Header logo is


2014


Thumb xl cover acs ancac3 v008i009
Nanopropellers and Their Actuation in Complex Viscoelastic Media

Schamel, D., Mark, A. G., Gibbs, J. G., Miksch, C., Morozov, K. I., Leshansky, A. M., Fischer, P.

ACS Nano, 8(9):8794-8801, June 2014, Featured cover article. (article)

Abstract
Tissue and biological fluids are complex viscoelastic media with a nanoporous macromolecular structure. Here, we demonstrate that helical nanopropellers can be controllably steered through such a biological gel. The screw-propellers have a filament diameter of about 70 nm and are smaller than previously reported nanopropellers as well as any swimming microorganism. We show that the nanoscrews will move through high-viscosity solutions with comparable velocities to that of larger micropropellers, even though they are so small that Brownian forces suppress their actuation in pure water. When actuated in viscoelastic hyaluronan gels, the nanopropellers appear to have a significant advantage, as they are of the same size range as the gel’s mesh size. Whereas larger helices will show very low or negligible propulsion in hyaluronan solutions, the nanoscrews actually display significantly enhanced propulsion velocities that exceed the highest measured speeds in Newtonian fluids. The nanopropellers are not only promising for applications in the extracellular environment but small enough to be taken up by cells.

Featured cover article.

pf

Video - Helical Micro and Nanopropellers for Applications in Biological Fluidic Environments link (url) DOI [BibTex]


Thumb xl dfm
Efficient Non-linear Markov Models for Human Motion

Lehrmann, A. M., Gehler, P. V., Nowozin, S.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 1314-1321, IEEE, IEEE International Conference on Computer Vision and Pattern Recognition, June 2014 (inproceedings)

Abstract
Dynamic Bayesian networks such as Hidden Markov Models (HMMs) are successfully used as probabilistic models for human motion. The use of hidden variables makes them expressive models, but inference is only approximate and requires procedures such as particle filters or Markov chain Monte Carlo methods. In this work we propose to instead use simple Markov models that only model observed quantities. We retain a highly expressive dynamic model by using interactions that are nonlinear and non-parametric. A presentation of our approach in terms of latent variables shows logarithmic growth for the computation of exact loglikelihoods in the number of latent states. We validate our model on human motion capture data and demonstrate state-of-the-art performance on action recognition and motion completion tasks.

ps

Project page pdf DOI Project Page [BibTex]

Project page pdf DOI Project Page [BibTex]


Thumb xl grassmann
Grassmann Averages for Scalable Robust PCA

Hauberg, S., Feragen, A., Black, M. J.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 3810 -3817, Columbus, Ohio, USA, IEEE International Conference on Computer Vision and Pattern Recognition, June 2014 (inproceedings)

Abstract
As the collection of large datasets becomes increasingly automated, the occurrence of outliers will increase – "big data" implies "big outliers". While principal component analysis (PCA) is often used to reduce the size of data, and scalable solutions exist, it is well-known that outliers can arbitrarily corrupt the results. Unfortunately, state-of-the-art approaches for robust PCA do not scale beyond small-to-medium sized datasets. To address this, we introduce the Grassmann Average (GA), which expresses dimensionality reduction as an average of the subspaces spanned by the data. Because averages can be efficiently computed, we immediately gain scalability. GA is inherently more robust than PCA, but we show that they coincide for Gaussian data. We exploit that averages can be made robust to formulate the Robust Grassmann Average (RGA) as a form of robust PCA. Robustness can be with respect to vectors (subspaces) or elements of vectors; we focus on the latter and use a trimmed average. The resulting Trimmed Grassmann Average (TGA) is particularly appropriate for computer vision because it is robust to pixel outliers. The algorithm has low computational complexity and minimal memory requirements, making it scalable to "big noisy data." We demonstrate TGA for background modeling, video restoration, and shadow removal. We show scalability by performing robust PCA on the entire Star Wars IV movie.

ps

pdf code supplementary material tutorial video results video talk poster DOI Project Page [BibTex]

pdf code supplementary material tutorial video results video talk poster DOI Project Page [BibTex]


Thumb xl 3basic posebits
Posebits for Monocular Human Pose Estimation

Pons-Moll, G., Fleet, D. J., Rosenhahn, B.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 2345-2352, Columbus, Ohio, USA, IEEE International Conference on Computer Vision and Pattern Recognition, June 2014 (inproceedings)

Abstract
We advocate the inference of qualitative information about 3D human pose, called posebits, from images. Posebits represent boolean geometric relationships between body parts (e.g., left-leg in front of right-leg or hands close to each other). The advantages of posebits as a mid-level representation are 1) for many tasks of interest, such qualitative pose information may be sufficient (e.g. , semantic image retrieval), 2) it is relatively easy to annotate large image corpora with posebits, as it simply requires answers to yes/no questions; and 3) they help resolve challenging pose ambiguities and therefore facilitate the difficult talk of image-based 3D pose estimation. We introduce posebits, a posebit database, a method for selecting useful posebits for pose estimation and a structural SVM model for posebit inference. Experiments show the use of posebits for semantic image retrieval and for improving 3D pose estimation.

ps

pdf Project Page Project Page [BibTex]

pdf Project Page Project Page [BibTex]


Thumb xl roser
Simultaneous Underwater Visibility Assessment, Enhancement and Improved Stereo

Roser, M., Dunbabin, M., Geiger, A.

IEEE International Conference on Robotics and Automation, pages: 3840 - 3847 , Hong Kong, China, IEEE International Conference on Robotics and Automation, June 2014 (conference)

Abstract
Vision-based underwater navigation and obstacle avoidance demands robust computer vision algorithms, particularly for operation in turbid water with reduced visibility. This paper describes a novel method for the simultaneous underwater image quality assessment, visibility enhancement and disparity computation to increase stereo range resolution under dynamic, natural lighting and turbid conditions. The technique estimates the visibility properties from a sparse 3D map of the original degraded image using a physical underwater light attenuation model. Firstly, an iterated distance-adaptive image contrast enhancement enables a dense disparity computation and visibility estimation. Secondly, using a light attenuation model for ocean water, a color corrected stereo underwater image is obtained along with a visibility distance estimate. Experimental results in shallow, naturally lit, high-turbidity coastal environments show the proposed technique improves range estimation over the original images as well as image quality and color for habitat classification. Furthermore, the recursiveness and robustness of the technique allows real-time implementation onboard an Autonomous Underwater Vehicles for improved navigation and obstacle avoidance performance.

avg ps

pdf DOI [BibTex]

pdf DOI [BibTex]


Thumb xl icmlteaser
Preserving Modes and Messages via Diverse Particle Selection

Pacheco, J., Zuffi, S., Black, M. J., Sudderth, E.

In Proceedings of the 31st International Conference on Machine Learning (ICML-14), 32(1):1152-1160, J. Machine Learning Research Workshop and Conf. and Proc., Beijing, China, International Conference on Machine Learning (ICML), June 2014 (inproceedings)

Abstract
In applications of graphical models arising in domains such as computer vision and signal processing, we often seek the most likely configurations of high-dimensional, continuous variables. We develop a particle-based max-product algorithm which maintains a diverse set of posterior mode hypotheses, and is robust to initialization. At each iteration, the set of hypotheses at each node is augmented via stochastic proposals, and then reduced via an efficient selection algorithm. The integer program underlying our optimization-based particle selection minimizes errors in subsequent max-product message updates. This objective automatically encourages diversity in the maintained hypotheses, without requiring tuning of application-specific distances among hypotheses. By avoiding the stochastic resampling steps underlying particle sum-product algorithms, we also avoid common degeneracies where particles collapse onto a single hypothesis. Our approach significantly outperforms previous particle-based algorithms in experiments focusing on the estimation of human pose from single images.

ps

pdf SupMat link (url) Project Page Project Page [BibTex]

pdf SupMat link (url) Project Page Project Page [BibTex]


Thumb xl schoenbein
Calibrating and Centering Quasi-Central Catadioptric Cameras

Schoenbein, M., Strauss, T., Geiger, A.

IEEE International Conference on Robotics and Automation, pages: 4443 - 4450, Hong Kong, China, IEEE International Conference on Robotics and Automation, June 2014 (conference)

Abstract
Non-central catadioptric models are able to cope with irregular camera setups and inaccuracies in the manufacturing process but are computationally demanding and thus not suitable for robotic applications. On the other hand, calibrating a quasi-central (almost central) system with a central model introduces errors due to a wrong relationship between the viewing ray orientations and the pixels on the image sensor. In this paper, we propose a central approximation to quasi-central catadioptric camera systems that is both accurate and efficient. We observe that the distance to points in 3D is typically large compared to deviations from the single viewpoint. Thus, we first calibrate the system using a state-of-the-art non-central camera model. Next, we show that by remapping the observations we are able to match the orientation of the viewing rays of a much simpler single viewpoint model with the true ray orientations. While our approximation is general and applicable to all quasi-central camera systems, we focus on one of the most common cases in practice: hypercatadioptric cameras. We compare our model to a variety of baselines in synthetic and real localization and motion estimation experiments. We show that by using the proposed model we are able to achieve near non-central accuracy while obtaining speed-ups of more than three orders of magnitude compared to state-of-the-art non-central models.

avg ps

pdf DOI [BibTex]

pdf DOI [BibTex]


Thumb xl realexperiment
Nonmyopic View Planning for Active Object Classification and Pose Estimation

Atanasov, N., Sankaran, B., Le Ny, J., Pappas, G., Daniilidis, K.

IEEE Transactions on Robotics, May 2014, clmc (article)

Abstract
One of the central problems in computer vision is the detection of semantically important objects and the estimation of their pose. Most of the work in object detection has been based on single image processing and its performance is limited by occlusions and ambiguity in appearance and geometry. This paper proposes an active approach to object detection by controlling the point of view of a mobile depth camera. When an initial static detection phase identifies an object of interest, several hypotheses are made about its class and orientation. The sensor then plans a sequence of viewpoints, which balances the amount of energy used to move with the chance of identifying the correct hypothesis. We formulate an active M-ary hypothesis testing problem, which includes sensor mobility, and solve it using a point-based approximate POMDP algorithm. The validity of our approach is verified through simulation and real-world experiments with the PR2 robot. The results suggest a significant improvement over static object detection

am

Web pdf link (url) [BibTex]

Web pdf link (url) [BibTex]


Thumb xl pami
3D Traffic Scene Understanding from Movable Platforms

Geiger, A., Lauer, M., Wojek, C., Stiller, C., Urtasun, R.

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 36(5):1012-1025, published, IEEE, Los Alamitos, CA, May 2014 (article)

Abstract
In this paper, we present a novel probabilistic generative model for multi-object traffic scene understanding from movable platforms which reasons jointly about the 3D scene layout as well as the location and orientation of objects in the scene. In particular, the scene topology, geometry and traffic activities are inferred from short video sequences. Inspired by the impressive driving capabilities of humans, our model does not rely on GPS, lidar or map knowledge. Instead, it takes advantage of a diverse set of visual cues in the form of vehicle tracklets, vanishing points, semantic scene labels, scene flow and occupancy grids. For each of these cues we propose likelihood functions that are integrated into a probabilistic generative model. We learn all model parameters from training data using contrastive divergence. Experiments conducted on videos of 113 representative intersections show that our approach successfully infers the correct layout in a variety of very challenging scenarios. To evaluate the importance of each feature cue, experiments using different feature combinations are conducted. Furthermore, we show how by employing context derived from the proposed method we are able to improve over the state-of-the-art in terms of object detection and object orientation estimation in challenging and cluttered urban environments.

avg ps

pdf link (url) [BibTex]

pdf link (url) [BibTex]


Thumb xl modeltransport
Model transport: towards scalable transfer learning on manifolds - supplemental material

Freifeld, O., Hauberg, S., Black, M. J.

(9), April 2014 (techreport)

Abstract
This technical report is complementary to "Model Transport: Towards Scalable Transfer Learning on Manifolds" and contains proofs, explanation of the attached video (visualization of bases from the body shape experiments), and high-resolution images of select results of individual reconstructions from the shape experiments. It is identical to the supplemental mate- rial submitted to the Conference on Computer Vision and Pattern Recognition (CVPR 2014) on November 2013.

ps

PDF [BibTex]


Thumb xl aistats2014
Probabilistic Solutions to Differential Equations and their Application to Riemannian Statistics

Hennig, P., Hauberg, S.

In Proceedings of the 17th International Conference on Artificial Intelligence and Statistics, 33, pages: 347-355, JMLR: Workshop and Conference Proceedings, (Editors: S Kaski and J Corander), Microtome Publishing, Brookline, MA, AISTATS, April 2014 (inproceedings)

Abstract
We study a probabilistic numerical method for the solution of both boundary and initial value problems that returns a joint Gaussian process posterior over the solution. Such methods have concrete value in the statistics on Riemannian manifolds, where non-analytic ordinary differential equations are involved in virtually all computations. The probabilistic formulation permits marginalising the uncertainty of the numerical solution such that statistics are less sensitive to inaccuracies. This leads to new Riemannian algorithms for mean value computations and principal geodesic analysis. Marginalisation also means results can be less precise than point estimates, enabling a noticeable speed-up over the state of the art. Our approach is an argument for a wider point that uncertainty caused by numerical calculations should be tracked throughout the pipeline of machine learning algorithms.

ei ps pn

pdf Youtube Supplements Project page link (url) [BibTex]

pdf Youtube Supplements Project page link (url) [BibTex]


Thumb xl screen shot 2015 08 22 at 22.50.12
Data-Driven Grasp Synthesis - A Survey

Bohg, J., Morales, A., Asfour, T., Kragic, D.

IEEE Transactions on Robotics, 30, pages: 289 - 309, IEEE, April 2014 (article)

Abstract
We review the work on data-driven grasp synthesis and the methodologies for sampling and ranking candidate grasps. We divide the approaches into three groups based on whether they synthesize grasps for known, familiar or unknown objects. This structure allows us to identify common object representations and perceptual processes that facilitate the employed data-driven grasp synthesis technique. In the case of known objects, we concentrate on the approaches that are based on object recognition and pose estimation. In the case of familiar objects, the techniques use some form of a similarity matching to a set of previously encountered objects. Finally for the approaches dealing with unknown objects, the core part is the extraction of specific features that are indicative of good grasps. Our survey provides an overview of the different methodologies and discusses open problems in the area of robot grasping. We also draw a parallel to the classical approaches that rely on analytic formulations.

am

PDF link (url) DOI Project Page [BibTex]

PDF link (url) DOI Project Page [BibTex]


Thumb xl thumb
Multi-View Priors for Learning Detectors from Sparse Viewpoint Data

Pepik, B., Stark, M., Gehler, P., Schiele, B.

International Conference on Learning Representations, International Conference on Learning Representations (ICLR), April 2014 (conference)

Abstract
While the majority of today's object class models provide only 2D bounding boxes, far richer output hypotheses are desirable including viewpoint, fine-grained category, and 3D geometry estimate. However, models trained to provide richer output require larger amounts of training data, preferably well covering the relevant aspects such as viewpoint and fine-grained categories. In this paper, we address this issue from the perspective of transfer learning, and design an object class model that explicitly leverages correlations between visual features. Specifically, our model represents prior distributions over permissible multi-view detectors in a parametric way -- the priors are learned once from training data of a source object class, and can later be used to facilitate the learning of a detector for a target class. As we show in our experiments, this transfer is not only beneficial for detectors based on basic-level category representations, but also enables the robust learning of detectors that represent classes at finer levels of granularity, where training data is typically even scarcer and more unbalanced. As a result, we report largely improved performance in simultaneous 2D object localization and viewpoint estimation on a recent dataset of challenging street scenes.

ps

reviews pdf Project Page [BibTex]

reviews pdf Project Page [BibTex]


no image
A Visual Analytics Approach to Study Anatomic Covariation

Hermann, M., Schunke, A., Schultz, T., Klein, R.

In Proceedings of IEEE Pacific Visualization 2014, pages: 161-168, March 2014 (inproceedings)

Abstract
Gaining insight into anatomic covariation helps the understanding of organismic shape variability in general and is of particular interest for delimiting morphological modules. Generation of hypotheses on structural covariation is undoubtedly a highly creative process, and as such, requires an exploratory approach. In this work we propose a new local anatomic covariance tensor which enables interactive visualizations to explore covariation at different levels of detail, stimulating rapid formation and (qualitative) evaluation of hypotheses. The effectiveness of the presented approach is demonstrated on a muCT dataset of mouse mandibles for which results from the literature are successfully reproduced, while providing a more detailed representation of covariation compared to state-of-the-art methods.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


Thumb xl homerjournal
Adaptive Offset Correction for Intracortical Brain Computer Interfaces

Homer, M. L., Perge, J. A., Black, M. J., Harrison, M. T., Cash, S. S., Hochberg, L. R.

IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(2):239-248, March 2014 (article)

Abstract
Intracortical brain computer interfaces (iBCIs) decode intended movement from neural activity for the control of external devices such as a robotic arm. Standard approaches include a calibration phase to estimate decoding parameters. During iBCI operation, the statistical properties of the neural activity can depart from those observed during calibration, sometimes hindering a user’s ability to control the iBCI. To address this problem, we adaptively correct the offset terms within a Kalman filter decoder via penalized maximum likelihood estimation. The approach can handle rapid shifts in neural signal behavior (on the order of seconds) and requires no knowledge of the intended movement. The algorithm, called MOCA, was tested using simulated neural activity and evaluated retrospectively using data collected from two people with tetraplegia operating an iBCI. In 19 clinical research test cases, where a nonadaptive Kalman filter yielded relatively high decoding errors, MOCA significantly reduced these errors (10.6 ± 10.1\%; p < 0.05, pairwise t-test). MOCA did not significantly change the error in the remaining 23 cases where a nonadaptive Kalman filter already performed well. These results suggest that MOCA provides more robust decoding than the standard Kalman filter for iBCIs.

ps

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Thumb xl aggteaser
Model-based Anthropometry: Predicting Measurements from 3D Human Scans in Multiple Poses

Tsoli, A., Loper, M., Black, M. J.

In Proceedings Winter Conference on Applications of Computer Vision, pages: 83-90, IEEE , IEEE Winter Conference on Applications of Computer Vision (WACV) , March 2014 (inproceedings)

Abstract
Extracting anthropometric or tailoring measurements from 3D human body scans is important for applications such as virtual try-on, custom clothing, and online sizing. Existing commercial solutions identify anatomical landmarks on high-resolution 3D scans and then compute distances or circumferences on the scan. Landmark detection is sensitive to acquisition noise (e.g. holes) and these methods require subjects to adopt a specific pose. In contrast, we propose a solution we call model-based anthropometry. We fit a deformable 3D body model to scan data in one or more poses; this model-based fitting is robust to scan noise. This brings the scan into registration with a database of registered body scans. Then, we extract features from the registered model (rather than from the scan); these include, limb lengths, circumferences, and statistical features of global shape. Finally, we learn a mapping from these features to measurements using regularized linear regression. We perform an extensive evaluation using the CAESAR dataset and demonstrate that the accuracy of our method outperforms state-of-the-art methods.

ps

pdf DOI Project Page Project Page [BibTex]

pdf DOI Project Page Project Page [BibTex]


Thumb xl fig1
3D nanofabrication on complex seed shapes using glancing angle deposition

Hyeon-Ho, J., Mark, A. G., Gibbs, J. G., Reindl, T., Waizmann, U., Weis, J., Fischer, P.

In 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), pages: 437-440, January 2014 (inproceedings)

Abstract
Three-dimensional (3D) fabrication techniques promise new device architectures and enable the integration of more components, but fabricating 3D nanostructures for device applications remains challenging. Recently, we have performed glancing angle deposition (GLAD) upon a nanoscale hexagonal seed array to create a variety of 3D nanoscale objects including multicomponent rods, helices, and zigzags [1]. Here, in an effort to generalize our technique, we present a step-by-step approach to grow 3D nanostructures on more complex nanoseed shapes and configurations than before. This approach allows us to create 3D nanostructures on nanoseeds regardless of seed sizes and shapes.

pf

DOI [BibTex]

DOI [BibTex]


no image
Juggling revisited — A voxel based morphometry study with expert jugglers

Gerber, P., Schlaffke, L., Heba, S., Greenlee, M., Schultz, T., Schmidt-Wilcke, T.

NeuroImage, 95, pages: 320-325, 2014 (article)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Assessing attention and cognitive function in completely locked-in state with event-related brain potentials and epidural electrocorticography

Bensch, M., Martens, S., Halder, S., Hill, J., Nijboer, F., Ramos, A., Birbaumer, N., Bodgan, M., Kotchoubey, B., Rosenstiel, W., Schölkopf, B., Gharabaghi, A.

Journal of Neural Engineering, 11(2):026006, 2014 (article)

Abstract
Objective. Patients in the completely locked-in state (CLIS), due to, for example, amyotrophic lateral sclerosis (ALS), no longer possess voluntary muscle control. Assessing attention and cognitive function in these patients during the course of the disease is a challenging but essential task for both nursing staff and physicians. Approach. An electrophysiological cognition test battery, including auditory and semantic stimuli, was applied in a late-stage ALS patient at four different time points during a six-month epidural electrocorticography (ECoG) recording period. Event-related cortical potentials (ERP), together with changes in the ECoG signal spectrum, were recorded via 128 channels that partially covered the left frontal, temporal and parietal cortex. Main results. Auditory but not semantic stimuli induced significant and reproducible ERP projecting to specific temporal and parietal cortical areas. N1/P2 responses could be detected throughout the whole study period. The highest P3 ERP was measured immediately after the patient's last communication through voluntary muscle control, which was paralleled by low theta and high gamma spectral power. Three months after the patient's last communication, i.e., in the CLIS, P3 responses could no longer be detected. At the same time, increased activity in low-frequency bands and a sharp drop of gamma spectral power were recorded. Significance. Cortical electrophysiological measures indicate at least partially intact attention and cognitive function during sparse volitional motor control for communication. Although the P3 ERP and frequency-specific changes in the ECoG spectrum may serve as indicators for CLIS, a close-meshed monitoring will be required to define the exact time point of the transition.

ei

DOI [BibTex]

DOI [BibTex]


no image
Identifiability of Gaussian Structural Equation Models with Equal Error Variances

Peters, J., Bühlman, P.

Biometrika, 101(1):219-228, 2014 (article)

ei

DOI [BibTex]


no image
Quantifying the effect of intertrial dependence on perceptual decisions

Fründ, I., Wichmann, F., Macke, J.

Journal of Vision, 14(7):1-16, 2014 (article)

ei

Web PDF link (url) DOI [BibTex]

Web PDF link (url) DOI [BibTex]


no image
Two numerical models designed to reproduce Saturn ring temperatures as measured by Cassini-CIRS

Altobelli, N., Lopez-Paz, D., Pilorz, S., Spilker, L., Morishima, R., Brooks, S., Leyrat, C., Deau, E., Edgington, S., Flandes, A.

Icarus, 238(0):205 - 220, 2014 (article)

ei

Web link (url) DOI [BibTex]

Web link (url) DOI [BibTex]


no image
Multi-Task Feature Selection on Multiple Networks via Maximum Flows

Sugiyama, M., Azencott, C., Grimm, D., Kawahara, Y., Borgwardt, K.

In Proceedings of the 2014 SIAM International Conference on Data Mining , pages: 199-207, SIAM, 2014 (inproceedings)

ei

Web PDF DOI [BibTex]

Web PDF DOI [BibTex]


no image
Quantifying Information Overload in Social Media and its Impact on Social Contagions

Gomez Rodriguez, M., Gummadi, K., Schölkopf, B.

In Proceedings of the Eighth International Conference on Weblogs and Social Media, pages: 170-179, (Editors: E. Adar, P. Resnick, M. De Choudhury, B. Hogan, and A. Oh), AAAI Press, ICWSM, 2014 (inproceedings)

ei

Web [BibTex]

Web [BibTex]


no image
Estimating Diffusion Network Structures: Recovery Conditions, Sample Complexity & Soft-thresholding Algorithm

Daneshmand, H., Gomez Rodriguez, M., Song, L., Schölkopf, B.

In Proceedings of the 31st International Conference on Machine Learning, W&CP 32 (1), pages: 793-801, (Editors: Eric P. Xing and Tony Jebara), JMLR, ICML, 2014 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
Interaction Primitives for Human-Robot Cooperation Tasks

Ben Amor, H., Neumann, G., Kamthe, S., Kroemer, O., Peters, J.

In Proceedings of 2014 IEEE International Conference on Robotics and Automation, pages: 2831-2837, IEEE, ICRA, 2014 (inproceedings)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Learning to Predict Phases of Manipulation Tasks as Hidden States

Kroemer, O., van Hoof, H., Neumann, G., Peters, J.

In Proceedings of 2014 IEEE International Conference on Robotics and Automation, pages: 4009-4014, IEEE, ICRA, 2014 (inproceedings)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Visualizing Uncertainty in HARDI Tractography Using Superquadric Streamtubes

Wiens, V., Schlaffke, L., Schmidt-Wilcke, T., Schultz, T.

In Eurographics Conference on Visualization, Short Papers, (Editors: Elmqvist, N. and Hlawitschka, M. and Kennedy, J.), EuroVis, 2014 (inproceedings)

Abstract
Standard streamtubes for the visualization of diffusion MRI data are rendered either with a circular or with an elliptic cross section whose aspect ratio indicates the relative magnitudes of the medium and minor eigenvalues. Inspired by superquadric tensor glyphs, we propose to render streamtubes with a superquadric cross section, which develops sharp edges to more clearly convey the orientation of the second and third eigenvectors where they are uniquely defined, while maintaining a circular shape when the smaller two eigenvalues are equal. As a second contribution, we apply our novel superquadric streamtubes to visualize uncertainty in the tracking direction of HARDI tractography, which we represent using a novel propagation uncertainty tensor.

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A Permutation-Based Kernel Conditional Independence Test

Doran, G., Muandet, K., Zhang, K., Schölkopf, B.

In Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence (UAI2014), pages: 132-141, (Editors: Nevin L. Zhang and Jin Tian), AUAI Press Corvallis, Oregon, UAI2014, 2014 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
A unifying view of representer theorems

Argyriou, A., Dinuzzo, F.

In Proceedings of the 31th International Conference on Machine Learning, 32, pages: 748-756, (Editors: Xing, E. P. and Jebera, T.), ICML, 2014 (inproceedings)

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Riemannian Sparse Coding for Positive Definite Matrices

Cherian, A., Sra, S.

In 13th European Conference on Computer Vision, LNCS 8691, pages: 299-314, (Editors: Fleet, D., Pajdla, T., Schiele, B., and Tuytelaars, T.), Springer, ECCV, 2014 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Probabilistic ODE Solvers with Runge-Kutta Means

Schober, M., Duvenaud, D., Hennig, P.

In Advances in Neural Information Processing Systems 27, pages: 739-747, (Editors: Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence and K.Q. Weinberger), Curran Associates, Inc., 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014 (inproceedings)

ei pn

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Mask-Specific Inpainting with Deep Neural Networks

Köhler, R., Schuler, C., Schölkopf, B., Harmeling, S.

In Pattern Recognition (GCPR 2014), pages: 523-534, (Editors: X Jiang, J Hornegger, and R Koch), Springer, 2014, Lecture Notes in Computer Science (inproceedings)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
CAM: Causal Additive Models, high-dimensional order search and penalized regression

Bühlmann, P., Peters, J., Ernest, J.

Annals of Statistics, 42(6):2526-2556, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Policy Evaluation with Temporal Differences: A Survey and Comparison

Dann, C., Neumann, G., Peters, J.

Journal of Machine Learning Research, 15, pages: 809-883, 2014 (article)

ei

PDF [BibTex]

PDF [BibTex]


no image
Uncovering the Structure and Temporal Dynamics of Information Propagation

Gomez Rodriguez, M., Leskovec, J., Balduzzi, D., Schölkopf, B.

Network Science, 2(1):26-65, 2014 (article)

Abstract
Time plays an essential role in the diffusion of information, influence, and disease over networks. In many cases we can only observe when a node is activated by a contagion—when a node learns about a piece of information, makes a decision, adopts a new behavior, or becomes infected with a disease. However, the underlying network connectivity and transmission rates between nodes are unknown. Inferring the underlying diffusion dynamics is important because it leads to new insights and enables forecasting, as well as influencing or containing information propagation. In this paper we model diffusion as a continuous temporal process occurring at different rates over a latent, unobserved network that may change over time. Given information diffusion data, we infer the edges and dynamics of the underlying network. Our model naturally imposes sparse solutions and requires no parameter tuning. We develop an efficient inference algorithm that uses stochastic convex optimization to compute online estimates of the edges and transmission rates. We evaluate our method by tracking information diffusion among 3.3 million mainstream media sites and blogs, and experiment with more than 179 million different instances of information spreading over the network in a one-year period. We apply our network inference algorithm to the top 5,000 media sites and blogs and report several interesting observations. First, information pathways for general recurrent topics are more stable across time than for on-going news events. Second, clusters of news media sites and blogs often emerge and vanish in a matter of days for on-going news events. Finally, major events, for example, large scale civil unrest as in the Libyan civil war or Syrian uprising, increase the number of information pathways among blogs, and also increase the network centrality of blogs and social media sites.

ei

DOI [BibTex]


no image
Causal discovery via reproducing kernel Hilbert space embeddings

Chen, Z., Zhang, K., Chan, L., Schölkopf, B.

Neural Computation, 26(7):1484-1517, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Randomized Nonlinear Component Analysis

Lopez-Paz, D., Sra, S., Smola, A., Ghahramani, Z., Schölkopf, B.

In Proceedings of the 31st International Conference on Machine Learning, W&CP 32 (1), pages: 1359-1367, (Editors: Eric P. Xing and Tony Jebara), JMLR, ICML, 2014 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
Causal and Anti-Causal Learning in Pattern Recognition for Neuroimaging

Weichwald, S., Schölkopf, B., Ball, T., Grosse-Wentrup, M.

In 4th International Workshop on Pattern Recognition in Neuroimaging (PRNI), IEEE , PRNI, 2014 (inproceedings)

ei

PDF Arxiv DOI [BibTex]

PDF Arxiv DOI [BibTex]


no image
Bayesian Gait Optimization for Bipedal Locomotion

Calandra, R., Gopalan, N., Seyfarth, A., Peters, J., Deisenroth, M.

In Proceedings of the 8th International Conference on Learning and Intelligent Optimization , LNCS 8426, pages: 274-290, Lecture Notes in Computer Science, (Editors: Pardalos, PM., Resende, MGC., Vogiatzis, C., and Walteros, JL.), Springer, LION, 2014 (inproceedings)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Learning Manipulation by Sequencing Motor Primitives with a Two-Armed Robot

Lioutikov, R., Kroemer, O., Peters, J., Maeda, G.

In Proceedings of the 13th International Conference on Intelligent Autonomous Systems, 302, pages: 1601-1611, Advances in Intelligent Systems and Computing, (Editors: Menegatti, E., Michael, N., Berns, K., Yamaguchi, H.), Springer, IAS, 2014 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Impact of Large-Scale Climate Extremes on Biospheric Carbon Fluxes: An Intercomparison Based on MsTMIP Data

Zscheischler, J., Michalak, A., Schwalm, M., Mahecha, M., Huntzinger, D., Reichstein, M., Berthier, G., Ciais, P., Cook, R., El-Masri, B., Huang, M., Ito, A., Jain, A., King, A., Lei, H., Lu, C., Mao, J., Peng, S., Poulter, B., Ricciuto, D., Shi, X., Tao, B., Tian, H., Viovy, N., Wang, W., Wei, Y., Yang, J., Zeng, N.

Global Biogeochemical Cycles, 2014 (article)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
A Brain-Computer Interface Based on Self-Regulation of Gamma-Oscillations in the Superior Parietal Cortex

Grosse-Wentrup, M., Schölkopf, B.

Journal of Neural Engineering, 11(5):056015, 2014 (article)

Abstract
Objective. Brain–computer interface (BCI) systems are often based on motor- and/or sensory processes that are known to be impaired in late stages of amyotrophic lateral sclerosis (ALS). We propose a novel BCI designed for patients in late stages of ALS that only requires high-level cognitive processes to transmit information from the user to the BCI. Approach. We trained subjects via EEG-based neurofeedback to self-regulate the amplitude of gamma-oscillations in the superior parietal cortex (SPC). We argue that parietal gamma-oscillations are likely to be associated with high-level attentional processes, thereby providing a communication channel that does not rely on the integrity of sensory- and/or motor-pathways impaired in late stages of ALS. Main results. Healthy subjects quickly learned to self-regulate gamma-power in the SPC by alternating between states of focused attention and relaxed wakefulness, resulting in an average decoding accuracy of 70.2%. One locked-in ALS patient (ALS-FRS-R score of zero) achieved an average decoding accuracy significantly above chance-level though insufficient for communication (55.8%). Significance. Self-regulation of gamma-power in the SPC is a feasible paradigm for brain–computer interfacing and may be preserved in late stages of ALS. This provides a novel approach to testing whether completely locked-in ALS patients retain the capacity for goal-directed thinking.

ei

Web DOI [BibTex]


no image
Kernel Mean Estimation via Spectral Filtering

Muandet, K., Sriperumbudur, B., Schölkopf, B.

In Advances in Neural Information Processing Systems 27, pages: 1-9, (Editors: Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence and K.Q. Weinberger), Curran Associates, Inc., 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014 (inproceedings)

ei

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Consistency of Causal Inference under the Additive Noise Model

Kpotufe, S., Sgouritsa, E., Janzing, D., Schölkopf, B.

In Proceedings of the 31st International Conference on Machine Learning, W&CP 32 (1), pages: 478-495, (Editors: Eric P. Xing and Tony Jebara), JMLR, ICML, 2014 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
On power law distributions in large-scale taxonomies

Babbar, R., Metzig, C., Partalas, I., Gaussier, E., Amini, M.

SIGKDD Explorations, Special Issue on Big Data, 16(1):47-56, 2014 (article)

ei

[BibTex]

[BibTex]


no image
Predicting Motor Learning Performance from Electroencephalographic Data

Meyer, T., Peters, J., Zander, T., Schölkopf, B., Grosse-Wentrup, M.

Journal of NeuroEngineering and Rehabilitation, 11:24, 2014 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Active Learning of Linear Embeddings for Gaussian Processes

Garnett, R., Osborne, M., Hennig, P.

In Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence, pages: 230-239, (Editors: NL Zhang and J Tian), AUAI Press , Corvallis, Oregon, UAI2014, 2014, another link: http://arxiv.org/abs/1310.6740 (inproceedings)

ei pn

PDF Web [BibTex]

PDF Web [BibTex]


no image
Special issue on autonomous grasping and manipulation

Ben Amor, H., Saxena, A., Hudson, N., Peters, J.

Autonomous Robots, 36(1-2):1-3, 2014 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Evaluation of Positron Emission Tomographic Tracers for Imaging of Papillomavirus-Induced Tumors in Rabbits

Probst, S., Wiehr, S., Mantlik, F., Schmidt, H., Kolb, A., Münch, P., Delcuratolo, M., Stubenrauch, F., Pichler, B., Iftner, T.

Molecular Imaging, 13(1):1536-0121, 2014 (article)

ei

Web [BibTex]

Web [BibTex]