Header logo is


2006


no image
Deterministic annealing for semi-supervised kernel machines

Sindhwani, V., Keerthi, S., Chapelle, O.

In ICML 2006, pages: 841-848, (Editors: Cohen, W. W., A. Moore), ACM Press, New York, NY, USA, 23rd International Conference on Machine Learning, June 2006 (inproceedings)

Abstract
An intuitive approach to utilizing unlabeled data in kernel-based classification algorithms is to simply treat the unknown labels as additional optimization variables. For margin-based loss functions, one can view this approach as attempting to learn low-density separators. However, this is a hard optimization problem to solve in typical semi-supervised settings where unlabeled data is abundant. The popular Transductive SVM algorithm is a label-switching-retraining procedure that is known to be susceptible to local minima. In this paper, we present a global optimization framework for semi-supervised Kernel machines where an easier problem is parametrically deformed to the original hard problem and minimizers are smoothly tracked. Our approach is motivated from deterministic annealing techniques and involves a sequence of convex optimization problems that are exactly and efficiently solved. We present empirical results on several synthetic and real world datasets that demonstrate the effectiveness of our approach.

ei

PDF Web DOI [BibTex]

2006


PDF Web DOI [BibTex]


no image
Clustering Graphs by Weighted Substructure Mining

Tsuda, K., Kudo, T.

In ICML 2006, pages: 953-960, (Editors: Cohen, W. W., A. Moore), ACM Press, New York, NY, USA, 23rd International Conference on Machine Learning, June 2006 (inproceedings)

Abstract
Graph data is getting increasingly popular in, e.g., bioinformatics and text processing. A main difficulty of graph data processing lies in the intrinsic high dimensionality of graphs, namely, when a graph is represented as a binary feature vector of indicators of all possible subgraphs, the dimensionality gets too large for usual statistical methods. We propose an efficient method for learning a binomial mixture model in this feature space. Combining the $ell_1$ regularizer and the data structure called DFS code tree, the MAP estimate of non-zero parameters are computed efficiently by means of the EM algorithm. Our method is applied to the clustering of RNA graphs, and is compared favorably with graph kernels and the spectral graph distance.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A Choice Model with Infinitely Many Latent Features

Görür, D., Jäkel, F., Rasmussen, C.

In ICML 2006, pages: 361-368, (Editors: Cohen, W. W., A. Moore), ACM Press, New York, NY, USA, 23rd International Conference on Machine Learning, June 2006 (inproceedings)

Abstract
Elimination by aspects (EBA) is a probabilistic choice model describing how humans decide between several options. The options from which the choice is made are characterized by binary features and associated weights. For instance, when choosing which mobile phone to buy the features to consider may be: long lasting battery, color screen, etc. Existing methods for inferring the parameters of the model assume pre-specified features. However, the features that lead to the observed choices are not always known. Here, we present a non-parametric Bayesian model to infer the features of the options and the corresponding weights from choice data. We use the Indian buffet process (IBP) as a prior over the features. Inference using Markov chain Monte Carlo (MCMC) in conjugate IBP models has been previously described. The main contribution of this paper is an MCMC algorithm for the EBA model that can also be used in inference for other non-conjugate IBP models---this may broaden the use of IBP priors considerably.

ei

PostScript PDF Web DOI [BibTex]

PostScript PDF Web DOI [BibTex]


no image
Learning High-Order MRF Priors of Color Images

McAuley, J., Caetano, T., Smola, A., Franz, MO.

In ICML 2006, pages: 617-624, (Editors: Cohen, W. W., A. Moore), ACM Press, New York, NY, USA, 23rd International Conference on Machine Learning, June 2006 (inproceedings)

Abstract
In this paper, we use large neighborhood Markov random fields to learn rich prior models of color images. Our approach extends the monochromatic Fields of Experts model (Roth and Blackwell, 2005) to color images. In the Fields of Experts model, the curse of dimensionality due to very large clique sizes is circumvented by parameterizing the potential functions according to a product of experts. We introduce several simplifications of the original approach by Roth and Black which allow us to cope with the increased clique size (typically 3x3x3 or 5x5x3 pixels) of color images. Experimental results are presented for image denoising which evidence improvements over state-of-the-art monochromatic image priors.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Inference with the Universum

Weston, J., Collobert, R., Sinz, F., Bottou, L., Vapnik, V.

In ICML 2006, pages: 1009-1016, (Editors: Cohen, W. W., A. Moore), ACM Press, New York, NY, USA, 23rd International Conference on Machine Learning, June 2006 (inproceedings)

Abstract
WIn this paper we study a new framework introduced by Vapnik (1998) and Vapnik (2006) that is an alternative capacity concept to the large margin approach. In the particular case of binary classification, we are given a set of labeled examples, and a collection of "non-examples" that do not belong to either class of interest. This collection, called the Universum, allows one to encode prior knowledge by representing meaningful concepts in the same domain as the problem at hand. We describe an algorithm to leverage the Universum by maximizing the number of observed contradictions, and show experimentally that this approach delivers accuracy improvements over using labeled data alone.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
The pedestal effect is caused by off-frequency looking, not nonlinear transduction or contrast gain-control

Wichmann, F., Henning, B.

Journal of Vision, 6(6):194, 6th Annual Meeting of the Vision Sciences Society (VSS), June 2006 (poster)

Abstract
The pedestal or dipper effect is the large improvement in the detectabilty of a sinusoidal grating observed when the signal is added to a pedestal or masking grating having the signal‘s spatial frequency, orientation, and phase. The effect is largest with pedestal contrasts just above the ‘threshold‘ in the absence of a pedestal. We measured the pedestal effect in both broadband and notched masking noise---noise from which a 1.5- octave band centered on the signal and pedestal frequency had been removed. The pedestal effect persists in broadband noise, but almost disappears with notched noise. The spatial-frequency components of the notched noise that lie above and below the spatial frequency of the signal and pedestal prevent the use of information about changes in contrast carried in channels tuned to spatial frequencies that are very much different from that of the signal and pedestal. We conclude that the pedestal effect in the absence of notched noise results principally from the use of information derived from channels with peak sensitivities at spatial frequencies that are different from that of the signal and pedestal. Thus the pedestal or dipper effect is not a characteristic of individual spatial-frequency tuned channels.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Classifying EEG and ECoG Signals without Subject Training for Fast BCI Implementation: Comparison of Non-Paralysed and Completely Paralysed Subjects

Hill, N., Lal, T., Schröder, M., Hinterberger, T., Wilhelm, B., Nijboer, F., Mochty, U., Widman, G., Elger, C., Schölkopf, B., Kübler, A., Birbaumer, N.

IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(2):183-186, June 2006 (article)

Abstract
We summarize results from a series of related studies that aim to develop a motor-imagery-based brain-computer interface using a single recording session of EEG or ECoG signals for each subject. We apply the same experimental and analytical methods to 11 non-paralysed subjects (8 EEG, 3 ECoG), and to 5 paralysed subjects (4 EEG, 1 ECoG) who had been unable to communicate for some time. While it was relatively easy to obtain classifiable signals quickly from most of the non-paralysed subjects, it proved impossible to classify the signals obtained from the paralysed patients by the same methods. This highlights the fact that though certain BCI paradigms may work well with healthy subjects, this does not necessarily indicate success with the target user group. We outline possible reasons for this failure to transfer.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
SCARNA: Fast and Accurate Structural Alignment of RNA Sequences by Matching Fixed-Length Stem Fragments

Tabei, Y., Tsuda, K., Kin, T., Asai, K.

Bioinformatics, 22(14):1723-1729, May 2006 (article)

Abstract
The functions of non-coding RNAs are strongly related to their secondary structures, but it is known that a secondary structure prediction of a single sequence is not reliable. Therefore, we have to collect similar RNA sequences with a common secondary structure for the analyses of a new non-coding RNA without knowing the exact secondary structure itself. Therefore, the sequence comparison in searching similar RNAs should consider not only their sequence similarities but their potential secondary structures. Sankoff‘s algorithm predicts the common secondary structures of the sequences, but it is computationally too expensive to apply to large-scale analyses. Because we often want to compare a large number of cDNA sequences or to search similar RNAs in the whole genome sequences, much faster algorithms are required. We propose a new method of comparing RNA sequences based on the structural alignments of the fixed-length fragments of the stem candidates. The implemented software, SCARNA (Stem Candidate Aligner for RNAs), is fast enough to apply to the long sequences in the large-scale analyses. The accuracy of the alignments is better or comparable to the much slower existing algorithms.

ei

PDF Web DOI [BibTex]


no image
Statistical Convergence of Kernel CCA

Fukumizu, K., Bach, F., Gretton, A.

In Advances in neural information processing systems 18, pages: 387-394, (Editors: Weiss, Y. , B. Schölkopf, J. Platt), MIT Press, Cambridge, MA, USA, Nineteenth Annual Conference on Neural Information Processing Systems (NIPS), May 2006 (inproceedings)

Abstract
While kernel canonical correlation analysis (kernel CCA) has been applied in many problems, the asymptotic convergence of the functions estimated from a finite sample to the true functions has not yet been established. This paper gives a rigorous proof of the statistical convergence of kernel CCA and a related method (NOCCO), which provides a theoretical justification for these methods. The result also gives a sufficient condition on the decay of the regularization coefficient in the methods to ensure convergence.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Products of "Edge-perts"

Gehler, PV., Welling, M.

In Advances in neural information processing systems 18, pages: 419-426, (Editors: Weiss, Y. , B. Schölkopf, J. Platt), MIT Press, Cambridge, MA, USA, Nineteenth Annual Conference on Neural Information Processing Systems (NIPS), May 2006 (inproceedings)

Abstract
Images represent an important and abundant source of data. Understanding their statistical structure has important applications such as image compression and restoration. In this paper we propose a particular kind of probabilistic model, dubbed the “products of edge-perts model” to describe the structure of wavelet transformed images. We develop a practical denoising algorithm based on a single edge-pert and show state-ofthe-art denoising performance on benchmark images.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Assessing Approximations for Gaussian Process Classification

Kuss, M., Rasmussen, C.

In Advances in neural information processing systems 18, pages: 699-706, (Editors: Weiss, Y. , B. Schölkopf, J. Platt), MIT Press, Cambridge, MA, USA, Nineteenth Annual Conference on Neural Information Processing Systems (NIPS), May 2006 (inproceedings)

Abstract
Gaussian processes are attractive models for probabilistic classification but unfortunately exact inference is analytically intractable. We compare Laplace‘s method and Expectation Propagation (EP) focusing on marginal likelihood estimates and predictive performance. We explain theoretically and corroborate empirically that EP is superior to Laplace. We also compare to a sophisticated MCMC scheme and show that EP is surprisingly accurate.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning an Interest Operator from Human Eye Movements

Kienzle, W., Wichmann, F., Schölkopf, B., Franz, M.

In CVPWR 2006, pages: page 24, (Editors: C Schmid and S Soatto and C Tomasi), IEEE Computer Society, Los Alamitos, CA, USA, 2006 Conference on Computer Vision and Pattern Recognition Workshop, April 2006 (inproceedings)

Abstract
We present an approach for designing interest operators that are based on human eye movement statistics. In contrast to existing methods which use hand-crafted saliency measures, we use machine learning methods to infer an interest operator directly from eye movement data. That way, the operator provides a measure of biologically plausible interestingness. We describe the data collection, training, and evaluation process, and show that our learned saliency measure significantly accounts for human eye movements. Furthermore, we illustrate connections to existing interest operators, and present a multi-scale interest point detector based on the learned function.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Evaluating Predictive Uncertainty Challenge

Quinonero Candela, J., Rasmussen, C., Sinz, F., Bousquet, O., Schölkopf, B.

In Machine Learning Challenges: Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment, pages: 1-27, (Editors: J Quiñonero Candela and I Dagan and B Magnini and F d’Alché-Buc), Springer, Berlin, Germany, First PASCAL Machine Learning Challenges Workshop (MLCW), April 2006 (inproceedings)

Abstract
This Chapter presents the PASCAL Evaluating Predictive Uncertainty Challenge, introduces the contributed Chapters by the participants who obtained outstanding results, and provides a discussion with some lessons to be learnt. The Challenge was set up to evaluate the ability of Machine Learning algorithms to provide good “probabilistic predictions”, rather than just the usual “point predictions” with no measure of uncertainty, in regression and classification problems. Parti-cipants had to compete on a number of regression and classification tasks, and were evaluated by both traditional losses that only take into account point predictions and losses we proposed that evaluate the quality of the probabilistic predictions.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
The Effect of Artifacts on Dependence Measurement in fMRI

Gretton, A., Belitski, A., Murayama, Y., Schölkopf, B., Logothetis, N.

Magnetic Resonance Imaging, 24(4):401-409, April 2006 (article)

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Phase noise and the classification of natural images

Wichmann, F., Braun, D., Gegenfurtner, K.

Vision Research, 46(8-9):1520-1529, April 2006 (article)

Abstract
We measured the effect of global phase manipulations on a rapid animal categorization task. The Fourier spectra of our images of natural scenes were manipulated by adding zero-mean random phase noise at all spatial frequencies. The phase noise was the independent variable, uniformly and symmetrically distributed between 0 degree and ±180 degrees. Subjects were remarkably resistant to phase noise. Even with ±120 degree phase noise subjects were still performing at 75% correct. The high resistance of the subjects’ animal categorization rate to phase noise suggests that the visual system is highly robust to such random image changes. The proportion of correct answers closely followed the correlation between original and the phase noise-distorted images. Animal detection rate was higher when the same task was performed with contrast reduced versions of the same natural images, at contrasts where the contrast reduction mimicked that resulting from our phase randomization. Since the subjects’ categorization rate was better in the contrast experiment, reduction of local contrast alone cannot explain the performance in the phase noise experiment. This result obtained with natural images differs from those obtained for simple sinusoidal stimuli were performance changes due to phase changes are attributed to local contrast changes only. Thus the global phasechange accompanying disruption of image structure such as edges and object boundaries at different spatial scales reduces object classification over and above the performance deficit resulting from reducing contrast. Additional colour information improves the categorization performance by 2 %.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A Direct Method for Building Sparse Kernel Learning Algorithms

Wu, M., Schölkopf, B., BakIr, G.

Journal of Machine Learning Research, 7, pages: 603-624, April 2006 (article)

Abstract
Many Kernel Learning Algorithms(KLA), including Support Vector Machine (SVM), result in a Kernel Machine (KM), such as a kernel classifier, whose key component is a weight vector in a feature space implicitly introduced by a positive definite kernel function. This weight vector is usually obtained by solving a convex optimization problem. Based on this fact we present a direct method to build Sparse Kernel Learning Algorithms (SKLA) by adding one more constraint to the original convex optimization problem, such that the sparseness of the resulting KM is explicitly controlled while at the same time the performance of the resulting KM can be kept as high as possible. A gradient based approach is provided to solve this modified optimization problem. Applying this method to the SVM results in a concrete algorithm for building Sparse Large Margin Classifiers (SLMC). Further analysis of the SLMC algorithm indicates that it essentially finds a discriminating subspace that can be spanned by a small number of vectors, and in this subspace, the different classes of data are linearly well separated. Experimental results over several classification benchmarks demonstrate the effectiveness of our approach.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Estimating Predictive Variances with Kernel Ridge Regression

Cawley, G., Talbot, N., Chapelle, O.

In MLCW 2005, pages: 56-77, (Editors: Quinonero-Candela, J. , I. Dagan, B. Magnini, F. D‘Alché-Buc), Springer, Berlin, Germany, First PASCAL Machine Learning Challenges Workshop, April 2006 (inproceedings)

Abstract
In many regression tasks, in addition to an accurate estimate of the conditional mean of the target distribution, an indication of the predictive uncertainty is also required. There are two principal sources of this uncertainty: the noise process contaminating the data and the uncertainty in estimating the model parameters based on a limited sample of training data. Both of them can be summarised in the predictive variance which can then be used to give confidence intervals. In this paper, we present various schemes for providing predictive variances for kernel ridge regression, especially in the case of a heteroscedastic regression, where the variance of the noise process contaminating the data is a smooth function of the explanatory variables. The use of leave-one-out cross-validation is shown to eliminate the bias inherent in estimates of the predictive variance. Results obtained on all three regression tasks comprising the predictive uncertainty challenge demonstrate the value of this approach.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
The Pedestal Effect is Caused by Off-Frequency Looking, not Nonlinear Transduction or Contrast Gain-Control

Wichmann, F., Henning, G.

9, pages: 174, 9th T{\"u}bingen Perception Conference (TWK), March 2006 (poster)

Abstract
The pedestal or dipper effect is the large improvement in the detectability of a sinusoidal grating observed when the signal is added to a pedestal or masking grating having the signal‘s spatial frequency, orientation, and phase. The effect is largest with pedestal contrasts just above the ‘threshold’ in the absence of a pedestal. We measured the pedestal effect in both broadband and notched masking noise---noise from which a 1.5-octave band centered on the signal and pedestal frequency had been removed. The pedestal effect persists in broadband noise, but almost disappears with notched noise. The spatial-frequency components of the notched noise that lie above and below the spatial frequency of the signal and pedestal prevent the use of information about changes in contrast carried in channels tuned to spatial frequencies that are very much different from that of the signal and pedestal. We conclude that the pedestal effect in the absence of notched noise results principally from the use of information derived from channels with peak sensitivities at spatial frequencies that are different from that of the signal and pedestal. Thus the pedestal or dipper effect is not a characteristic of individual spatial-frequency tuned channels.

ei

Web [BibTex]

Web [BibTex]


no image
Statistical Properties of Kernel Principal Component Analysis

Blanchard, G., Bousquet, O., Zwald, L.

Machine Learning, 66(2-3):259-294, March 2006 (article)

Abstract
We study the properties of the eigenvalues of Gram matrices in a non-asymptotic setting. Using local Rademacher averages, we provide data-dependent and tight bounds for their convergence towards eigenvalues of the corresponding kernel operator. We perform these computations in a functional analytic framework which allows to deal implicitly with reproducing kernel Hilbert spaces of infinite dimension. This can have applications to various kernel algorithms, such as Support Vector Machines (SVM). We focus on Kernel Principal Component Analysis (KPCA) and, using such techniques, we obtain sharp excess risk bounds for the reconstruction error. In these bounds, the dependence on the decay of the spectrum and on the closeness of successive eigenvalues is made explicit.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Network-based de-noising improves prediction from microarray data

Kato, T., Murata, Y., Miura, K., Asai, K., Horton, P., Tsuda, K., Fujibuchi, W.

BMC Bioinformatics, 7(Suppl. 1):S4-S4, March 2006 (article)

Abstract
Prediction of human cell response to anti-cancer drugs (compounds) from microarray data is a challenging problem, due to the noise properties of microarrays as well as the high variance of living cell responses to drugs. Hence there is a strong need for more practical and robust methods than standard methods for real-value prediction. We devised an extended version of the off-subspace noise-reduction (de-noising) method to incorporate heterogeneous network data such as sequence similarity or protein-protein interactions into a single framework. Using that method, we first de-noise the gene expression data for training and test data and also the drug-response data for training data. Then we predict the unknown responses of each drug from the de-noised input data. For ascertaining whether de-noising improves prediction or not, we carry out 12-fold cross-validation for assessment of the prediction performance. We use the Pearson‘s correlation coefficient between the true and predicted respon se values as the prediction performance. De-noising improves the prediction performance for 65% of drugs. Furthermore, we found that this noise reduction method is robust and effective even when a large amount of artificial noise is added to the input data. We found that our extended off-subspace noise-reduction method combining heterogeneous biological data is successful and quite useful to improve prediction of human cell cancer drug responses from microarray data.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Classification of Natural Scenes: Critical Features Revisited

Drewes, J., Wichmann, F., Gegenfurtner, K.

9, pages: 92, 9th T{\"u}bingen Perception Conference (TWK), March 2006 (poster)

Abstract
Human observers are capable of detecting animals within novel natural scenes with remarkable speed and accuracy. Despite the seeming complexity of such decisions it has been hypothesized that a simple global image feature, the relative abundance of high spatial frequencies at certain orientations, could underly such fast image classification [1]. We successfully used linear discriminant analysis to classify a set of 11.000 images into “animal” and “non-animal” images based on their individual amplitude spectra only [2]. We proceeded to sort the images based on the performance of our classifier, retaining only the best and worst classified 400 images ("best animals", "best distractors" and "worst animals", "worst distractors"). We used a Go/No-go paradigm to evaluate human performance on this subset of our images. Both reaction time and proportion of correctly classified images showed a significant effect of classification difficulty. Images more easily classified by our algorithm were also classified faster and better by humans, as predicted by the Torralba & Oliva hypothesis. We then equated the amplitude spectra of the 400 images, which, by design, reduced algorithmic performance to chance whereas human performance was only slightly reduced [3]. Most importantly, the same images as before were still classified better and faster, suggesting that even in the original condition features other than specifics of the amplitude spectrum made particular images easy to classify, clearly at odds with the Torralba & Oliva hypothesis.

ei

Web [BibTex]

Web [BibTex]


no image
Machine Learning Methods For Estimating Operator Equations

Steinke, F., Schölkopf, B.

In Proceedings of the 14th IFAC Symposium on System Identification (SYSID 2006), pages: 6, (Editors: B Ninness and H Hjalmarsson), Elsevier, Oxford, United Kingdom, 14th IFAC Symposium on System Identification (SYSID), March 2006 (inproceedings)

Abstract
We consider the problem of fitting a linear operator induced equation to point sampled data. In order to do so we systematically exploit the duality between minimizing a regularization functional derived from an operator and kernel regression methods. Standard machine learning model selection algorithms can then be interpreted as a search of the equation best fitting given data points. For many kernels this operator induced equation is a linear differential equation. Thus, we link a continuous-time system identification task with common machine learning methods. The presented link opens up a wide variety of methods to be applied to this system identification problem. In a series of experiments we demonstrate an example algorithm working on non-uniformly spaced data, giving special focus to the problem of identifying one system from multiple data recordings.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Factorial Coding of Natural Images: How Effective are Linear Models in Removing Higher-Order Dependencies?

Bethge, M.

9, pages: 90, 9th T{\"u}bingen Perception Conference (TWK), March 2006 (poster)

Abstract
The performance of unsupervised learning models for natural images is evaluated quantitatively by means of information theory. We estimate the gain in statistical independence (the multi-information reduction) achieved with independent component analysis (ICA), principal component analysis (PCA), zero-phase whitening, and predictive coding. Predictive coding is translated into the transform coding framework, where it can be characterized by the constraint of a triangular filter matrix. A randomly sampled whitening basis and the Haar wavelet are included into the comparison as well. The comparison of all these methods is carried out for different patch sizes, ranging from 2x2 to 16x16 pixels. In spite of large differences in the shape of the basis functions, we find only small differences in the multi-information between all decorrelation transforms (5% or less) for all patch sizes. Among the second-order methods, PCA is optimal for small patch sizes and predictive coding performs best for large patch sizes. The extra gain achieved with ICA is always less than 2%. In conclusion, the `edge filters‘ found with ICA lead only to a surprisingly small improvement in terms of its actual objective.

ei

Web [BibTex]

Web [BibTex]


no image
Implicit Volterra and Wiener Series for Higher-Order Image Analysis

Franz, M., Schölkopf, B.

In Advances in Data Analysis: Proceedings of the 30th Annual Conference of The Gesellschaft für Klassifikation, 30, pages: 1, March 2006 (inproceedings)

Abstract
The computation of classical higher-order statistics such as higher-order moments or spectra is difficult for images due to the huge number of terms to be estimated and interpreted. We propose an alternative approach in which multiplicative pixel interactions are described by a series of Wiener functionals. Since the functionals are estimated implicitly via polynomial kernels, the combinatorial explosion associated with the classical higher-order statistics is avoided. In addition, the kernel framework allows for estimating infinite series expansions and for the regularized estimation of the Wiener series. First results show that image structures such as lines or corners can be predicted correctly, and that pixel interactions up to the order of five play an important role in natural images.

ei

PDF [BibTex]

PDF [BibTex]


no image
Model-based Design Analysis and Yield Optimization

Pfingsten, T., Herrmann, D., Rasmussen, C.

IEEE Transactions on Semiconductor Manufacturing, 19(4):475-486, February 2006 (article)

Abstract
Fluctuations are inherent to any fabrication process. Integrated circuits and micro-electro-mechanical systems are particularly affected by these variations, and due to high quality requirements the effect on the devices’ performance has to be understood quantitatively. In recent years it has become possible to model the performance of such complex systems on the basis of design specifications, and model-based Sensitivity Analysis has made its way into industrial engineering. We show how an efficient Bayesian approach, using a Gaussian process prior, can replace the commonly used brute-force Monte Carlo scheme, making it possible to apply the analysis to computationally costly models. We introduce a number of global, statistically justified sensitivity measures for design analysis and optimization. Two models of integrated systems serve us as case studies to introduce the analysis and to assess its convergence properties. We show that the Bayesian Monte Carlo scheme can save costly simulation runs and can ensure a reliable accuracy of the analysis.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Weighting of experimental evidence in macromolecular structure determination

Habeck, M., Rieping, W., Nilges, M.

Proceedings of the National Academy of Sciences of the United States of America, 103(6):1756-1761, February 2006 (article)

Abstract
The determination of macromolecular structures requires weighting of experimental evidence relative to prior physical information. Although it can critically affect the quality of the calculated structures, experimental data are routinely weighted on an empirical basis. At present, cross-validation is the most rigorous method to determine the best weight. We describe a general method to adaptively weight experimental data in the course of structure calculation. It is further shown that the necessity to define weights for the data can be completely alleviated. We demonstrate the method on a structure calculation from NMR data and find that the resulting structures are optimal in terms of accuracy and structural quality. Our method is devoid of the bias imposed by an empirical choice of the weight and has some advantages over estimating the weight by cross-validation.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Classification of Faces in Man and Machine

Graf, A., Wichmann, F., Bülthoff, H., Schölkopf, B.

Neural Computation, 18(1):143-165, January 2006 (article)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Causal Inference by Choosing Graphs with Most Plausible Markov Kernels

Sun, X., Janzing, D., Schölkopf, B.

In Proceedings of the 9th International Symposium on Artificial Intelligence and Mathematics, pages: 1-11, ISAIM, January 2006 (inproceedings)

Abstract
We propose a new inference rule for estimating causal structure that underlies the observed statistical dependencies among n random variables. Our method is based on comparing the conditional distributions of variables given their direct causes (the so-called Markov kernels") for all hypothetical causal directions and choosing the most plausible one. We consider those Markov kernels most plausible, which maximize the (conditional) entropies constrained by their observed first moment (expectation) and second moments (variance and covariance with its direct causes) based on their given domain. In this paper, we discuss our inference rule for causal relationships between two variables in detail, apply it to a real-world temperature data set with known causality and show that our method provides a correct result for the example.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Classification of natural scenes: critical features revisited

Drewes, J., Wichmann, F., Gegenfurtner, K.

Experimentelle Psychologie: Beitr{\"a}ge zur 48. Tagung experimentell arbeitender Psychologen, 48, pages: 251, 2006 (poster)

ei

[BibTex]

[BibTex]


no image
Texture and haptic cues in slant discrimination: combination is sensitive to reliability but not statistically optimal

Rosas, P., Wagemans, J., Ernst, M., Wichmann, F.

Beitr{\"a}ge zur 48. Tagung experimentell arbeitender Psychologen (TeaP 2006), 48, pages: 80, 2006 (poster)

ei

[BibTex]

[BibTex]


no image
Ähnlichkeitsmasse in Modellen zur Kategorienbildung

Jäkel, F., Wichmann, F.

Experimentelle Psychologie: Beitr{\"a}ge zur 48. Tagung experimentell arbeitender Psychologen, 48, pages: 223, 2006 (poster)

ei

[BibTex]

[BibTex]


no image
The pedestal effect is caused by off-frequency looking, not nonlinear transduction or contrast gain-control

Wichmann, F., Henning, B.

Experimentelle Psychologie: Beitr{\"a}ge zur 48. Tagung experimentell arbeitender Psychologen, 48, pages: 205, 2006 (poster)

ei

[BibTex]

[BibTex]


Thumb xl toc image
Chiral molecules split light: Reflection and refraction in a chiral liquid

Ghosh, A., Fischer, P.

PHYSICAL REVIEW LETTERS, 97(17), 2006, Featured highlight ‘Fundamental optical physics: Refraction’ Nature Photonics, Nov. 2006. (article)

Abstract
A light beam changes direction as it enters a liquid at an angle from another medium, such as air. Should the liquid contain molecules that lack mirror symmetry, then it has been predicted by Fresnel that the light beam will not only change direction, but will actually split into two separate beams with a small difference in the respective angles of refraction. Here we report the observation of this phenomenon. We also demonstrate that the angle of reflection does not equal the angle of incidence in a chiral medium. Unlike conventional optical rotation, which depends on the path-length through the sample, the reported reflection and refraction phenomena arise within a few wavelengths at the interface and thereby suggest a new approach to polarimetry that can be used in microfluidic volumes.

Featured highlight ‘Fundamental optical physics: Refraction’ Nature Photonics, Nov. 2006.

pf

DOI [BibTex]

DOI [BibTex]


no image
Learning operational space control

Peters, J., Schaal, S.

In Robotics: Science and Systems II (RSS 2006), pages: 255-262, (Editors: Gaurav S. Sukhatme and Stefan Schaal and Wolfram Burgard and Dieter Fox), Cambridge, MA: MIT Press, RSS , 2006, clmc (inproceedings)

Abstract
While operational space control is of essential importance for robotics and well-understood from an analytical point of view, it can be prohibitively hard to achieve accurate control in face of modeling errors, which are inevitable in complex robots, e.g., humanoid robots. In such cases, learning control methods can offer an interesting alternative to analytical control algorithms. However, the resulting learning problem is ill-defined as it requires to learn an inverse mapping of a usually redundant system, which is well known to suffer from the property of non-covexity of the solution space, i.e., the learning system could generate motor commands that try to steer the robot into physically impossible configurations. A first important insight for this paper is that, nevertheless, a physically correct solution to the inverse problem does exits when learning of the inverse map is performed in a suitable piecewise linear way. The second crucial component for our work is based on a recent insight that many operational space controllers can be understood in terms of a constraint optimal control problem. The cost function associated with this optimal control problem allows us to formulate a learning algorithm that automatically synthesizes a globally consistent desired resolution of redundancy while learning the operational space controller. From the view of machine learning, the learning problem corresponds to a reinforcement learning problem that maximizes an immediate reward and that employs an expectation-maximization policy search algorithm. Evaluations on a three degrees of freedom robot arm illustrate the feasability of our suggested approach.

am ei

link (url) [BibTex]

link (url) [BibTex]


no image
Reinforcement Learning for Parameterized Motor Primitives

Peters, J., Schaal, S.

In Proceedings of the 2006 International Joint Conference on Neural Networks, pages: 73-80, IJCNN, 2006, clmc (inproceedings)

Abstract
One of the major challenges in both action generation for robotics and in the understanding of human motor control is to learn the "building blocks of movement generation", called motor primitives. Motor primitives, as used in this paper, are parameterized control policies such as splines or nonlinear differential equations with desired attractor properties. While a lot of progress has been made in teaching parameterized motor primitives using supervised or imitation learning, the self-improvement by interaction of the system with the environment remains a challenging problem. In this paper, we evaluate different reinforcement learning approaches for improving the performance of parameterized motor primitives. For pursuing this goal, we highlight the difficulties with current reinforcement learning methods, and outline both established and novel algorithms for the gradient-based improvement of parameterized policies. We compare these algorithms in the context of motor primitive learning, and show that our most modern algorithm, the Episodic Natural Actor-Critic outperforms previous algorithms by at least an order of magnitude. We demonstrate the efficiency of this reinforcement learning method in the application of learning to hit a baseball with an anthropomorphic robot arm.

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl toc image
Direct chiral discrimination in NMR spectroscopy

Buckingham, A., Fischer, P.

CHEMICAL PHYSICS, 324(1):111-116, 2006 (article)

Abstract
Conventional nuclear magnetic resonance spectroscopy is unable to distinguish between the two mirror-image forms (enantiomers) of a chiral molecule. This is because the NMR spectrum is determined by the chemical shifts and spin-spin coupling constants which - in the absence of a chiral solvent - are identical for the two enantiomers. We discuss how chirality may nevertheless be directly detected in liquid-state NMR spectroscopy: In a chiral molecule, the rotating nuclear magnetic moment induces an electric dipole moment in the direction perpendicular to itself and to the permanent magnetic field of the spectrometer. We present computations of the precessing electric polarization following a pi/2 pulse. Our estimates indicate that the electric polarization should be detectable in favourable cases. We also predict that application of an electrostatic field induces a chirally sensitive magnetization oscillating in the direction of the permanent magnetic field. We show that the electric-field-perturbed chemical shift tensor, the nuclear magnetic shielding polarizability, underlies these chiral NMR effects. (c) 2005 Elsevier B.V. All rights reserved.

pf

DOI [BibTex]

DOI [BibTex]


no image
An ultrasonic standing-wave-actuated nano-positioning walking robot: piezoelectric-metal composite beam modeling

Son, K. J., Kartik, V., Wickert, J. A., Sitti, M.

Journal of vibration and control, 12(12):1293-1309, Sage Publications, 2006 (article)

pi

[BibTex]

[BibTex]


Thumb xl toc image
Ring-resonator-based frequency-domain optical activity measurements of a chiral liquid

Vollmer, F., Fischer, P.

OPTICS LETTERS, 31(4):453-455, 2006 (article)

Abstract
Chiral liquids rotate the plane of polarization of linearly polarized light and are therefore optically active. Here we show that optical rotation can be observed in the frequency domain. A chiral liquid introduced in a fiber-loop ring resonator that supports left and right circularly polarized modes gives rise to relative frequency shifts that are a direct measure of the liquid's circular birefringence and hence of its optical activity. The effect is in principle not diminished if the circumference of the ring is reduced. The technique is similarly applicable to refractive index and linear birefringence measurements. (c) 2006 Optical Society of America.

pf

DOI [BibTex]


Thumb xl toc image
Sign of the refractive index in a gain medium with negative permittivity and permeability

Chen, Y., Fischer, P., Wise, F.

JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 23(1):45-50, 2006 (article)

Abstract
We show how the sign of the refractive index in any medium may be derived using a rigorous analysis based on Einstein causality. In particular, we consider left-handed materials, i.e., media that have negative permittivities and permeabilities at the frequency of interest. We find that the consideration of gain in such media can give rise to a positive refractive index. (c) 2006 Optical Society of America.

pf

DOI [BibTex]

DOI [BibTex]


no image
IEEE TRANSACTIONS ON ROBOTICS

VOLZ, RICHARD A, TARN, TJ, MACIEJEWSKI, ANTHONY A, LEE, SUKHAN, BICCHI, ANTONIO, DE LUCA, ALESSANDRO, LUH, PETER B, TAYLOR, RUSSELL H, BEKEY, GEORGE A, ARAI, HIROHIKO, others

2006 (article)

pi

[BibTex]

[BibTex]


no image
Design methodology for biomimetic propulsion of miniature swimming robots

Behkam, B., Sitti, M.

Trans.-ASME Journal of Dynamic Systems Measurement and Control, 128(1):36, ASME, 2006 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Augmented reality user interface for an atomic force microscope-based nanorobotic system

Vogl, W., Ma, B. K., Sitti, M.

IEEE transactions on nanotechnology, 5(4):397-406, IEEE, 2006 (article)

pi

[BibTex]

[BibTex]


no image
Friction enhancement via micro-patterned wet elastomer adhesives on small intestinal surfaces

Kwon, J., Cheung, E., Park, S., Sitti, M.

Biomedical Materials, 1(4):216, IOP Publishing, 2006 (article)

pi

[BibTex]

[BibTex]


no image
From Motor Babbling to Purposive Actions: Emerging Self-exploration in a Dynamical Systems Approach to Early Robot Development

Der, R., Martius, G.

In Proc. From Animals to Animats 9, SAB 2006, 4095, pages: 406-421, LNCS, Springer, 2006 (inproceedings)

Abstract
Self-organization and the phenomenon of emergence play an essential role in living systems and form a challenge to artificial life systems. This is not only because systems become more lifelike, but also since self-organization may help in reducing the design efforts in creating complex behavior systems. The present paper studies self-exploration based on a general approach to the self-organization of behavior, which has been developed and tested in various examples in recent years. This is a step towards autonomous early robot development. We consider agents under the close sensorimotor coupling paradigm with a certain cognitive ability realized by an internal forward model. Starting from tabula rasa initial conditions we overcome the bootstrapping problem and show emerging self-exploration. Apart from that, we analyze the effect of limited actions, which lead to deprivation of the world model. We show that our paradigm explicitly avoids this by producing purposive actions in a natural way. Examples are given using a simulated simple wheeled robot and a spherical robot driven by shifting internal masses.

al

[BibTex]

[BibTex]


no image
Ab-initio calculations: I. Basic principles of the density functional electron theory and combination with phenomenological theories

Fähnle, M.

In Structural defects in ordered alloys and intermetallics. Characterization and modelling, pages: IX-1-IX-10, COST and CNRS, Bonascre [Ariege, France], 2006 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Influence of the substrate on the magnetic anisotropy of monatomic wires

Komelj, M., Steiauf, D., Fähnle, M.

{Physical Review B}, 73, 2006 (article)

mms

[BibTex]

[BibTex]


no image
Mechanical properties of single-walled carbon nanotubes based on higher order Cauchy-Born rule

Guo, X., Wang, J. B., Zhang, H. W.

{International Journal of Solids and Structures}, 43, pages: 1276-1290, 2006 (article)

mms

[BibTex]

[BibTex]


no image
Vanishing Fe 3d orbital moments in single-crystalline magnetite

Goering, E., Gold, S., Lafkioti, M., Schütz, G.

{Europhysics Letters}, 73(1):97-103, 2006 (article)

mms

[BibTex]

[BibTex]