Header logo is


2017


no image

no image
Analytical probabilistic modeling of RBE-weighted dose for ion therapy

Wieser, H., Hennig, P., Wahl, N., Bangert, M.

Physics in Medicine and Biology (PMB), 62(23):8959-8982, 2017 (article)

pn

link (url) [BibTex]

link (url) [BibTex]


no image
On Maximum Entropy and Inference

Gresele, L., Marsili, M.

Entropy, 19(12):article no. 642, 2017 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Towards Engagement Models that Consider Individual Factors in HRI: On the Relation of Extroversion and Negative Attitude Towards Robots to Gaze and Speech During a Human-Robot Assembly Task

Ivaldi, S., Lefort, S., Peters, J., Chetouani, M., Provasi, J., Zibetti, E.

International Journal of Social Robotics, 9(1):63-86, 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Non-parametric Policy Search with Limited Information Loss

van Hoof, H., Neumann, G., Peters, J.

Journal of Machine Learning Research , 18(73):1-46, 2017 (article)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Stability of Controllers for Gaussian Process Dynamics

Vinogradska, J., Bischoff, B., Nguyen-Tuong, D., Peters, J.

Journal of Machine Learning Research, 18(100):1-37, 2017 (article)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Two-sample tests for large random graphs using network statistics

Ghoshdastidar, D., Gutzeit, M., Carpentier, A., von Luxburg, U.

In Conference on Computational Learning Theory (COLT), Conference on Computational Learning Theory (COLT), 2017 (inproceedings)

slt

Project Page [BibTex]

Project Page [BibTex]


no image
SUV-quantification of physiological lung tissue in an integrated PET/MR-system: Impact of lung density and bone tissue

Seith, F., Schmidt, H., Gatidis, S., Bezrukov, I., Schraml, C., Pfannenberg, C., la Fougère, C., Nikolaou, K., Schwenzer, N.

PLOS ONE, 12(5):1-13, 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Corrosion-protected hybrid nanoparticles

Jeong, H., Alarcón-Correa, M., Mark, A. G., Son, K., Lee, T., Fischer, P.

{Advanced Science}, 4(12), Wiley-VCH, Weinheim, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Investigation of the Dzyaloshinskii-Moriya interaction and room temperature skyrmions in W/CoFeB/MgO thin films and microwires

Jaiswal, S., Litzius, K., Lemesh, I., Büttner, F., Finizio, S., Raabe, J., Weigand, M., Lee, K., Langer, J., Ocker, B., Jakob, G., Beach, G. S. D., Kläui, M.

{Applied Physics Letters}, 111(2), American Institute of Physics, Melville, NY, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ultrafast demagnetization after femtosecond laser pulses: Transfer of angular momentum from the electronic system to magnetoelastic spin-phonon modes

Fähnle, M., Tsatsoulis, T., Illg, C., Haag, M., Müller, B. Y., Zhang, L.

{Journal of Superconductivity and Novel Magnetism}, 30(5):1381-1387, Springer Science + Business Media B.V., New York, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic behavior of single chain magnets in metal organic frameworks CPO-27-Co

Son, K., Goering, E., Hirscher, M., Oh, H.

{Journal of Nanoscience and Nanotechnology}, 17(10):7541-7546, American Scientific Publishers, Stevenson Ranch, Calif., 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Switching by domain-wall automotion in asymmetric ferromagnetic rings

Mawass, M., Richter, K., Bisig, A., Reeve, R. M., Krüger, B., Weigand, M., Stoll, H., Krone, A., Kronast, F., Schütz, G., Kläui, M.

{Physical Review Applied}, 7(4), American Physical Society, College Park, Md. [u.a.], 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Pattern Generation for Walking on Slippery Terrains

Khadiv, M., Moosavian, S. A. A., Herzog, A., Righetti, L.

In 2017 5th International Conference on Robotics and Mechatronics (ICROM), Iran, August 2017 (inproceedings)

Abstract
In this paper, we extend state of the art Model Predictive Control (MPC) approaches to generate safe bipedal walking on slippery surfaces. In this setting, we formulate walking as a trade off between realizing a desired walking velocity and preserving robust foot-ground contact. Exploiting this for- mulation inside MPC, we show that safe walking on various flat terrains can be achieved by compromising three main attributes, i. e. walking velocity tracking, the Zero Moment Point (ZMP) modulation, and the Required Coefficient of Friction (RCoF) regulation. Simulation results show that increasing the walking velocity increases the possibility of slippage, while reducing the slippage possibility conflicts with reducing the tip-over possibility of the contact and vice versa.

mg

link (url) [BibTex]

link (url) [BibTex]


no image
A neutral atom moving in an external magnetic field does not feel a Lorentz force

Fähnle, M.

{American Journal of Modern Physics}, 6(6):153-155, Science Publishing Group, New York, NY, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Temperature-dependent first-order reversal curve measurements on unusually hard magnetic low-temperature phase of MnBi

Muralidhar, S., Gräfe, J., Chen, Y., Etter, M., Gregori, G., Ener, S., Sawatzki, S., Hono, K., Gutfleisch, O., Kronmüller, H., Schütz, G., Goering, E. J.

{Physical Review B}, 95(2), American Physical Society, Woodbury, NY, 2017 (article)

mms

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Smooth and rapid microwave synthesis of MIL-53(Fe) including superparamagnetic \textlessgamma\textgreater-Fe2O3 nanoparticles

Wengert, S., Albrecht, J., Ruoß, S., Stahl, C., Schütz, G., Schäfer, R.

{Journal of Magnetism and Magnetic Materials}, 444, pages: 168-172, NH, Elsevier, Amsterdam, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Characterization and differentiation of rock varnish types from different environments by microanalytical techniques

Macholdt, D. S., Jochum, K. P., Pöhlker, C., Arangio, A., Förster, J., Stoll, B., Weis, U., Weber, B., Müller, M., Kappl, M., Shiraiwa, M., Kilcoyne, A. L. D., Weigand, M., Scholz, D., Haug, G. H., Al-Amri, A., Andreae, M. O.

{Chemical Geology}, 459, pages: 91-118, Elsevier, Amsterdam, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy

Litzius, K., Lemesh, I., Krüger, B., Bassirian, P., Caretta, L., Richter, K., Büttner, F., Sato, K., Tretiakov, O. A., Förster, J., Reeve, R. M., Weigand, M., Bykova, I., Stoll, H., Schütz, G., Beach, G. S. D., Kläui, M.

{Nature Physics}, 13(2):170-175, Nature Pub. Group, London, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Is Growing Good for Learning?

Heim, Steve, Spröwitz, Alexander

In Proceedings of the 8th International Symposium on Adaptive Motion of Animals and Machines AMAM2017, Hokkaido, Japan, 2017 (inproceedings)

[BibTex]

[BibTex]


no image
Comment on magnonic black holes

Fähnle, M., Schütz, G.

{Journal of Magnetism and Magnetic Materials}, 444, pages: 146-146, NH, Elsevier, Amsterdam, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Cr-Substitution in Ba2In2O5 \mbox⋅ (H2O)x (x \textequals 0.16, 0.74)

Yoon, S., Son, K., Hagemann, H., Widenmeyer, M., Weidenkaff, A.

{Solid State Sciences}, 73, pages: 1-6, Elsevier Masson SAS, Paris, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Comment on half-integer quantum numbers for the total angular momentum of photons in light beams with finite lateral extensions

Fähnle, M.

{American Journal of Modern Physics}, 6(5):88-90, Science Publishing Group, New York, NY, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Advanced magneto-optical Kerr effect measurements of superconductors at low temperatures

Stahl, C., Gräfe, J., Ruoß, S., Zahn, P., Bayer, J., Simmendinger, J., Schütz, G., Albrecht, J.

{AIP Advances}, 7(10), 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Unifying ultrafast demagnetization and intrinsic Gilbert damping in Co/Ni bilayers with electronic relaxation near the Fermi surface

Zhang, W., He, W., Zhang, X.-Q., Cheng, Z.-H., Teng, J., Fähnle, M.

{Physical Review B}, 96(22), American Physical Society, Woodbury, NY, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Influence of the skin barrier on the penetration of topically-applied dexamethasone probed by soft X-ray spectromicroscopy

Yamamoto, K., Klossek, A., Flesch, R., Rancan, F., Weigand, M., Bykova, I., Bechtel, M., Ahlberg, S., Vogt, A., Blume-Peytavi, U., Schrade, P., Bachmann, S., Hedtrich, S., Schäfer-Korting, M., Rühl, E.

{European Journal of Pharmaceutics and Biopharmaceutics}, 118, pages: 30-37, Elsevier, Amsterdam, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Capture of heavy hydrogen isotopes in a metal-organic framework with active Cu(I) sites

Weinrauch, I., Savchenko, I., Denysenko, D., Souliou, S. M., Kim, H., Le Tacon, M., Daemen, L. L., Cheng, Y., Mavrandonakis, A., Ramirez-Cuesta, A. J., Volkmer, D., Schütz, G., Hirscher, M., Heine, T.

{Nature Communications}, 8, Nature Publishing Group, London, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Multiscale simulations of topological transformations in magnetic-skyrmion spin structures

De Lucia, A., Litzius, K., Krüger, B., Tretiakov, O. A., Kläui, M.

{Physical Review B}, 96(2), American Physical Society, Woodbury, NY, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Unexpectedly marginal effect of electronic correlations on ultrafast demagnetization after femtosecond laser-pulse excitation

Weng, W., Huang, Haonan, Briones Paz, J. Z., Teeny, N., Müller, B. Y., Haag, M., Kuhn, T., Fähnle, M.

{Physical Review B}, 95(22), American Physical Society, Woodbury, NY, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Black manganese-rich crusts on a Gothic cathedral

Macholdt, D. S., Herrmann, S., Jochum, K. P., Kilcoyne, A. L. D., Laubscher, T., Pfisterer, H. K., Pöhlker, C., Schwager, B., Weber, B., Weigand, M., Domke, K. F., Andreae, M. O.

{Atmospheric Environment}, 171, pages: 205-220, Elsevier, Amsterdam [u.a.], 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]

2009


no image
Efficient Subwindow Search: A Branch and Bound Framework for Object Localization

Lampert, C., Blaschko, M., Hofmann, T.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(12):2129-2142, December 2009 (article)

Abstract
Most successful object recognition systems rely on binary classification, deciding only if an object is present or not, but not providing information on the actual object location. To estimate the object‘s location, one can take a sliding window approach, but this strongly increases the computational cost because the classifier or similarity function has to be evaluated over a large set of candidate subwindows. In this paper, we propose a simple yet powerful branch and bound scheme that allows efficient maximization of a large class of quality functions over all possible subimages. It converges to a globally optimal solution typically in linear or even sublinear time, in contrast to the quadratic scaling of exhaustive or sliding window search. We show how our method is applicable to different object detection and image retrieval scenarios. The achieved speedup allows the use of classifiers for localization that formerly were considered too slow for this task, such as SVMs with a spatial pyramid kernel or nearest-neighbor classifiers based on the chi^2 distance. We demonstrate state-of-the-art localization performance of the resulting systems on the UIUC Cars data set, the PASCAL VOC 2006 data set, and in the PASCAL VOC 2007 competition.

ei

PDF Web DOI [BibTex]

2009


PDF Web DOI [BibTex]


no image
A computational model of human table tennis for robot application

Mülling, K., Peters, J.

In AMS 2009, pages: 57-64, (Editors: Dillmann, R. , J. Beyerer, C. Stiller, M. Zöllner, T. Gindele), Springer, Berlin, Germany, Autonome Mobile Systeme, December 2009 (inproceedings)

Abstract
Table tennis is a difficult motor skill which requires all basic components of a general motor skill learning system. In order to get a step closer to such a generic approach to the automatic acquisition and refinement of table tennis, we study table tennis from a human motor control point of view. We make use of the basic models of discrete human movement phases, virtual hitting points, and the operational timing hypothesis. Using these components, we create a computational model which is aimed at reproducing human-like behavior. We verify the functionality of this model in a physically realistic simulation of a BarrettWAM.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Generation of three-dimensional random rotations in fitting and matching problems

Habeck, M.

Computational Statistics, 24(4):719-731, December 2009 (article)

Abstract
An algorithm is developed to generate random rotations in three-dimensional space that follow a probability distribution arising in fitting and matching problems. The rotation matrices are orthogonally transformed into an optimal basis and then parameterized using Euler angles. The conditional distributions of the three Euler angles have a very simple form: the two azimuthal angles can be decoupled by sampling their sum and difference from a von Mises distribution; the cosine of the polar angle is exponentially distributed and thus straighforward to generate. Simulation results are shown and demonstrate the effectiveness of the method. The algorithm is compared to other methods for generating random rotations such as a random walk Metropolis scheme and a Gibbs sampling algorithm recently introduced by Green and Mardia. Finally, the algorithm is applied to a probabilistic version of the Procrustes problem of fitting two point sets and applied in the context of protein structure superposition.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Adaptive Importance Sampling for Value Function Approximation in Off-policy Reinforcement Learning

Hachiya, H., Akiyama, T., Sugiyama, M., Peters, J.

Neural Networks, 22(10):1399-1410, December 2009 (article)

Abstract
Off-policy reinforcement learning is aimed at efficiently using data samples gathered from a policy that is different from the currently optimized policy. A common approach is to use importance sampling techniques for compensating for the bias of value function estimators caused by the difference between the data-sampling policy and the target policy. However, existing off-policy methods often do not take the variance of the value function estimators explicitly into account and therefore their performance tends to be unstable. To cope with this problem, we propose using an adaptive importance sampling technique which allows us to actively control the trade-off between bias and variance. We further provide a method for optimally determining the trade-off parameter based on a variant of cross-validation. We demonstrate the usefulness of the proposed approach through simulations.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A PAC-Bayesian Approach to Formulation of Clustering Objectives

Seldin, Y., Tishby, N.

In Proceedings of the NIPS 2009 Workshop "Clustering: Science or Art? Towards Principled Approaches", pages: 1-4, NIPS Workshop "Clustering: Science or Art? Towards Principled Approaches", December 2009 (inproceedings)

Abstract
Clustering is a widely used tool for exploratory data analysis. However, the theoretical understanding of clustering is very limited. We still do not have a well-founded answer to the seemingly simple question of “how many clusters are present in the data?”, and furthermore a formal comparison of clusterings based on different optimization objectives is far beyond our abilities. The lack of good theoretical support gives rise to multiple heuristics that confuse the practitioners and stall development of the field. We suggest that the ill-posed nature of clustering problems is caused by the fact that clustering is often taken out of its subsequent application context. We argue that one does not cluster the data just for the sake of clustering it, but rather to facilitate the solution of some higher level task. By evaluation of the clustering’s contribution to the solution of the higher level task it is possible to compare different clusterings, even those obtained by different optimization objectives. In the preceding work it was shown that such an approach can be applied to evaluation and design of co-clustering solutions. Here we suggest that this approach can be extended to other settings, where clustering is applied.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Notes on Graph Cuts with Submodular Edge Weights

Jegelka, S., Bilmes, J.

In pages: 1-6, NIPS Workshop on Discrete Optimization in Machine Learning: Submodularity, Sparsity & Polyhedra (DISCML), December 2009 (inproceedings)

Abstract
Generalizing the cost in the standard min-cut problem to a submodular cost function immediately makes the problem harder. Not only do we prove NP hardness even for nonnegative submodular costs, but also show a lower bound of (|V |1/3) on the approximation factor for the (s, t) cut version of the problem. On the positive side, we propose and compare three approximation algorithms with an overall approximation factor of O(min{|V |,p|E| log |V |}) that appear to do well in practice.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Guest editorial: special issue on structured prediction

Parker, C., Altun, Y., Tadepalli, P.

Machine Learning, 77(2-3):161-164, December 2009 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Structured prediction by joint kernel support estimation

Lampert, CH., Blaschko, MB.

Machine Learning, 77(2-3):249-269, December 2009 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Learning new basic Movements for Robotics

Kober, J., Peters, J.

In AMS 2009, pages: 105-112, (Editors: Dillmann, R. , J. Beyerer, C. Stiller, M. Zöllner, T. Gindele), Springer, Berlin, Germany, Autonome Mobile Systeme, December 2009 (inproceedings)

Abstract
Obtaining novel skills is one of the most important problems in robotics. Machine learning techniques may be a promising approach for automatic and autonomous acquisition of movement policies. However, this requires both an appropriate policy representation and suitable learning algorithms. Employing the most recent form of the dynamical systems motor primitives originally introduced by Ijspeert et al. [1], we show how both discrete and rhythmic tasks can be learned using a concerted approach of both imitation and reinforcement learning, and present our current best performing learning algorithms. Finally, we show that it is possible to include a start-up phase in rhythmic primitives. We apply our approach to two elementary movements, i.e., Ball-in-a-Cup and Ball-Paddling, which can be learned on a real Barrett WAM robot arm at a pace similar to human learning.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
From Motor Learning to Interaction Learning in Robots

Sigaud, O., Peters, J.

In Proceedings of 7ème Journées Nationales de la Recherche en Robotique, pages: 189-195, JNRR, November 2009 (inproceedings)

Abstract
The number of advanced robot systems has been increasing in recent years yielding a large variety of versatile designs with many degrees of freedom. These robots have the potential of being applicable in uncertain tasks outside well-structured industrial settings. However, the complexity of both systems and tasks is often beyond the reach of classical robot programming methods. As a result, a more autonomous solution for robot task acquisition is needed where robots adaptively adjust their behaviour to the encountered situations and required tasks. Learning approaches pose one of the most appealing ways to achieve this goal. However, while learning approaches are of high importance for robotics, we cannot simply use off-the-shelf methods from the machine learning community as these usually do not scale into the domains of robotics due to excessive computational cost as well as a lack of scalability. Instead, domain appropriate approaches are needed. We focus here on several core domains of robot learning. For accurate task execution, we need motor learning capabilities. For fast learning of the motor tasks, imitation learning offers the most promising approach. Self improvement requires reinforcement learning approaches that scale into the domain of complex robots. Finally, for efficient interaction of humans with robot systems, we will need a form of interaction learning. This contribution provides a general introduction to these issues and briefly presents the contributions of the related book chapters to the corresponding research topics.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
A note on ethical aspects of BCI

Haselager, P., Vlek, R., Hill, J., Nijboer, F.

Neural Networks, 22(9):1352-1357, November 2009 (article)

Abstract
This paper focuses on ethical aspects of BCI, as a research and a clinical tool, that are challenging for practitioners currently working in the field. Specifically, the difficulties involved in acquiring informed consent from locked-in patients are investigated, in combination with an analysis of the shared moral responsibility in BCI teams, and the complications encountered in establishing effective communication with media.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Model Learning with Local Gaussian Process Regression

Nguyen-Tuong, D., Seeger, M., Peters, J.

Advanced Robotics, 23(15):2015-2034, November 2009 (article)

Abstract
Precise models of robot inverse dynamics allow the design of significantly more accurate, energy-efficient and compliant robot control. However, in some cases the accuracy of rigid-body models does not suffice for sound control performance due to unmodeled nonlinearities arising from hydraulic cable dynamics, complex friction or actuator dynamics. In such cases, estimating the inverse dynamics model from measured data poses an interesting alternative. Nonparametric regression methods, such as Gaussian process regression (GPR) or locally weighted projection regression (LWPR), are not as restrictive as parametric models and, thus, offer a more flexible framework for approximating unknown nonlinearities. In this paper, we propose a local approximation to the standard GPR, called local GPR (LGP), for real-time model online learning by combining the strengths of both regression methods, i.e., the high accuracy of GPR and the fast speed of LWPR. The approach is shown to have competitive learning performance for hig h-dimensional data while being sufficiently fast for real-time learning. The effectiveness of LGP is exhibited by a comparison with the state-of-the-art regression techniques, such as GPR, LWPR and ν-support vector regression. The applicability of the proposed LGP method is demonstrated by real-time online learning of the inverse dynamics model for robot model-based control on a Barrett WAM robot arm.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Detecting Objects in Large Image Collections and Videos by Efficient Subimage Retrieval

Lampert, CH.

In ICCV 2009, pages: 987-994, IEEE Computer Society, Piscataway, NJ, USA, Twelfth IEEE International Conference on Computer Vision, October 2009 (inproceedings)

Abstract
We study the task of detecting the occurrence of objects in large image collections or in videos, a problem that combines aspects of content based image retrieval and object localization. While most previous approaches are either limited to special kinds of queries, or do not scale to large image sets, we propose a new method, efficient subimage retrieval (ESR), which is at the same time very flexible and very efficient. Relying on a two-layered branch-and-bound setup, ESR performs object-based image retrieval in sets of 100,000 or more images within seconds. An extensive evaluation on several datasets shows that ESR is not only very fast, but it also achieves detection accuracies that are on par with or superior to previously published methods for object-based image retrieval.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Inferring textual entailment with a probabilistically sound calculus

Harmeling, S.

Natural Language Engineering, 15(4):459-477, October 2009 (article)

Abstract
We introduce a system for textual entailment that is based on a probabilistic model of entailment. The model is defined using a calculus of transformations on dependency trees, which is characterized by the fact that derivations in that calculus preserve the truth only with a certain probability. The calculus is successfully evaluated on the datasets of the PASCAL Challenge on Recognizing Textual Entailment.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Modeling and Visualizing Uncertainty in Gene Expression Clusters using Dirichlet Process Mixtures

Rasmussen, CE., de la Cruz, BJ., Ghahramani, Z., Wild, DL.

IEEE/ACM Transactions on Computational Biology and Bioinformatics, 6(4):615-628, October 2009 (article)

Abstract
Although the use of clustering methods has rapidly become one of the standard computational approaches in the literature of microarray gene expression data, little attention has been paid to uncertainty in the results obtained. Dirichlet process mixture models provide a non-parametric Bayesian alternative to the bootstrap approach to modeling uncertainty in gene expression clustering. Most previously published applications of Bayesian model based clustering methods have been to short time series data. In this paper we present a case study of the application of non-parametric Bayesian clustering methods to the clustering of high-dimensional non-time series gene expression data using full Gaussian covariances. We use the probability that two genes belong to the same cluster in a Dirichlet process mixture model as a measure of the similarity of these gene expression profiles. Conversely, this probability can be used to define a dissimilarity measure, which, for the purposes of visualization, can be input to one of the standard linkage algorithms used for hierarchical clustering. Biologically plausible results are obtained from the Rosetta compendium of expression profiles which extend previously published cluster analyses of this data.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A new non-monotonic algorithm for PET image reconstruction

Sra, S., Kim, D., Dhillon, I., Schölkopf, B.

In IEEE - Nuclear Science Symposium Conference Record (NSS/MIC), 2009, pages: 2500-2502, (Editors: B Yu), IEEE, Piscataway, NJ, USA, IEEE Nuclear Science Symposium and Medical Imaging Conference, October 2009 (inproceedings)

Abstract
Maximizing some form of Poisson likelihood (either with or without penalization) is central to image reconstruction algorithms in emission tomography. In this paper we introduce NMML, a non-monotonic algorithm for maximum likelihood PET image reconstruction. NMML offers a simple and flexible procedure that also easily incorporates standard convex regular-ization for doing penalized likelihood estimation. A vast number image reconstruction algorithms have been developed for PET, and new ones continue to be designed. Among these, methods based on the expectation maximization (EM) and ordered-subsets (OS) framework seem to have enjoyed the greatest popularity. Our method NMML differs fundamentally from methods based on EM: i) it does not depend on the concept of optimization transfer (or surrogate functions); and ii) it is a rapidly converging nonmonotonic descent procedure. The greatest strengths of NMML, however, are its simplicity, efficiency, and scalability, which make it especially attractive for tomograph ic reconstruction. We provide a theoretical analysis NMML, and empirically observe it to outperform standard EM based methods, sometimes by orders of magnitude. NMML seamlessly allows integreation of penalties (regularizers) in the likelihood. This ability can prove to be crucial, especially because with the rapidly rising importance of combined PET/MR scanners, one will want to include more “prior” knowledge into the reconstruction.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Approximation Algorithms for Tensor Clustering

Jegelka, S., Sra, S., Banerjee, A.

In Algorithmic Learning Theory: 20th International Conference, pages: 368-383, (Editors: Gavalda, R. , G. Lugosi, T. Zeugmann, S. Zilles), Springer, Berlin, Germany, ALT, October 2009 (inproceedings)

Abstract
We present the first (to our knowledge) approximation algo- rithm for tensor clustering—a powerful generalization to basic 1D clustering. Tensors are increasingly common in modern applications dealing with complex heterogeneous data and clustering them is a fundamental tool for data analysis and pattern discovery. Akin to their 1D cousins, common tensor clustering formulations are NP-hard to optimize. But, unlike the 1D case no approximation algorithms seem to be known. We address this imbalance and build on recent co-clustering work to derive a tensor clustering algorithm with approximation guarantees, allowing metrics and divergences (e.g., Bregman) as objective functions. Therewith, we answer two open questions by Anagnostopoulos et al. (2008). Our analysis yields a constant approximation factor independent of data size; a worst-case example shows this factor to be tight for Euclidean co-clustering. However, empirically the approximation factor is observed to be conservative, so our method can also be used in practice.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Active learning using mean shift optimization for robot grasping

Kroemer, O., Detry, R., Piater, J., Peters, J.

In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), pages: 2610-2615, IEEE Service Center, Piscataway, NJ, USA, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2009 (inproceedings)

Abstract
When children learn to grasp a new object, they often know several possible grasping points from observing a parent‘s demonstration and subsequently learn better grasps by trial and error. From a machine learning point of view, this process is an active learning approach. In this paper, we present a new robot learning framework for reproducing this ability in robot grasping. For doing so, we chose a straightforward approach: first, the robot observes a few good grasps by demonstration and learns a value function for these grasps using Gaussian process regression. Subsequently, it chooses grasps which are optimal with respect to this value function using a mean-shift optimization approach, and tries them out on the real system. Upon every completed trial, the value function is updated, and in the following trials it is more likely to choose even better grasping points. This method exhibits fast learning due to the data-efficiency of Gaussian process regression framework and the fact th at t he mean-shift method provides maxima of this cost function. Experiments were repeatedly carried out successfully on a real robot system. After less than sixty trials, our system has adapted its grasping policy to consistently exhibit successful grasps.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Sparse online model learning for robot control with support vector regression

Nguyen-Tuong, D., Schölkopf, B., Peters, J.

In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), pages: 3121-3126, IEEE Service Center, Piscataway, NJ, USA, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2009 (inproceedings)

Abstract
The increasing complexity of modern robots makes it prohibitively hard to accurately model such systems as required by many applications. In such cases, machine learning methods offer a promising alternative for approximating such models using measured data. To date, high computational demands have largely restricted machine learning techniques to mostly offline applications. However, making the robots adaptive to changes in the dynamics and to cope with unexplored areas of the state space requires online learning. In this paper, we propose an approximation of the support vector regression (SVR) by sparsification based on the linear independency of training data. As a result, we obtain a method which is applicable in real-time online learning. It exhibits competitive learning accuracy when compared with standard regression techniques, such as nu-SVR, Gaussian process regression (GPR) and locally weighted projection regression (LWPR).

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Thermodynamic efficiency of information and heat flow

Allahverdyan, A., Janzing, D., Mahler, G.

Journal of Statistical Mechanics: Theory and Experiment, 2009(09):P09011, September 2009 (article)

Abstract
A basic task of information processing is information transfer (flow). P0 Here we study a pair of Brownian particles each coupled to a thermal bath at temperatures T1 and T2 . The information flow in such a system is defined via the time-shifted mutual information. The information flow nullifies at equilibrium, and its efficiency is defined as the ratio of the flow to the total entropy production in the system. For a stationary state the information flows from higher to lower temperatures, and its efficiency is bounded from above by (max[T1 , T2 ])/(|T1 − T2 |). This upper bound is imposed by the second law and it quantifies the thermodynamic cost for information flow in the present class of systems. It can be reached in the adiabatic situation, where the particles have widely different characteristic times. The efficiency of heat flow—defined as the heat flow over the total amount of dissipated heat—is limited from above by the same factor. There is a complementarity between heat and information flow: the set-up which is most efficient for the former is the least efficient for the latter and vice versa. The above bound for the efficiency can be (transiently) overcome in certain non-stationary situations, but the efficiency is still limited from above. We study yet another measure of information processing (transfer entropy) proposed in the literature. Though this measure does not require any thermodynamic cost, the information flow and transfer entropy are shown to be intimately related for stationary states.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]