. V.

{Journal of Materials Chemistry A}, 2(16):5928-5936, Royal Society of Chemistry, Cambridge, UK, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ab-initio calculations and atomistic calculations on the magnetoelectric effects in metallic nanostructures

Fähnle, M., Subkow, S.

{Physica Status Solidi C}, 11(2):185-191, Wiley-VCH, Weinheim, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Role of electron-magnon scatterings in ultrafast demagnetization

Haag, M., Illg, C., Fähnle, M.

{Physical Review B}, 90(1), American Physical Society, Woodbury, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Element specific monolayer depth profiling

Macke, S., Radi, A., Hamann-Borrero, J. E., Verna, A., Bluschke, M., Brück, S., Goering, E., Sutarto, R., He, F., Cristiani, G., Wu, M., Benckiser, E., Habermeier, H., Logvenov, G., Gauquelin, N., Botton, G. A., Kajdos, A. P., Stemmer, S., Sawatzky, G. A., Haverkort, M. W., Keimer, B., Hinkov, V.

{Advanced Materials}, 26(38):6554-6559, Wiley VCH, Weinheim, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Local modification of the magnetic vortex-core velocity by gallium implantation

Langner, H. H., Vogel, A., Beyersdorff, B., Weigand, M., Frömter, R., Oepen, H. P., Meier, G.

{Journal of Applied Physcis}, (10), American Institute of Physics, New York, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Influence of magnetic fields on spin-mixing in transition metals

Haag, M., Illg, C., Fähnle, M.

{Physical Review B}, 90(13), American Physical Society, Woodbury, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]

2004


no image
On the representation, learning and transfer of spatio-temporal movement characteristics

Ilg, W., Bakir, GH., Mezger, J., Giese, M.

International Journal of Humanoid Robotics, 1(4):613-636, December 2004 (article)

ei

[BibTex]

2004


[BibTex]


no image
Insect-inspired estimation of egomotion

Franz, MO., Chahl, JS., Krapp, HG.

Neural Computation, 16(11):2245-2260, November 2004 (article)

Abstract
Tangential neurons in the fly brain are sensitive to the typical optic flow patterns generated during egomotion. In this study, we examine whether a simplified linear model based on the organization principles in tangential neurons can be used to estimate egomotion from the optic flow. We present a theory for the construction of an estimator consisting of a linear combination of optic flow vectors that incorporates prior knowledge both about the distance distribution of the environment, and about the noise and egomotion statistics of the sensor. The estimator is tested on a gantry carrying an omnidirectional vision sensor. The experiments show that the proposed approach leads to accurate and robust estimates of rotation rates, whereas translation estimates are of reasonable quality, albeit less reliable.

ei

PDF PostScript Web DOI [BibTex]

PDF PostScript Web DOI [BibTex]


no image
Efficient face detection by a cascaded support-vector machine expansion

Romdhani, S., Torr, P., Schölkopf, B., Blake, A.

Proceedings of The Royal Society of London A, 460(2501):3283-3297, A, November 2004 (article)

Abstract
We describe a fast system for the detection and localization of human faces in images using a nonlinear ‘support-vector machine‘. We approximate the decision surface in terms of a reduced set of expansion vectors and propose a cascaded evaluation which has the property that the full support-vector expansion is only evaluated on the face-like parts of the image, while the largest part of typical images is classified using a single expansion vector (a simpler and more efficient classifier). As a result, only three reduced-set vectors are used, on average, to classify an image patch. Hence, the cascaded evaluation, presented in this paper, offers a thirtyfold speed-up over an evaluation using the full set of reduced-set vectors, which is itself already thirty times faster than classification using all the support vectors.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Discrete vs. Continuous: Two Sides of Machine Learning

Zhou, D.

October 2004 (talk)

Abstract
We consider the problem of transductive inference. In many real-world problems, unlabeled data is far easier to obtain than labeled data. Hence transductive inference is very significant in many practical problems. According to Vapnik's point of view, one should predict the function value only on the given points directly rather than a function defined on the whole space, the latter being a more complicated problem. Inspired by this idea, we develop discrete calculus on finite discrete spaces, and then build discrete regularization. A family of transductive algorithms is naturally derived from this regularization framework. We validate the algorithms on both synthetic and real-world data from text/web categorization to bioinformatics problems. A significant by-product of this work is a powerful way of ranking data based on examples including images, documents, proteins and many other kinds of data. This talk is mainly based on the followiing contribution: (1) D. Zhou and B. Sch{\"o}lkopf: Transductive Inference with Graphs, MPI Technical report, August, 2004; (2) D. Zhou, B. Sch{\"o}lkopf and T. Hofmann. Semi-supervised Learning on Directed Graphs. NIPS 2004; (3) D. Zhou, O. Bousquet, T.N. Lal, J. Weston and B. Sch{\"o}lkopf. Learning with Local and Global Consistency. NIPS 2003.

ei

PDF [BibTex]


no image
Grundlagen von Support Vector Maschinen und Anwendungen in der Bildverarbeitung

Eichhorn, J.

September 2004 (talk)

Abstract
Invited talk at the workshop "Numerical, Statistical and Discrete Methods in Image Processing" at the TU M{\"u}nchen (in GERMAN)

ei

PDF [BibTex]


no image
Learning kernels from biological networks by maximizing entropy

Tsuda, K., Noble, W.

Bioinformatics, 20(Suppl. 1):i326-i333, August 2004 (article)

Abstract
Motivation: The diffusion kernel is a general method for computing pairwise distances among all nodes in a graph, based on the sum of weighted paths between each pair of nodes. This technique has been used successfully, in conjunction with kernel-based learning methods, to draw inferences from several types of biological networks. Results: We show that computing the diffusion kernel is equivalent to maximizing the von Neumann entropy, subject to a global constraint on the sum of the Euclidean distances between nodes. This global constraint allows for high variance in the pairwise distances. Accordingly, we propose an alternative, locally constrained diffusion kernel, and we demonstrate that the resulting kernel allows for more accurate support vector machine prediction of protein functional classifications from metabolic and protein–protein interaction networks.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Masking effect produced by Mach bands on the detection of narrow bars of random polarity

Henning, GB., Hoddinott, KT., Wilson-Smith, ZJ., Hill, NJ.

Journal of the Optical Society of America, 21(8):1379-1387, A, August 2004 (article)

ei

[BibTex]

[BibTex]


no image
Riemannian Geometry on Graphs and its Application to Ranking and Classification

Zhou, D.

June 2004 (talk)

Abstract
We consider the problem of transductive inference. In many real-world problems, unlabeled data is far easier to obtain than labeled data. Hence transductive inference is very significant in many practical problems. According to Vapnik's point of view, one should predict the function value only on the given points directly rather than a function defined on the whole space, the latter being a more complicated problem. Inspired by this idea, we develop discrete calculus on finite discrete spaces, and then build discrete regularization. A family of transductive algorithms is naturally derived from this regularization framework. We validate the algorithms on both synthetic and real-world data from text/web categorization to bioinformatics problems. A significant by-product of this work is a powerful way of ranking data based on examples including images, documents, proteins and many other kinds of data.

ei

PDF [BibTex]


no image
Support Vector Channel Selection in BCI

Lal, T., Schröder, M., Hinterberger, T., Weston, J., Bogdan, M., Birbaumer, N., Schölkopf, B.

IEEE Transactions on Biomedical Engineering, 51(6):1003-1010, June 2004 (article)

Abstract
Designing a Brain Computer Interface (BCI) system one can choose from a variety of features that may be useful for classifying brain activity during a mental task. For the special case of classifying EEG signals we propose the usage of the state of the art feature selection algorithms Recursive Feature Elimination and Zero-Norm Optimization which are based on the training of Support Vector Machines (SVM). These algorithms can provide more accurate solutions than standard filter methods for feature selection. We adapt the methods for the purpose of selecting EEG channels. For a motor imagery paradigm we show that the number of used channels can be reduced significantly without increasing the classification error. The resulting best channels agree well with the expected underlying cortical activity patterns during the mental tasks. Furthermore we show how time dependent task specific information can be visualized.

ei

DOI [BibTex]

DOI [BibTex]


no image
Distance-Based Classification with Lipschitz Functions

von Luxburg, U., Bousquet, O.

Journal of Machine Learning Research, 5, pages: 669-695, June 2004 (article)

Abstract
The goal of this article is to develop a framework for large margin classification in metric spaces. We want to find a generalization of linear decision functions for metric spaces and define a corresponding notion of margin such that the decision function separates the training points with a large margin. It will turn out that using Lipschitz functions as decision functions, the inverse of the Lipschitz constant can be interpreted as the size of a margin. In order to construct a clean mathematical setup we isometrically embed the given metric space into a Banach space and the space of Lipschitz functions into its dual space. To analyze the resulting algorithm, we prove several representer theorems. They state that there always exist solutions of the Lipschitz classifier which can be expressed in terms of distance functions to training points. We provide generalization bounds for Lipschitz classifiers in terms of the Rademacher complexities of some Lipschitz function classes. The generality of our approach can be seen from the fact that several well-known algorithms are special cases of the Lipschitz classifier, among them the support vector machine, the linear programming machine, and the 1-nearest neighbor classifier.

ei

PDF PostScript PDF [BibTex]

PDF PostScript PDF [BibTex]


no image
cDNA-Microarray Technology in Cartilage Research - Functional Genomics of Osteoarthritis [in German]

Aigner, T., Finger, F., Zien, A., Bartnik, E.

Zeitschrift f{\"u}r Orthop{\"a}die und ihre Grenzgebiete, 142(2):241-247, April 2004 (article)

Abstract
Functional genomics represents a new challenging approach in order to analyze complex diseases such as osteoarthritis on a molecular level. The characterization of the molecular changes of the cartilage cells, the chondrocytes, enables a better understanding of the pathomechanisms of the disease. In particular, the identification and characterization of new target molecules for therapeutic intervention is of interest. Also, potential molecular markers for diagnosis and monitoring of osteoarthritis contribute to a more appropriate patient management. The DNA-microarray technology complements (but does not replace) biochemical and biological research in new disease-relevant genes. Large-scale functional genomics will identify molecular networks such as yet identified players in the anabolic-catabolic balance of articular cartilage as well as disease-relevant intracellular signaling cascades so far rather unknown in articular chondrocytes. However, at the moment it is also important to recognize the limitations of the microarray technology in order to avoid over-interpretation of the results. This might lead to misleading results and prevent to a significant extent a proper use of the potential of this technology in the field of osteoarthritis.

ei

[BibTex]

[BibTex]


no image
A Compression Approach to Support Vector Model Selection

von Luxburg, U., Bousquet, O., Schölkopf, B.

Journal of Machine Learning Research, 5, pages: 293-323, April 2004 (article)

Abstract
In this paper we investigate connections between statistical learning theory and data compression on the basis of support vector machine (SVM) model selection. Inspired by several generalization bounds we construct "compression coefficients" for SVMs which measure the amount by which the training labels can be compressed by a code built from the separating hyperplane. The main idea is to relate the coding precision to geometrical concepts such as the width of the margin or the shape of the data in the feature space. The so derived compression coefficients combine well known quantities such as the radius-margin term R^2/rho^2, the eigenvalues of the kernel matrix, and the number of support vectors. To test whether they are useful in practice we ran model selection experiments on benchmark data sets. As a result we found that compression coefficients can fairly accurately predict the parameters for which the test error is minimized.

ei

PDF [BibTex]

PDF [BibTex]


no image
Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking

Zhou, D.

January 2004 (talk)

Abstract
We consider the general problem of learning from labeled and unlabeled data, which is often called semi-supervised learning or transductive inference. A principled approach to semi-supervised learning is to design a classifying function which is sufficiently smooth with respect to the intrinsic structure collectively revealed by known labeled and unlabeled points. We present a simple algorithm to obtain such a smooth solution. Our method yields encouraging experimental results on a number of classification problems and demonstrates effective use of unlabeled data.

ei

PDF [BibTex]


no image
Experimentally optimal v in support vector regression for different noise models and parameter settings

Chalimourda, A., Schölkopf, B., Smola, A.

Neural Networks, 17(1):127-141, January 2004 (article)

Abstract
In Support Vector (SV) regression, a parameter ν controls the number of Support Vectors and the number of points that come to lie outside of the so-called var epsilon-insensitive tube. For various noise models and SV parameter settings, we experimentally determine the values of ν that lead to the lowest generalization error. We find good agreement with the values that had previously been predicted by a theoretical argument based on the asymptotic efficiency of a simplified model of SV regression. As a side effect of the experiments, valuable information about the generalization behavior of the remaining SVM parameters and their dependencies is gained. The experimental findings are valid even for complex ‘real-world’ data sets. Based on our results on the role of the ν-SVM parameters, we discuss various model selection methods.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Introduction to Category Theory

Bousquet, O.

Internal Seminar, January 2004 (talk)

Abstract
A brief introduction to the general idea behind category theory with some basic definitions and examples. A perspective on higher dimensional categories is given.

ei

PDF [BibTex]

PDF [BibTex]


no image
Protein ranking: from local to global structure in the protein similarity network

Weston, J., Elisseeff, A., Zhou, D., Leslie, C., Noble, W.

Proceedings of the National Academy of Science, 101(17):6559-6563, 2004 (article)

Abstract
Biologists regularly search databases of DNA or protein sequences for evolutionary or functional relationships to a given query sequence. We describe a ranking algorithm that exploits the entire network structure of similarity relationships among proteins in a sequence database by performing a diffusion operation on a pre-computed, weighted network. The resulting ranking algorithm, evaluated using a human-curated database of protein structures, is efficient and provides significantly better rankings than a local network search algorithm such as PSI-BLAST.

ei

Web [BibTex]

Web [BibTex]


no image
Statistical Performance of Support Vector Machines

Blanchard, G., Bousquet, O., Massart, P.

2004 (article)

ei

PostScript [BibTex]


no image
Asymptotic Properties of the Fisher Kernel

Tsuda, K., Akaho, S., Kawanabe, M., Müller, K.

Neural Computation, 16(1):115-137, 2004 (article)

ei

PDF [BibTex]

PDF [BibTex]